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2.3 Equations du deuxième degré . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.1 Résolution par factorisation . . . . . . . . . . . . . . . . . . . . . 45
2.3.2 Résolution à l’aide d’une formule . . . . . . . . . . . . . . . . . . 46
2.3.3 Factorisation d’un polynôme de degré 2 . . . . . . . . . . . . . . . 48
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3.2 Déterminants d’ordre 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
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5.4.1 Résolution algébrique . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.4.2 Résolution graphique . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.5 Inéquations rationnelles . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.6 Fonction valeur absolue et fonctions définies par morceaux . . . . . . . . 99
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8.1.4 Les quadrilatères . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.1.5 Les cercles et les disques . . . . . . . . . . . . . . . . . . . . . . . 146
8.1.6 Formules de calcul du périmètre et l’aire . . . . . . . . . . . . . . 147
8.1.7 Les angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
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9.4.1 Théorème du sinus . . . . . . . . . . . . . . . . . . . . . . . . . . 169
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13.5 Intervalles réels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
13.6 Produit cartésien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

13.6.1 Le plan R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
13.7 Relations binaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

13.7.1 Graphe - relation binaire . . . . . . . . . . . . . . . . . . . . . . . 236
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15.2.3 Expression fonctionnelle à partir de la représentation graphique . 279
15.2.4 Intersection des graphes de deux fonctions affines . . . . . . . . . 279
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Algèbre

1





Chapitre 1

Notions fondamentales

1.1 Ensembles et sous-ensembles

Définition 1.1
Une collection d’objets est un ensemble lorsqu’on peut dire avec certitude si un objet
donné appartient ou non à la collection. Ces objets sont les éléments de l’ensemble.

N’importe quel objet (mathématique ou non) peut être considéré comme un élément d’un
ensemble (y compris un ensemble !).

Notation

1. On représente généralement un ensemble par une lettre latine majuscule : E.

2. Les éléments d’un ensemble sont notés entre accolades et séparés par des points-
virgules.

3. Si l’élément x appartient à l’ensemble E, on écrit x ∈ E.

4. Si l’élément x n’appartient pas à l’ensemble E, on écrit x /∈ E.

Exemples

– L’ensemble des nombre de 0 à 6 y compris : E = {0; 1; 2; 3; 4; 5; 6}.
Ici, on a :

0 ∈ E, 4 ∈ E, 10 /∈ E.

– L’ensemble des élèves d’une classe : F = {Aline; Bernard; . . .}.

On peut définir un ensemble de deux manières différentes :

1. en énumérant ses éléments, G = {5; 10; 15; 20; 25; . . .}.

2. en donnant une condition d’appartenance. La notation est alors légèrement plus
sophistiquée. Par exemple, on traduit la phrase

”H est︸ ︷︷ ︸
H=

l’ensemble︸ ︷︷ ︸
{...}

des éléments de E︸ ︷︷ ︸
n∈E

on donne un nom
général aux éléments

de l’ensemble

tels que︸ ︷︷ ︸
|

leur carré est plus grand ou égal à 15︸ ︷︷ ︸
n2>15

on écrit la condition à l’aide d’une formule
grâce au fait qu’on a donné un nom aux éléments

”

par
H = {n ∈ E | n2 > 15}
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Mathématiques, MAP 1ère année 1. Notions fondamentales

Cas particulier

Si un ensemble E ne contient aucun élément, on l’appelle ensemble vide et on le note
{} ou ∅.

Définition 1.2
Si tous les éléments de l’ensemble A appartiennent à l’ensemble B, on dit que A est un
sous-ensemble de B.

Exemple

A = {1; 2; 3; 4}, B = {1; 2; 3; 4; 5; 6} et C = {3; 4; 5; 6}
L’ensemble A est un sous-ensemble de B, mais A n’est pas un sous-ensemble de C.

Définition 1.3
Soit A et B des sous-ensembles d’un ensemble E. On dit que

1. A est inclus dans B si tout élément de A appartient à B. On note A ⊂ B. Dans
ce cas, A est un sous-ensemble de B.

2. A contient B, lorsque tout élément de B appartient à A. On note A ⊃ B. Dans ce
cas, B est un sous-ensemble de A.

3. A est égal à B, lorsque tout élément de A appartient à B et que tout élément de B
appartient à A. On note A = B.

Syntaxe

Nous venons de rencontrer deux signes mathématiques qu’il s’agit de ne pas confondre :

Nom Terme de gauche Symbole Terme de droite

Appartenir à Elément ∈ Ensemble

Etre inclus dans Ensemble ⊂ Ensemble

Etre égal à Elément = Elément

Etre égal à Ensemble = Ensemble

Contenir Ensemble ∋ Elément

Contenir Ensemble ⊃ Ensemble

On a l’équivalence suivante lorsque A est un ensemble.

x ∈ A⇔ {x} ⊂ A

Remarques

1. A 6⊂ B signifie qu’il existe au moins un élément de A qui n’appartient pas à B.

2. Soit un ensemble E = {a; b; c}.
a ∈ E et {a} ⊂ E sont des notations correctes, a ⊂ E ne l’est pas.

page 4
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1.2 Les ensembles de nombres

Les mathématiciens ont classé les nombres dans des ensembles, appelés ensembles de
nombres. Ces derniers sont désignés par des symboles universellement adoptés :

1. N = {0; 1; 2; 3; 4; 5; 6 . . .} : l’ensemble des nombres naturels.

C’est cet ensemble de nombres que nous utilisons la plupart du temps pour compter
(des objets, de l’argent, etc.). Historiquement, le zéro n’est pas apparu en même
temps que les autres nombres. On le rencontre pour la première fois en Inde. Les
Hindous (sanscrit) l’ont désigné par le mot ”sunya” qui signifie : vide ou nul. Les
Arabes l’ont repris en le transformant quelque peu pour donner ”sifr”. Le zéro n’a
été importé en Europe qu’au début du XIIIe siècle par Fibonacci. Les Européens
(en latin) ont transformé ”sifr” en ”zephirum” qui donnera zéro et en ”cifra” qui
donnera chiffre.

2. Z = {. . . ;−3;−2;−1; 0; 1; 2; 3 . . .} : l’ensemble des nombres entiers (relatifs).

Ensuite, les nombres négatifs sont apparus et, mis ensemble avec les nombres na-
turels, ont formé l’ensemble des nombres entiers. Moins utilisés que les nombres
naturels dans la vie de tous les jours, on les trouve notamment dans l’expression de
la température. Leur présence permet à la soustraction d’exister quels que soient
les nombres que l’on soustrait : sans eux, 2− 3 n’existerait pas.

3. Q =

{
p

q
| p, q ∈ Z, q 6= 0

}
: l’ensemble des nombres rationnels (fractions).

Tous les nombres pouvant se mettre sous forme de fraction sont des nombres ra-
tionnels. On en utilise tous les jours lorsqu’on parle de centimètres, de décilitres,
de centièmes de seconde, de moitié, de tiers, etc.

Exemples

– Les nombres entiers (x = x
1
).

– Les nombres à virgules ayant un développement décimal limité ou périodique
(1.25 = 5

4
, 1.3 = 4

3
).

En termes mathématiques, p est le numérateur (vient du mot numéro ou nombre,
car il compte) et q est le dénominateur (vient de dénommer, car il correspond à
un nom comme demi, tiers, dixième, etc.).

4. R : l’ensemble des nombres réels.

Finalement, il y a des nombres qui ne sont pas des fractions. Ils sont appelés les
nombres irrationnels (les nombres à virgule ayant un développement décimal
illimité non périodique). Ils ont été découverts par les Grecs (qui ont eu de la peine
à en accepter l’existence). Ils apparaissent par exemple lorsqu’on étudie la longueur
des côtés d’un triangle, le périmètre d’un cercle, etc.

L’ensemble des nombres réels est constitué des nombres rationnels et des nombres
irrationnels.

On a les inclusions
N ⊂ Z ⊂ Q ⊂ R

page 5
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Proposition 1.1
Le nombre

√
2 est un nombre réel irrationnel (il n’est pas un nombre rationnel).

Démonstration. Nous allons effectuer une démonstration par l’absurde. Principe d’un
telle démonstration : supposer le contraire de ce que l’on désire démontrer et montrer
que cette supposition est impossible (en exhibant une contradiction).

Supposons que
√
2 est un nombre rationnel.

⇒ il existe a, b ∈ Z, b 6= 0 et a, b premiers entre eux (c’est-à-dire a
b
irréductible) tel

que
√
2 = a

b
.

⇒ 2 = a2

b2
et donc a2 = 2b2. On en conclut que a2 un nombre pair.

⇒ a est pair. En effet, élever au carré conserve la parité :

- si m est pair, m = 2n, m2 = 4n2 = 2(2n2), m2 est pair.

- si m est impair, m = 2n + 1, m2 = 4n2 + 4n + 1 = 2(2n2 + 2n) + 1, m2 est
impair.

⇒ il existe a′ tel que a = 2a′. On obtient que a2 = 4(a′)2 = 2b2 et donc que
b2 = 2(a′)2.

⇒ b2 est pair. Par la même réflexion que ci-dessus, il existe b′ tel que b = 2b′.

⇒
√
2 = a

b
= 2a′

2b′
= a′

b′

⇒ La fraction a
b
n’est pas irréductible. Ceci est en totale contradiction avec notre

supposition de départ.

Il découle de cette remarque que
√
2 n’est pas un nombre rationnel.

Conventions complémentaires

On introduit encore les conventions d’écriture suivantes :

- R∗ = {x ∈ R | x 6= 0}

- R+ = {x ∈ R | x > 0}

- R− = {x ∈ R | x 6 0}

Les combinaisons de ces conventions sont possibles : R∗
+,. . .

Ces combinaisons s’appliquent par analogie aux autres ensembles de nombres (natu-
rels,. . . ).

1.2.1 La droite réelle

On représente les nombres réels par une droite, appelée la droite réelle.

R
−4 −3 −2 −1 0 1 2 3 4
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1.2.2 Ecriture décimale

L’écriture décimale permet de représenter tous les nombres réels d’une façon agréable,
mais qui n’est en général pas exacte. Cette écriture permet de placer avec une précision
relative n’importe quel nombre réel sur la droite réelle.

Voici quelques nombres écrits sous forme décimale.

2 = 2.0
2

5
= 0.4

1

8
= 0.125

2

3
= 0.6

5

13
= 0.384615

√
2 = 1.414213 . . .

Les nombres rationnels peuvent s’écrire sous forme de nombres décimaux limités (comme
2
5
et 1

8
) ou périodiques (comme 2

3
et 5

13
), contrairement aux nombres irrationnels dont

le développement décimal est toujours infini et non-périodique (comme
√
2 et π =

3.14159265 . . .).

1.2.3 Notation scientifique

La notation scientifique permet d’écrire des nombres ”très grands” ou ”très petits”.

Si on se donne un nombre a ∈ R, on l’écrira de la manière suivante en notation scientifique

a = ±x · 10n

avec 1 6 x < 10 (x ∈ R) et n ∈ Z. En d’autres termes, on écrit le premier chiffre non
nul du nombre suivi d’une virgule et des chiffres suivants. On multiplie ensuite par la
puissance de 10 adéquate pour retrouver le nombre de départ (on doit avoir une égalité !).
Le nombre de chiffres écrits est appelé le nombre de chiffres significatifs. Il est en
général fixé par le contexte. Afin de raccourcir l’écriture la plupart des calculatrices
écrivent :

±x En au lieu de ± x · 10n

Exemples

nombre exact
nombre décimal

arrondi

notation
scientifique

nb de chiffres
significatifs

2 2 2 · 100 1

1
2

0.5 5 · 10−1 1

1
2

0.50 5.0 · 10−1 2

13
10

1.3 1.3 · 100 2

−1
3

−0.333 −3.33 · 10−1 3

√
119 10.9087 1.09087 · 101 6

220 1048576 1.048576 · 106 7

(−2)49 −5629499534 · · ·? −5.629 · 1015 4

3100 5153775207 · · ·? 5.1537752 · 1047 8

(
1
3

)100
0.0000000 · · ·? 1.9403 · 10−48 5
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La notation scientifique permet de se donner un ordre de grandeur du nombre en question.
Plutôt superflue dans les premiers exemples, elle est essentielle dans les deux derniers
exemples !

1.2.4 PPMC, PGDC et nombres premiers

Définition 1.4 (Rappel)
Soit a et b deux nombres naturels non nuls (a, b ∈ N∗), alors :

1. a est un multiple de b s’il existe un nombre naturel c tel que a = b · c.
2. b est un diviseur de a s’il existe un nombre naturel c tel que a = b · c.

Exemples

1. 32 est un multiple de 8, car 32 = 4 · 8.
2. 7 est un diviseur de 21, car 21 = 7 · 3.

Définition 1.5 (Rappel)

1. Un multiple commun de plusieurs nombres naturels est un nombre naturel qui est
multiple de chacun d’eux. Le plus petit multiple commun de plusieurs nombres
est appelé le ppmc de ces nombres.

2. Un diviseur commun de plusieurs nombres naturels est un nombre naturel qui est
diviseur de chacun d’eux. Le plus grand diviseur commun de plusieurs nombres
est appelé le pgdc de ces nombres.

Exemples

1. 36 est le ppmc de 3, 9 et 12.

2. 8 est le pgdc de 16, 24 et 40.

Définition 1.6
Un nombre entier naturel p est premier s’il admet exactement deux diviseurs, 1 et lui-
même.

Propriétés

1. Tout entier naturel supérieur ou égal à 2 admet au moins un diviseur premier.

2. Il existe une infinité de nombres premiers.

Démonstration. Nous allons démontrer la seconde propriété. On doit cette preuve à Eu-
clide.

Supposons que cet ensemble soit fini. Il contient n nombres p1, p2, . . . , pn.

Posons N = p1 · p2 · . . . · pn + 1. N n’est pas premier par hypothèse. N admet donc au
moins un diviseur premier pi qui doit être p1, p2, . . . ou pn : N = q · pi. Ainsi,

1 = N − p1 · p2 · . . . · pn = q · pi − p1 · p2 · . . . · pn
1 = pi(q − p1 · p2 · . . . · pi−1 · pi+1 · . . . · pn)

De 1 = pi(q−p1 ·p2 ·. . .·pi−1 ·pi+1 ·. . .·pn), on tire que pi divise 1, ce qui est impossible.
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Théorème 1.2 (Théorème fondamental de l’arithmétique)
Tout nombre entier naturel supérieur ou égal à 2 peut s’écrire comme un produit de
nombres premiers. Cette décomposition est unique à l’ordre des facteurs près.

On appelle cette décomposition la décomposition en facteurs premiers du nombre.

Exemples

- La décomposition de 720 en facteurs premiers est : 720 = 24 · 32 · 5.
- La décomposition de 4200 en facteurs premiers est : 4200 = 23 · 3 · 52 · 7.

1.3 Calcul littéral

Le calcul arithmétique consiste à prendre des nombres ”connues” et à exécuter sur ces
derniers des opérations : addition, soustraction, multiplication et division.

Le calcul littéral (ou algébrique), quant à lui, consiste à manipuler des expressions
littérales (c’est-dire avec des nombres et des lettres qui représentent des nombres). Par
rapport au calcul arithmétique, une partie des nombres ”connus” est remplacée par des
lettres désignant des nombres ”inconnus”. Il y a plusieurs raisons pour lesquelles le calcul
algébrique est essentiel.

La première est pour éviter de faire le même calcul un nombre important de fois en
raison du fait qu’une ou plusieurs données du problème peuvent varier, tel que le prix
de l’essence, par exemple. Le calcul algébrique permet d’arriver à une réponse simplifiée
dépendant des (ou de la) données qui varient.

La deuxième est que, parfois, les valeurs de certaines données d’un problème ne seront
connues que plus tard, mais que cela ne devrait pas nous empêcher d’avancer dans la
résolution du problème.

La règle d’or est la suivante :

La présence de lettres dans un calcul ne change rien à la façon de

calculer. Une lettre ne fait que représenter un nombre quelconque !

1.3.1 Propriétés des opérations

Propriétés de l’addition

1) L’addition est commutative : a+ b = b+ a (3 + 4 = 7 = 4 + 3)

2) L’addition est associative : a+ (b+ c) = (a+ b) + c (2+(3+4) = (2+3)+4)

3) 0 est l’élément neutre : a+ 0 = a (2 + 0 = 2)

4) −a est l’élément opposé de a : a+ (−a) = 0 (3 + (−3) = 0)

Propriétés de la multiplication

1) La multiplication est commutative : a · b = b · a (3 · 4 = 12 = 4 · 3)

2) La multiplication est associative : a · (b · c) = (a · b) · c (2·(3·4) = (2·3)·4)

3) 1 est l’élément neutre : 1 · a = a (1 · 2 = 2)

4) Si a 6= 0,
1

a
est l’élément inverse de a : a · 1

a
= 1 (3 · 1

3
= 1)
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La multiplication est distributive par rapport à l’addition

a · (b+ c) = a · b+ a · c (1.1)

Pour réaliser le produit de deux sommes, on utilise plusieurs fois la distributivité de la
multiplication par rapport à l’addition :

(a + b)(c+ d) = a(c+ d) + b(c + d) = ac + ad+ bc+ bd

Exemples

1) Distributivité : 2 · (3 + 4) = 14 = 2 · 3 + 2 · 4
2) Produit de deux sommes : (2 + 3) · (4 + 5) = 2 · (4 + 5) + 3 · (4 + 5) = 2 · 4 + 2 ·

5 + 3 · 4 + 3 · 5 = 45

Définition 1.7
Deux termes techniques sont liés à la distributivité.

Développer : C’est l’opération qui consiste à passer du membre de gauche de l’égalité
(1.1) au membre de droite de la même égalité. Elle consiste donc à transformer
un produit en une somme en ”effectuant” la multiplication selon la règle de
distributivité.

Mettre en évidence : C’est l’opération qui consiste à passer du membre de droite de
l’égalité (1.1) au membre de gauche de la même égalité. Elle consiste donc à repérer
dans une somme de termes le facteur qui est commun à tous les termes de la somme
et à transformer cette somme en le produit du terme commun et de la
somme (entre parenthèses) des termes restant selon la règle de distributivité.

Exemples

1) Pour développer l’expression 2·(5+8) on effectue la multiplication pour obtenir :

2 · (5 + 8) = 2 · 5 + 2 · 8

2) Dans la somme 2 · 5 + 2 · 8, on peut mettre le facteur 2 en évidence car il est
commun aux deux termes de la somme :

2 · 5 + 2 · 8 = 2 · (5 + 8)

On réalise donc l’opération inverse de celle effectuée en 1.

Il est possible de montrer que ces propriétés impliquent :

a · b = 0⇒ a = 0 ou b = 0

C’est une relation nous utiliserons très fréquemment.

Propriétés des nombres opposés

1) −(−a) = a (−(−4) = 4)

2) (−a) · b = −(a · b) = a · (−b) ((−4)·5 = −(20) = 4·(−5))

3) (−a) · (−b) = a · b ((−3) · (−4) = 12)

4) (−1) · a = −a ((−1) · 4 = −4)
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Propriétés des fractions

Rappel

Une fraction représente le quotient (≡ division) de deux nombres a et b. Elle est un
nombre qu’on note

a

b

où a est le numérateur (ou dividende), b le dénominateur (ou diviseur) et la barre
de fraction.

Exemple :
2

5
est un fraction qui correspond au nombre 0, 4. Elle se lit ”deux cinquième”.

Plusieurs fractions peuvent représenter le même nombre (penser à 3 = 6
2
= −15

−5
= 9

3
=

. . .).

On peut utiliser le produit en croix pour vérifier si deux fractions sont égales.

a

b
=
c

d
, si a · d = b · c

Exemple : 2
3
= 10

15
car 2 · 15 = 3 · 10

Les opérations sur les fractions suivent les règles ci-dessous :

1) Addition :
a

b
+
c

d
=
a · d+ b · c

b · d
(

2

3
+

4

5
=

2 · 5 + 3 · 4
3 · 5

)

2) Multiplication :
a

b
· c
d
=
a · c
b · d

(

2

9
· 1
3
=

2 · 1
9 · 3

)

3) Division :
a
b
c
d

=
a

b
÷ c

d
=
a

b
· d
c

(

2
3
3
4

=
2

3
÷ 3

4
=

2

3
· 4
3

)

4) Opposé : −a
b
=
−a
b

=
a

−b
(

−2

3
=

−2

3
=

2

−3

)

On transforme une fraction en une autre fraction équivalente par la suite d’opérations :

a

b
=
a

b
· 1 =

a

b
· m
m

=
a ·m
b ·m

En lisant de gauche à droite, on amplifie la fraction. En lisant de droite à gauche,
on simplifie la fraction. On dit qu’une fraction est irréductible si on ne peut pas la
simplifier (comme pour 2

3
).

Nous reviendrons plus en détails sur ces concepts au paragraphe (1.5).

Priorité des opérations

L’ordre de priorité des opérations s’établit ainsi (plus le numéro est élevé, plus la priorité
est grande) :

Priorité 4 - les parenthèses ()

Priorité 3 - l’exponentiation yx et les fonctions (sinus, cosinus, etc.)

Priorité 2 - la multiplication et la division

Priorité 1 - l’addition et la soustraction
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La règle de priorité est la suivante :

1. en lisant de gauche à droite, quand un nombre se trouve entre deux signes opéra-
toires, c’est l’opération prioritaire qui est effectuée en premier.

2. si les deux opérations ont le même niveau de priorité, elles sont effectuées dans
l’ordre d’écriture.

Règle des signes

Lorsqu’on a une multiplication ou une division entre deux nombres, la règle des signes
s’applique.

nombre
multiplication
ou division

nombre nombre

+ · ou ÷ + +

+ · ou ÷ − −
− · ou ÷ + −
− · ou ÷ − +

On peut aussi utiliser des phrases mnémotechniques du style : les amis de mes amis sont mes amis ; les amis de mes ennemis

sont mes ennemis ; les ennemis de mes amis sont mes ennemis ; les ennemis de mes ennemis sont mes amis.

1.3.2 Les puissances et les exposants

Définition 1.8
Un nombre a multiplié n fois par lui-même, a · a · . . . · a︸ ︷︷ ︸

a apparâıt n fois

, est appelé puissance n-ème

de a et est noté an. On dit également ”a élevé à la puissance n” ou plus rapidement ”a
puissance n”. Dans l’écriture an, on appelle a la base et n l’exposant.

Exemple : 3 · 3 · 3 · 3 · 3 · 3︸ ︷︷ ︸
3 apparâıt 6 fois

= 36

Propriétés

– Pour multiplier 2 puissances de même base, on additionne les exposants :

an · am = an+m

Exemple : 25 · 24 = (2 · 2 · 2 · 2 · 2) · (2 · 2 · 2 · 2) = 29

Pour n = 0 : an · a0 = an ⇒
a0 = 1

De plus :
an

am
= an−m

si n > m.
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– Pour multiplier 2 puissances de même exposant, on multiplie les bases :

an · bn = (a · b)n

Exemple : 23 · 33 = (2 · 2 · 2) · (3 · 3 · 3) = (2 · 3) · (2 · 3) · (2 · 3) = 63

– Pour élever à des puissances successives, on multiplie les exposants :

(an)m = an·m

Exemple : (32)3 = (3 · 3) · (3 · 3) · (3 · 3) = 36

Ces formules ne sont valables, pour l’instant, que pour a et b des nombres réels (a, b ∈ R)
et n et m des nombres naturels (n,m ∈ N). On les généralisera dans la suite du cours.

1.3.3 Les racines

Définition 1.9
L’opération prendre la racine d’un nombre est l’inverse de l’élévation d’un nombre à
une certaine puissance. On définit la racine n-ème (n ∈ N∗) d’un nombre a (avec
a ∈ R et a > 0), notée n

√
a, comme l’unique nombre réel x > 0 qui satisfait

xn = a

Le symbole n
√

est appelé radical , l’expression sous le radical est appelé radicande et
n l’indice.

Si n = 2, on écrit simplement
√
a et on lit racine carrée de a.

Exemples

1.
√
0 = 0 (car 02 = 0)

2.
√
4 = 2 (car 2 est l’unique nombre réel positif tel que 22 = 4. Remarque :

(−2)2 = 4 également, mais −2 est un nombre réel négatif !)

3. 3
√
8 = 2 (car 23 = 8)

Si a et b sont des nombres réels strictement positifs (a, b ∈ R∗
+) et n, m, p des nombres

naturels strictement positifs (n,m, p ∈ N∗), on a les propriétés suivantes :

n
√
a =

n
√
b⇐⇒ a = b

(
n
√
a
)n

= a
n
√
ab = n

√
a

n
√
b n

√
a

b
=

n
√
a

n
√
b

n
√
am =

(
n
√
a
)m n

√
m
√
a = nm

√
a np
√
amp = n

√
am

Attention !

–
√
a2 + b2 6= a + b, en effet :

√
32 + 42 =

√
25 = 5 6= 3 + 4 = 7

–
√
a+ b 6= √a+

√
b, en effet :

√
4 + 9 =

√
13 6=

√
4 +
√
9 = 5
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1.3.4 Identités remarquables

Les identités remarquables sont des formules qu’il est bon de reconnâıtre en toute
circonstance. Elles vont revenir dans tous les chapitres. Pour la plupart ce n’est qu’un
rappel.

(a+ b)2 = a2 + 2ab+ b2 (a− b)2 = a2 − 2ab+ b2

(a+ b)3 = a3 + 3a2b+ 3ab2 + b3 (a− b)3 = a3 − 3a2b+ 3ab2 − b3

(a+ b)4 = a4 + 4a3b+ 6a2b2 + 4ab3 + b4 (a− b)4 = a4 − 4a3b+ 6a2b2 − 4ab3 + b4

(a+ b)5 = . . .

Ces égalités se lisent dans les deux sens (comme toute égalité). Il est facile de les retrouver
en développant le terme de gauche. Par contre, il est important de les connâıtre afin de
pouvoir les reconnâıtre lorsque seul le terme de droite est présent.

Reprenons la première de ces formules. On peut écrire : (a+ b)2 = 1 · a2 + 2 · ab+ 1 · b2.
On appelle le ”1” devant a2 le coefficient de a2 ; le coefficient de ab est 2, celui de b2 est
1.

Dans les formules de la première colonne, la puissance à laquelle on a élevé (a + b) est
chaque fois augmentée de 1. Observez ce qui se passe :

- A chaque puissance correspond une suite de coefficients.
Exemples : à la puissance 2 correspond : (1; 2; 1), à celle de 3 correspond : (1; 3; 3; 1).

- En lisant de gauche à droite, les exposants de a sont décroissants par pas de 1, ceux
de b croissants par le même pas.

Pour le cas général (a+ b)n, les coefficients sont donnés par le triangle de Pascal.

n

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
... . . .

Le triangle de Pascal

D’autre identités sont également très utiles

(a+ b) · (a− b) = a2 − b2

(a + b)(a2 − ab+ b2) = a3 + b3

(a− b)(a2 + ab+ b2) = a3 − b3

(a+ b+ c)2 = a2 + b2 + c2 + 2ab+ 2ac+ 2bc
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Applications

1. 38 · 42 = (40− 2) · (40 + 2) = 402 − 22 = 1600− 4 = 1596

2. 212 = (20 + 1)2 = 202 + 2 · 20 + 1 = 400 + 40 + 1 = 441

3. 352 = (30 + 5)2 = 302 + 2 · 150 + 52 = 900 + 300 + 25 = 1225

Démonstration. Nous allons démontrer quelques-unes des identitées proposés ci-dessus.
Les autres démonstrations sont laissées au lecteur.

1. (a+ b)2 = (a+ b) · (a+ b) = a(a+ b)+ b(a+ b) = a2+ab+ ba+ b2 = a2 + 2ab+ b2

2. (a− b)2 = (a + (−b))2 = a2 + 2a(−b) + b2 = a2 − 2ab+ b2

3. (a+ b)(a− b) = a(a− b) + b(a− b) = a2 − ab+ ba + b2 = a2 − b2

4. (a+ b)(a2 − ab+ b2) = a3 − a2b+ ab2 + ba2 − ab2 + b3 = a3 + b3

5. (a− b)(a2 + ab+ b2) = a3 + a2b+ ab2 − ba2 − ab2 − b3 = a3 − b3

1.4 Polynômes

1.4.1 Monômes

Définition 1.10
On appelle monôme les nombres réels, les lettres, qui sont appelées indéterminées ou
les expressions qui peuvent être obtenues par la multiplication à partir des nombres réels
et des lettres.

Un monôme en une indéterminée est le produit d’un nombre réel, a, et d’une puis-
sance d’une indéterminée, généralement noté x, :

a · xn

Le nombre réel a est le coefficient du monôme.

La puissance de l’indéterminée, xn, est la partie littérale du monôme et son exposant,
n ∈ N, est le degré du monôme.

Deux monômes sont semblables si et seulement si leurs parties littérales sont égales.

Exemples

1) 4x2y, xy2z, −2x, 5, 0 sont des monômes.

2) x+ x+ x est un monôme, forme réduite : 3x.
1+3x n’est pas un monôme car cette expression n’est pas le produit de nombres
et/ou de lettres.

3)

Monôme 5x −3x2 7
2
x4 x2 −

√
2x3 7, 8

Coefficient 5 −3 7
2

1 −
√
2 7, 8

Partie littérale x x2 x4 x2 x3 x0 = 1

Degré 1 2 4 2 3 0

4) x2 et −3x2 sont deux monômes semblables.
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Opérations sur les monômes

Somme : On obtient la somme de monômes semblables en conservant la partie littérale
commune et en additionnant les coefficients. On utilise la distributivité de la mul-
tiplication sur l’addition.

Produit : On obtient le produit de deux monômes en multipliant leurs coefficients entre
eux et leurs parties littérales entre elles (addition des puissances). On utilise la
commutativité et l’associativité de la multiplication.

Exemples

1) Somme : 5x2 + 8x2
dis.
= (5 + 8) · x2 = 13x2

2) Produit : 5x2 · 8x3 com.
= 5 · 8 · x2 · x3 ass.

= 40x2+3 = 40x5

1.4.2 Polynômes

Définition 1.11
On appelle polynôme tout monôme et toute somme de monômes.

Exemples

1) 7x2y + 8xyz − 3y3z3 et −4x2 + 5xy − x+ 2y − 4 sont des polynômes.

2) 1
x
+ 3x, x−5

x2+2
et 3x+ 2

√
x ne sont pas des polynômes.

Pour la suite de ce cours nous considérerons uniquement des polynômes formés de monô-
mes en une indéterminée, que nous noterons x.

On polynôme est sous forme réduite si ses monômes semblables sont regroupés en
un seul terme. Pour obtenir un polynôme sous forme réduite, on somme ses monômes
semblables en utilisant la règle d’addition ci-dessus.

Exemples

1) 2x2 − 3x+ 2 est un polynôme sous forme réduite. Il a trois termes.

2) 7x2 − 3x+2x2 − 4 n’est pas un polynôme sous forme réduite, puisqu’il contient
les deux termes semblables 7x2 et 2x2. Forme réduite : 9x2 − 3x− 4

Définition 1.12
Un polynôme (en une indéterminée), nommé p(x), s’écrit de manière ”générale”

p(x) = anx
n + an−1x

n−1 + an−1x
n−2 + . . .+ a2x

2 + a1x+ a0

avec ak ∈ R, an 6= 0 et n ∈ N.

La valeur de l’exposant le plus grand, n, est appelée le degré de p(x), noté deg(p(x)).

Le nombre ai est appelé le coefficient de rang i de p(x) et an le coefficient dominant.

On écrira généralement un polynôme de manière ordonnée, c’est-à-dire en écrivant ses
termes dans l’ordres des degrés décroissants.
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Mathématiques, MAP 1ère année 1. Notions fondamentales

Exemples

Polynôme Degré Coeff. dom. a5 a4 a3 a2 a1 a0

p(x) = 5x5 + 2x4 + 3x2 + x 5 5 5 2 0 3 1 0

p(x) = −x3 + x2 + 5 3 −1 − − −1 1 0 5

p(x) = 4
3
x+ 2 1 4

3
− − − − 4

3
2

p(x) = 6 0 6 − − − − − 6

Evaluation d’un polynôme

On peut évaluer un polynôme p(x) en n’importe quel nombre réel a en remplaçant
l’indéterminée x par le nombre a et en évaluant la valeur de l’expression ainsi obtenue.
On note cette valeur p(a).

Exemple

Soit le polynôme p(x) = −x3 + 2x2 − x− 7

Si a = 2 : p(2) = −23 + 2 · 22 − 2− 7 = −8 + 8− 2− 7 = −9
Si a = −5 : p(−5) = −(−5)3 + 2 · (−5)2 − 1 · (−5)− 7 = 125 + 50 + 5− 7 = 173

Opérations sur les polynômes

Egalité : Deux polynômes sont dit égaux s’ils sont de même degré et si tous leurs
coefficients de rang i correspondants sont égaux.

Somme : On additionne deux polynômes en regroupant les termes semblables, même
puissance de l’indéterminée, et en les additionnant (équivalent à réduire la somme
des deux polynômes).

Opposé : On obtient l’opposé d’un polynôme en changeant le signe de chacun de ses
termes. (Cela revient à le multiplier par −1.)

Différence : On soustrait un polynôme d’un autre polynôme en y additionnant son
opposé.

Produit : On multiplie deux polynômes en multipliant chaque monôme du premier par
chaque monôme du second et on réduit la somme de monômes obtenue. (On ap-
plique à plusieurs reprises la distributivité.)

Exemples

Soit les polynômes p(x) = 2x2 − 4x+ 6 et q(x) = x2 + 3x− 5.

1) Egalité :
p(x) = 2x2 − 4x+ 6 = 6− 4x+ 2x2 = −4x+ 6 + 2x2 = 2(x2 − 2x+ 3) = . . .

2) Somme :
p(x) + q(x) = (2x2 − 4x+ 6) + (x2 + 3x− 5)

= (2x2 + x2) + (−4x+ 3x) + (6− 5)
= 3x2 − x+ 1
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3) Opposé :
−p(x) = −1 · (2x2 − 4x+ 6) = −2x2 + 4x− 6

4) Différence :
p(x)− q(x) = (2x2 − 4x+ 6)− (x2 + 3x− 5)

= (2x2 − 4x+ 6) + (−x2 − 3x+ 5)
= (2x2 − x2) + (−4x− 3x) + (6 + 5)
= x2 − 7x+ 11

5) Produit :
p(x) · q(x) = (2x2 − 4x+ 6) · (x2 + 3x− 5)

= 2x2 · (x2 + 3x− 5) + (−4x) · (x2 + 3x− 5) + 6 · (x2 + 3x− 5)
= 2x2 · x2 + 2x2 · 3x+ 2x2 · (−5)+

(−4x) · x2 + (−4x) · 3x+ (−4x) · (−5)+
6 · x2 + 6 · 3x+ 6 · (−5)

= 2x4 + 6x3 − 10x2 − 4x3 − 12x2 + 20x+ 6x2 + 18x− 30
= 2x4 + 2x3 − 16x2 + 38x− 30

On peut remarquer que : 4 = deg(p(x) · q(x)) = deg(p(x)) + deg(q(x)) = 2 + 2.

Formule des degrés

Soit p(x) et q(x) deux polynômes. On a la formule suivante :

deg(p(x) · q(x)) = deg(p(x)) + deg(q(x))

Cette formule se démontre facilement en utilisant la définition du produit de deux po-
lynômes.

1.4.3 Factorisation d’un polynôme

La factorisation ou décomposition en facteurs consiste à trouver, pour un polynôme
p(x) de degré supérieur ou égal à 2 donné, un produit de polynômes de degré supérieur
à 0 qui lui soit égal et dont les facteurs ne peuvent plus être décomposés.

La factorisation est le processus inverse du développement. Ainsi, pour contrôler si une
factorisation est correcte, il suffit de développer le produit obtenu et voir s’il correspond
au polynôme de départ.

Exemple

Le polynôme x2 − 9 peut se décomposer ainsi : x2 − 9 = (x+ 3)(x− 3).

On donne ci-dessous quelques procédés permettant d’effectuer cette transformation très
importante et parfois difficile. D’autres technique seront données dans la suite du cours.

Mise en évidence

On repère d’abord dans la somme de termes à décomposer le facteur qui est commun à
tous les termes de la somme et on utilise ensuite la distributivité pour écrire un produit.
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Exemples

1) x2 − 8x = x(x− 8) −→ On a mis x en évidence.

2) 6ax+ 6a = 6a(x+ 1) −→ On a mis 6a en évidence (ne pas oublier le +1 dans
la parenthèse).

3) a(x+ y) + b(x+ y) = (a+ b)(x+ y) −→ Le facteur x+ y est commun aux deux
termes de la somme.

4) −12x3y + 24x2y2 + 6xy3 = 6xy(−2x2 + 4xy + y2)

Utilisation des identités remarquables

On peut utiliser les identités remarquables vues au paragraphe (1.3.4) pour factoriser un
polynôme.

Exemples

1) 9x2 − 25y2 = (3x− 5y)(3x+ 5y)

2) 4x2 − 4x+ 1 = (2x− 1)2

3) a3 − 6a2b+ 12ab2 − 8b3 = (a− 2b)3

Décomposition d’un trinôme du second degré

Essayons de déterminer α et β de manière à pouvoir écrire :

x2 + 7x+ 12 = (x+ α)(x+ β)

La forme réduite du membre de droite de cette égalité est égale à

x2 + (α + β)x+ αβ

Pour que les deux membres soient égaux, il faut donc que

α+ β = 7 αβ = 12

Ces deux égalités sont vraies si α = 3 et β = 4. On obtient ainsi la décomposition du
trinôme du second degré donné en un produit de deux facteurs du premier degré :

x2 + 7x+ 12 = (x+ 3)(x+ 4)

La décomposition d’un trinôme du second degré dont le coefficient dominant est 1 est
ainsi ramenée à la recherche de deux nombres dont
– la somme est égale au coefficient de rang 1,
– le produit est égal au coefficient de rang 0.

Méthode des groupements

Elle consiste à former plusieurs groupes de termes (dans les exemples les plus courants 2
groupes), de telle manière que l’on puisse
– soit utiliser une identité remarquable,
– soit mettre en évidence un facteur commun aux différents groupes.
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Exemples

1) x2 − 2xy + y2 − 1 = (x2 − 2xy + y2)− 1 ass. addition
= (x− y)2 − 1 identité remarquable
= [(x− y) + 1][(x− y)− 1] identité remarquable
= (x− y + 1)(x− y − 1) ass. addition

2) ax+ bx− ay − by = (ax− ay) + (bx− by) ass. et comm. addition
= a(x− y) + b(x− y) mise en évidence
= (x− y)(a+ b) mise en évidence

Méthode de factorisation

Pour décomposer un polynôme, il faut souvent appliquer plusieurs des méthodes décrites
ci-dessus. On procède dans l’ordre suivant :

1. mise en évidence des facteurs communs à tous les termes,

2. utilisation d’une identité remarquable,

3. méthode de décomposition pour les trinômes du second degré,

4. méthode des groupements.

Exemples

1) 36x2 − 100 = 4(9x2 − 25) mise en évidence
= 4(3x− 5)(3x+ 5) identité remarquable

2) 5a2 − 5b2 − 5a2c2 + 5b2c2 = 5[(a2 − b2)− c2(a2 − b2)]
= 5(a2 − b2)(1− c2)
= 5(a− b)(a+ b)(1 − c)(1 + c)

1.5 Fractions rationnelles

Définition 1.13
On appelle fraction rationnelle le quotient de deux polynômes en une indéterminée,
p(x) et q(x) :

p(x)

q(x)

où q(x) n’est pas le polynôme nul (q(x) 6= 0).

p(x) est appelé le numérateur de la fraction et q(x) le dénominateur.

Exemple

2x

5x+ 1
,
8x2 − 3x+ 2

−3x+ 5
,

1

x5 − 2x3 + 2
sont des fractions rationnelles.

Pour travailler avec ces fractions rationnelles, il est nécessaires de définir des opérations
entre ces fractions. Ces dernières devront être des prolongements des définitions des
opérations sur les polynômes, et donc concorder avec celles-ci, car tout polynôme p(x) 6= 0

peut être vu comme la fraction rationnelle :
p(x)

1
. La même remarque est valable pour

les nombres réels.
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1.5.1 Opérations sur les fractions rationnelles

Convention d’écriture : Dans ce paragraphe, les lettres A, B, C et D représenteront
des polynômes (en une indéterminée). En particulier, on pourrait voir ces lettres comme
représentant des nombres réels (qui sont des polynômes de degré 0) et retrouver ainsi les
opérations décrites au paragraphe (1.3.1).

Simplification d’une fraction rationnelle

On simplifie une fraction rationnelle en remplaçant dans le numérateur et le dénomina-
teur un facteur (polynôme) qui leur est commun par 1 (≡ on divise le numérateur et le
dénominateur par un même facteur).

A · C
B · C =

A · 1
B · 1 =

A

B

Une fraction rationnelle simplifiée au maximum est dans sa forme irréductible.

Remarque

Pour simplifier une fraction rationnelle, on factorise d’abord son numérateur et son
dénominateur, puis on simplifie par les facteurs communs.

Exemples

1)
21

14
=

3 · 7
2 · 7 =

3 · 1
2 · 1 =

3

2

On a simplifié la fraction 21
14

par 7.

2)
x2 − 3x+ 2

x2 − 1
=

(x− 2)(x− 1)

(x+ 1)(x− 1)
=

(x− 2) · 1
(x+ 1) · 1 =

x− 2

x+ 1

On a simplifié la fraction par x− 1.

3)
x2 + 6x+ 9

x3 + x2 − 6x
=

(x+ 3)2

x(x2 + x− 6)
=

(x+ 3)2

x(x+ 3)(x− 2)
=

x+ 3

x(x− 2)

4)
3x2 − 3

12x+ 12
=

3(x2 − 1)

12(x+ 1)
=

1 · (x+ 1)(x− 1)

4(x+ 1)
=
x− 1

4

Amplification d’une fraction rationnelle

On amplifie une fraction rationnelle en multipliant son numérateur et son dénominateur
par un même polynôme (non nul).

A

B
=
A · C
B · C

C’est donc la transformation inverse de la simplification.

Deux fractions rationnelles sont alors équivalentes si on peut passer de l’une à l’autre
par simplifications et/ou amplifications.
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Exemples

1)
4

5
=

4 · 7
5 · 7 =

28

35

On a amplifié 4
5
par 7

2)
x− 2

x− 5
=

(x− 2)(x− 1)

(x− 5)(x− 1)
=
x2 − 3x+ 2

x2 − 6x+ 5

On a amplifié la fraction par x − 1. Il suffit de simplifier la fraction du milieu
par x− 1 pour obtenir l’égalité.

Somme de deux fractions rationnelles

Pour additionner deux fractions rationnelles, on procède de la manière suivante :

1) déterminer un multiple commun aux dénominateurs des deux fractions −→ un
polynôme qu’on peut obtenir par multiplication à partir des dénominateurs des deux
fractions,

2) amplifier les deux fractions pour obtenir aux dénominateurs le polynôme déterminé
en 1 −→ on dit qu’on met les fractions au même dénominateur,

3) additionner les numérateurs en conservant le dénominateur commun.

A

B
+
C

D
=
A ·D
B ·D +

B · C
B ·D =

A ·D +B · C
B ·D

Cette méthode fonctionne aussi quand on veut additionner un polynôme et une fraction
rationnelle. Il suffit d’écrire le polynôme p(x) sous la forme p(x)

1
et d’appliquer la méthode

ci-dessus.

Remarque

Le dénominateur ”préféré” (parce qu’il rend les calculs plus simples !) est le multiple
commun des deux dénominateurs du plus petit degré possible.
On l’appelle le ppmc des deux dénominateurs.

Exemples

1)
3

4
+

5

6
=

9

12
+

10

12
=

9 + 10

12
=

19

12
Dénominateur commun : 12 −→ ppmc de 4 et 6.

2)
a2 − a
a+ 1

+
a− 2

a+ 1
=
a2 − a + a− 2

a+ 1
=
a2 − 2

a+ 1

Addition directe car les deux fractions sont déjà au même dénominateur.

3)
2

x− 3
+
−7
x+ 2

=
2(x+ 2)

(x− 3)(x+ 2)
+

(−7)(x− 3)

(x− 3)(x+ 2)
=

2x+ 4− 7x+ 21

(x− 3)(x+ 2)
=

−5x+ 25

(x− 3)(x+ 2)
=

(−5)(x− 5)

(x− 3)(x+ 2)

Dénominateur commun : (x− 3)(x+ 2) −→ produit de x− 3 et x+ 2.
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4)
2

(x− 3)(x+ 2)
+
−7
x+ 2

=
2

(x− 3)(x+ 2)
+

(−7)(x− 3)

(x− 3)(x+ 2)
=

2− 7x+ 21

(x− 3)(x+ 2)
=

−7x+ 23

(x− 3)(x+ 2)

Dénominateur commun : (x− 3)(x+ 2) −→ ppmc de (x− 3)(x+ 2) et x+ 2.

Opposé d’une fraction rationnelle

L’opposé d’une fraction rationnelle s’obtient en prenant l’opposé soit de son numérateur,
soit de son dénominateur.

−A
B

=
−A
B

=
A

−B

Exemples

1) −3
4
=
−3
4

=
3

−4
est l’opposé de 3

4
.

2) −x
2 − 3x+ 2

x2 − 1
=
−x2 + 3x− 2

x2 − 1
=
x2 − 3x+ 2

−x2 + 1

est l’opposé de la fraction rationnelle
x2 − 3x+ 2

x2 − 1

Différence de deux fractions rationnelles

Pour soustraire une fraction rationnelle d’une première fraction rationnelle, on addi-
tionne à la première l’opposé de la seconde.

A

B
− C

D
=
A

B
+
−C
D

=
A ·D
B ·D +

B · (−C)
B ·D =

A ·D −B · C
B ·D

Exemples

1)
3

4
− 1

2
=

3

4
+
−1
2

=
3

4
+
−2
4

=
3− 2

4
=

1

4

2)
a2 − a
a+ 1

− a− 2

a+ 1
=
a2 − a
a + 1

+
(−1)(a− 2)

a+ 1
=
a2 − a− a + 2

a+ 1
=
a2 − 2a+ 2

a + 1

Produit de deux fractions rationnelles

Pour multiplier deux fractions rationnelles, on multiplie leurs numérateurs entre eux et
leurs dénominateurs entre eux.

A

B
· C
D

=
A · C
B ·D

Pour multiplier un polynôme par une fraction rationnelle, il suffit, comme pour l’addition,
d’écrire le polynôme p(x) sous la forme p(x)

1
et d’appliquer la règle ci-dessus.
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Exemples

1)
2

3
· 4
5
=

2 · 4
3 · 5 =

8

15

2)
x− 3

x+ 1
· x− 2

x+ 1
=

(x− 3)(x− 2)

(x+ 1)(x+ 1)
=
x2 − 5x+ 6

x2 + 2x+ 1

Inverse d’une fraction rationnelle

L’inverse d’une fraction rationnelle est obtenue en inversant son numérateur et son
dénominateur (si le numérateur et le dénominateur sont différents de zéro).

A

B

inverse−−−→ B

A

Exemples

1)
3

4
est l’inverse de

4

3
.

2)
x2 − 3x+ 2

x2 − 1
est l’inverse de la fraction rationnelle

x2 − 1

x2 − 3x+ 2
.

Quotient de deux fractions rationnelles

Pour diviser une fraction rationnelle par une seconde fraction rationnelle, on multiplie
la première par l’inverse de la seconde.

A
B
C
D

=
A

B
÷ C

D
=
A

B
· D
C

=
A ·D
B · C

Exemples

1)
3
4
5
7

=
3

4
· 7
5
=

3 · 7
4 · 5 =

21

20

2)
x−3
x+1
x−2
x+1

=
x− 3

x+ 1
· x+ 1

x− 2
=

(x− 3)(x+ 1)

(x+ 1)(x− 2)
=
x− 3

x− 2

1.6 Symbole de sommation

Définition 1.14
Le symbole de sommation, noté à l’aide de la lettre grec Σ, s’utilise pour désigner de
manière générale la somme de plusieurs termes.

Soit n termes a1, a2, . . . , an. La somme de ces n termes s’écrit de la manière suivante à
l’aide du symbole de sommation :

a1 + a2 + . . .+ an =
n∑

k=1

ak
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On appelle k l’indice de la somme. Il permet de décrire la manière dont on somme les
éléments.

Le nombre se trouvant à droite de l’égalité sous le symbole de sommation est la valeur
de départ de l’indice de sommation, ici 1, et le nombre au-dessus du symbole la valeur
finale de l’indice, ici n. La somme porte sur toutes les valeurs de k comprises entre ces
deux bornes (bornes comprises).

Le symbole de sommation permet donc d’écrire des sommes d’un nombre important de
termes de manière précise et condensée sans utiliser les points de suspension.

L’indice de sommation peut être utilisé pour décrire les termes de la somme de manière
directe et les bornes sur l’indice de sommation peuvent avoir d’autre valeurs que 1 et n.

Par exemple, la somme des puissance de 2 comprises entre 6 et 27 peut s’écrire

27∑

k=6

2k

au lieu de 26 + 27 + . . .+ 226 + 227.
Donnons d’autres exemples pour bien comprendre cette notation.

Exemples

1.
8∑

k=3

k = 3 + 4 + 5 + 6 + 7 + 8 = 33

2.

4∑

k=1

2k = 21 + 22 + 23 + 24 = 30

3.
4∑

k=1

(k2 − 1) = (12 − 1) + (22 − 1) + (32 − 1) + (42 − 1) = 0 + 3 + 8 + 15 = 26

4.
n∑

k=1

(k2 − 1) = 0 + 3 + 8 + 15 + . . .+ (n2 − 1)

5.

4∑

k=2

(k − 1)3 = (2− 1)3 + (3− 1)3 + (4− 1)3 = 13 + 23 + 33 = 36

Proposition 1.3
Soient n ∈ N∗ ; x1, . . . , xn ∈ R ; y1, . . . , yn ∈ R et a ∈ R.

Le symbole de sommation possède les propriétés suivantes :

1.

n∑

k=1

(xk + yk) =

n∑

k=1

xk +

n∑

k=1

yk

2.
n∑

k=1

a · xk = a ·
n∑

k=1

xk

3.
n∑

k=1

a = n · a

Ces propriétés du symbole de sommation découlent directement de l’associativité et de
la commutativité de l’addition ainsi que de la distributivité de la multiplication sur l’ad-
dition.
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1.7 Principe de récurrence

Nous allons décrire ci-après un principe qui nous permettra de démontrer certaines rela-
tions utiles pour la progression du cours.

Proposition 1.4 (Principe de récurrence)
Soit P(n) une propriété de l’entier n ∈ N. On suppose qu’on a les deux assertions sui-
vantes :

1. P(0) est vraie (ancrage) ;

2. pour tout n ∈ N, P(n) implique P(n+ 1) (hérédité).

Alors P(n) est vraie pour tout n ∈ N.

L’hypothèse d’hérédité signifie que si P(n) est vraie alors P(n+ 1) l’est aussi. Dans ces
conditions, on comprend bien que P(n) est vraie pour tout n. En effet, P(0) est vraie
par l’hypothèse d’ancrage, donc P(1) l’est par hérédité, donc P(2) aussi pour la même
raison, etc.

Exemple

A l’aide du principe de récurrence, nous allons démontrer la relation :

1 + 2 + 3 + . . .+ n =

n∑

k=1

k =
n · (n+ 1)

2

pour tout n ∈ N∗. Cette propriété dépend donc de n et pourrait être désignée par
P(n), pour reprendre la notation proposé ci-dessus. On procède en deux étapes :

1. Ancrage : La formule est vraie pour n = 1 :

1
?
=

1 · 2
2
⇒ OK.

Cette égalité est vraie et la relation est donc vraie pour n = 1 (autrement
dit : P(1) est vérifiée).

2. Hérédité On suppose que la formule est vraie pour n quelconque. On montre
alors qu’elle est vraie pour n+1.

Hypothèse : 1 + 2 + 3 + . . .+ n =
n · (n + 1)

2

Conclusion : 1 + 2 + 3 + . . .+ n + (n+ 1) =
(n+ 1) · (n+ 2)

2
On doit donc montrer la seconde égalité en s’appuyant sur la première. Pour
cela, on part du terme de gauche de la seconde égalité et par une suite
d’égalités on essaie d’obtenir le terme de droite :
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1 + 2 + 3 + . . .+ n︸ ︷︷ ︸
Hyp:=

n·(n+1)
2

+(n+ 1) =
n · (n+ 1)

2
+ (n+ 1)

=
n · (n+ 1) + 2 · (n+ 1)

2

=
(n+ 1) · (n+ 2)

2

Nous venons de prouver l’hérédité de notre formule : P (n)⇒ P (n+ 1).

La formule :
n∑

k=1

k =
n · (n + 1)

2

est donc vraie pour tout nombre naturel positif n par le principe de récurrence.

Remarque

Cette formule est à connâıtre par coeur !
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1.8 Exercices

1) Placer chacun des nombres suivants dans la bonne ”plage” (ne reporter que la lettre
correspondante) :

a = 0 b = −1, 2
c = 5

2
d = 0

5

e = 3, 48 f = π

g =
√
2 h =

√
36

i =
√
−1 j = 3

√
2

k = −12
0

l = 3
√
−8

m = 2, 999 n = 2, 999 . . .

N Z Q R C

2) Ecrire en notation scientifique :

a) 14′000′000 b) 1, 004 c) 0, 000004

d) 0, 00081 e) 143 f) 23, 090

3) Indiquer la décomposition en facteurs premiers de 14′520, 10′725 et 9′126 ; déterminer
ensuite leur pgdc et ppmc.

4) Supprimer les parenthèses inutiles :

a)

(
3

x

)
+ 2 + (4 · 3)− 1 b) (4 · x) + 5 · (2 + x)

c) (x+ 2) · (x− 1) + (3 · x)− (x+ 2) d) (x− 3)2 · (x− 4) + (x+ 2)3

5) Simplifier les quotients suivants :

a)
55

33
b)

24 + 18

6
c)

24 + 18

7
d)

8 + 12

4 + 28

6) Additionner les fractions suivantes et simplifier :

a)
4

3
+

1

3
b)

4

2
+

2

3
c)

6

8 + 4
+

3

2
d)

1

3
+

3

4

e)
3

11
+

4

7
f)

4

9
+

2

18
g)

3

4
− 5

32
h)

4

9
+

11

12

i)
2

7
− 3

14
+

1

2
j)

6

7
+

9

14
+

2

3
+

11

21
k)

7

8
+

3

4
+

19

24
+

5

6

l)
3

5
+

7

10
+

2

3
m)

7

16
+

2

3
+

5

8
+

1

6
n)

70

84
+

45

54
+

20

45
+

49

56

o)
54

72
+

140

336
+

65

117
+

119

189
p)

2
3
+ 2

2
9
− 4

3

q)
2
5
+ 3

2
4
3
+ 5

2
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7) Effectuer les multiplications suivantes :

a)
495

125
· 475
304
· 352
405
· 45
363

b)
161

368
· 676
343
· 648
624
· 686
819

c)
833

279
· 192
289
· 527
882
· 216
128

d)

(
5

6
− 1

10

)
·
(

7

11
+

7

4

)

8) Effectuer les divisions suivantes :

a)
3

24
÷ 15

8
b)

12

91
÷ 12

13
c)

60

39
÷ 30

13

d)
3600

4225
÷ 2772

4433
e)

9251

5819
÷ 783

621
f)

9

11
÷ 7

132

9) Effectuer les calculs suivants :

a)
111
105
− 90

175
36
140

+ 49
245

·
14
21

66
72
− 45

360

= . . . b)
25
16
− 16

25
5
4
+ 4

5

= . . .

c)
1

5− 24
21
4

= . . . d)

1
3
2

+ 1
3
4

1
2

13
14

· 21
39

= . . .

e)

225
21

· 616
33

163
3

− 10
3

100
3
− 100

17

= . . . f)
10
11

+ 10
9

2 + 1
3

· 1− 4
11

48
5
+ 472

55

= . . .

g)
53
8
− 125

40
1
2
− 1

3

÷
35
3
5
3

= . . . h)
203
343

+ 294
2401

799
1071
− 418

1197

÷
255
285
− 252

513
1173
1058
− 812

1334

= . . .

i)
1

3 + 1

1+
14
13 ·

26
7

4

= . . . j) 3 +
1

2 + 1
17
8
+ 15

40

= . . .

10) Effectuer les opérations suivantes sans machine et donner les résultats sous forme de
puissances entières positives. (m,n ∈ N∗

+ et a, b, c ∈ R∗
+)

a) 34 · 37 b) 25 · 75 c) (32)4

d) 53 · 53 e) 27 + 27 f) 38 + 38 + 38

g) 43 · 85 h) 36 · 29 i) 5 · 256

j) 9 · (35)3 k) (9 · 35)3 l) 412 ÷ 43

m) 97 ÷ 93 n) 86 ÷ 45 o) a6 · a5

p) b3 · c3 q) (8m)4 r) a8 ÷ a2

s) a · b5 · (a · b)5 t) 2(ab6) · (3a2b) u) 2(ab6)3 · (3a2b)
v) (2ab6)3 · (3a2b) w) 2m · 2n x) 2m ÷ 2n (3 cas)
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11) Effectuer les opérations suivantes sans machine et donner les résultats sous forme de
puissance entières positives. (m,n, p ∈ N∗

+ et a, b, c, x, y, z ∈ R∗
+)

a) 2xny3 · 5xynz5 b) x2y(3xny2nzp+3)2 c) [(x2y) · (3xny2nzp+3)]2

d) (−abn)4 e) (−a)n (2 cas) f) 3ambn(cmb5)3

g) ((2am)3a4)2 h) (−2x5y6) · (x2 ÷ y3) i) (−2x5y6)3 · (x2 ÷ y3)2

j) (xn+3xn)÷ xn+1 k) a8m ÷ (a3m ÷ am) l) (a8m ÷ a3m)÷ am

12) Calculer mentalement : 322, 282, 21 · 19, 352, 652.

13) Quel terme faut-il ajouter aux binômes suivants pour les transformer en carrés par-
faits ?

a) x2 + 6x b) 4a2b4 + 9 c) 16a4 − 8a2y2

d) x2 + bx e) 4b4 + 9z12 f) 4a2b4 − ab2

14) Développer et réduire le plus possible. Indiquer le degré du polynôme obtenu.

a) −xx3x2 + 2x6 + 8x3 − 3xx2 b) (x− 2) · 3x
c) (x2 − 3)(x2 + 4) d) (x− 1)(x2 + x+ 1)

15) Compléter :

a) 2a(a + b)− 3b(a− b) = b) 1− (x− 1) + 2(3x− 1) =

c) (x+ 2)(x+ 7) = d) (x− 6)(x+ 8) =

e) (3x+ 2)2 = f) (5x2 − 2)2 =

g) (a4 − 3a)2 = h) (−7a2b+ 3ab3c)2 =

i) ((a+ b)− (c+ d))2 = j) (5x− 7xy + 3y)2 =

k) (a3b4 + c) · (a3b4 − c) = l) (x2 − 5x+ 1)2 =

m) (a+ a3) · (a− a3) · (a2 + a6) = n) (x4 − 1) · (x2 − 1) · (x2 + 1) =

16) A l’aide du triangle de Pascal établir la formule générale de (a+ b)n, n ∈ N∗.

Montrer que le nombre de grilles différentes possibles au jeu de la Loterie à numéros
est donné par le coefficient de a6b39 du développement de (a+ b)45.

Plus généralement, le nombre de sous-ensemble de k objets choisis parmi n est donné
par le coefficient de akbn−k du développement de (a+ b)n.

Montrer que le nombre de sous-ensembles d’un ensemble à n objet est 2n.

17) Mettre en évidence le facteur commun :

a) 21st+ 7t2 b) 5m+ 15mn c) 22x− 33xy

d) 6ab− 12b+ 6bc e) 2ab+ 4b2 + 6bc f) 15a2b− 10ab+ 5a

g) 15x2y − 5xy + 10xy2 h) 16x2yz + 24xyz2 i) a(c+ d) + b(c + d)

j) a(x− y)− (x− y) k) r(a+2ab)−s(a+2ab) l) x(x+ y)− xy − y2
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18) Décomposer en produits de facteurs irréductibles :

a) y3z3 − 3yz b) 1− 8z + 16z2 c) 4x2 − 9y2

d) 9x3 − 36x e) xy2 + 2xy + x f) 5y3 − 5y

g) x2 + 3x+ 2 h) y2 + 15y + 56 i) y2 − 15y + 56

j) x2 − 2x− 35 k) 2x2 + 14x+ 24 l) 5z2 + 15z − 50

m) x2 + xy + 2x+ 2y n) 12xy− 16x+27y− 36 o) 8x2 − 4xy − 6x+ 3y

p) 3x2y2 − 54x2 − 9x2y q) 36b2 − 100 r) b3 − bc2

19) Décomposer en produits de facteurs irréductibles :

a) 7a + 7ab− 7a2 b) 4a2 − 1 c) a3 − 8

d) x(a− b) + 3(a− b) e) a3 − 3a2 + 27− 9a f) x2 + 5x+ 6

g) a3 − a+ 2a2 − 2 h) (x2 − 1)2 − 3(x2 − 1) i) a4 + b4 − 2a2b2

j) (−a− b)3 + 4(a+ b) k) 1− x2y2 l) a4 + 1− 2a2

m) a3 + a2 + 1 + a n) 2a3 − 6a2 + 6a− 2 o) a2 + 2ab− x2 + b2

p) x3 + x2 − 6x q) a6 − b6 r) x4 − 2x2y2 + y4

s) 2a2 − 4a− 6 t) a2 + 1− b2 − 2a u) ax8 − a
v) 2a+ 2b− (a + b)2 w) 2x2 − 7x+ 3 x) (a2 + b2)2 − 4a2b2

20) Ecrire l’inverse des expressions suivantes :

a) x b) x− 2 c) 3x d)
1

x3

e)
3

x
f)

5

y2 + 1
g)

1
1

x+1

h) 0

21) Simplifier :

a)
84m3n2p

35m4np2
b)

5a+ 5b

7a+ 7b
c)

a + ab

2ab
d)

(a− b)2
b− a

e)
x2 + 4x− 21

x+ 7
f)

4a2 − 9

10a− 15
g)

5x2 + 5xy

3x2 − 3y2
h)

8a2b− 16ab2

12a2x− 48b2x

22) Simplifier le plus possible et effectuer :

a)
x

x+ 1
· x+ 1

x2
b)

x− 3

10
· 15

x− 3

c) 7 · x+ y

14
d) (x+ 5) · x

x2 + 10x+ 25

e)
2b3

5
÷ b2

20
f) −x

2

6
÷ x

2

g)
e− 1

e + 2
÷ 1

(e+ 2)2
h)

7x+ 7y

x
÷ 7
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23) Effectuer et simplifier, s’il y a lieu :

a)
a

2
+
a

3
b)

a

3
− 2a

5
+ a

c)
2

a
− a

2
d)

1

a
+

1

b

e)
4

3x
+

1

x
f)

2a

3
+

4a

3

g)
1

x+ 1
+

1

x2 − 1
h)

x+ y

2
− x− y

2

i)
1

3a
− 1

4a
j)

1

x− 1
− 1

k)
2

x+ 2
+

3

x− 3
l)

1

a+ b
− 2a

a2 − b2

m)
2

a+ 2
+

1

2− a −
4

4− a2 n)
3x− 2y

2
− 4y + 2x

5
+

22y − 9x

15

o)
6

x(3x− 2)
+

5

3x− 2
− 2

x2
p)

2x

x+ 2
− 8

x2 + 2x
+

3

x

24) Effectuer et simplifier, s’il y a lieu :

a)
4x

3x− 4
+

8

3x2 − 4x
+

2

x
b)

12x

2x+ 1
− 3

2x2 + x
+

5

x

c)
3a+ 2b

a
+

2a2 − 2b2

ab
− 2a+ 3b

b
d)

a− b
a2 − b2 −

3a2

a3 + b3
+

a

a2 − ab+ b2

e)
x(1 + y)

xn
+
x− y
xn−1

− 1

xn−2
f)

x− y
x2 − xy + y2

+
1

x+ y
+

xy

x3 + y3

g)
2x+ 1

x2 + 4x+ 4
− 6x

x2 − 4
+

3

x− 2
h)

2

x− 2
− 1

x+ 2
− 4

x2 − 4

i)
2x+ 6

x2 + 6x+ 9
+

5x

x2 − 9
+

7

x− 3
j)

3x

2x− 5
− x

2x+ 5
− 4x

4x2 − 25

k)
16x

2x+ 8
+

5

x2 + x− 12
− x− 4

x− 3
l)

3− 6x

4x2 − 1
− 2 + 5x

4x2 + 4x+ 1

m)
4x2 − 4x

x2 + x− 2
− x2 + 3x− 10

x3 − 4x
n)

81− 54x+ 9x2

3x2 − 15x+ 18
− 2x2 − 6x+ 4

4x2 − 8x+ 4

o)
1

x+2
− 3

4
x
− x p)

5
x+1

+ 2x
x+3

x
x+1

+ 7
x+3
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25) Simplifier le plus possible et effectuer :

a)
3(a2 − b2)

5bc
· 10c

9(a+ b)
b)

a2 − x2
a + b

· a
2 − b2

ax+ x2
·
(
a +

ax

a− x

)

c)
a2 − 4x2

a2 + 4ax
÷ a2 − 2ax

ax+ 4x2
d)

(27x3 − 8y6)(x− 4y)

2x(3x− 2y2)

e)
3a2b2 − 6b2c

a4 − 4a2c+ 4c2
f)

a2 + ab+ b2

a3 + b3
÷ a3 − b3
a2 − ab+ b2

26) Simplifier :

a)

x+y
x−y
− x−y

x+y
x−y
x+y

+ x+y
x−y

b)
x+ y + y2

x

x+ y + x2

y

c)
a− 1 + 8

a−8

a− 2 + 4
a−8

d)
1− x+ x2 − x3

x+1

1 + 1
x2−1

e)

x3+y3

x2−y2

x2−xy+y2

x−y

f)
x− a

x− (x−a)(x−b)
x+a

g)
1

1 + a

1+a+ 2a2

1−a

h)
abc

bc + ac− ab −
a−1
a

+ b−1
b
− c−1

c
1
a
+ 1

b
− 1

c

i)
a2+b2

b
− a

1
b
− 1

a

· a
2 − b2
a3 + b3

j)

(
1

a+ 1
b+ 1

c

÷ 1

a+ 1
b

)
− 1

b(abc + a + c)

27) Lequel de ces calculs est correct ?

a) 6 + 3 · 2 = 9 · 2 = 18 ou 6 + 3 · 2 = 6 + 6 = 12

b) 4 + 5 · (6 + 3) = 4 + 45 = 49 ou 4 + 5 · (6 + 3) = 9 · 9 = 81

c) 13− 4 + 5 = 9 + 5 = 14 ou 13− 4 + 5 = 13− 9 = 4

d) 2 + 10 · 17− 7 = 12 · 10 = 120 ou 2 + 10 · 17− 7 = 2 + 170− 7 = 165

e) 6 + 10
2
= 16

2
= 8 ou 6 + 10

2
= 6 + 5 = 11

f) 5 · 2 + 9− 4(2 + 5) = 19− 28 = −9 ou 5 · 2 + 9− 4(2 + 5) = 55− 28 = 27

28) Ecrire les expressions suivantes en termes algébriques :

a) l’entier suivant le nombre entier n
b) le triple du nombre n
c) le double de l’entier précédant le nombre entier n
d) le produit de deux nombres entiers consécutifs
e) un nombre pair
f) une puissance de 2
g) l’inverse de x
h) l’opposé de x
i) le double du carré de l’inverse de l’opposé de l’entier précédant le quadruple du
nombre entier n
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29) Associer la bonne description aux expressions algébriques :

x+ y est un produit
x2 − y2 est le double du carré d’une somme

2(x+ y)2 est le carré du double d’une somme
(x− y)2 est la somme des carrés

xy est le carré d’une somme
(x+ y)2 est une somme

(x− y)(x+ y) est le carré d’une différence
2xy est la différence des carrés

(2(x+ y))2 est un double produit
x2 + y2 est le produit d’une somme par une différence

30) Rendre rationnel le dénominateur des fractions suivantes :

a)

√
t + 5√
t− 5

b)

√
t− 4√
t+ 4

c)
81x2 − 16y2

3
√
x− 2

√
y

d)
16x2 − y2
2
√
x−√y

31) On donne les valeurs de x1, . . . , x7 et n1, . . . , n7 dans le tableau ci-dessous.

Indice i Valeur de xi Valeur de ni

1 0 1
2 1 1
3 2 2
4 3 5
5 4 7
6 5 8
7 6 2

Avec des données ci-dessus, calculez les expressions suivantes :

a)

5∑

i=2

xi b)

6∑

k=1

nk c)

4∑

i=1

nixi d)

4∑

i=1

ni

4∑

j=1

xj

32) Démontrer :

a) 1 + 4 + 9 + . . .+ n2 =
n∑

k=1

k2 =
n(n+ 1)(2n+ 1)

6

b) 1 + 3 + 5 + . . .+ (2n− 1) =
n∑

k=1

2k − 1 = n2

c) 1 +
1

2
+

1

4
+ . . .+

1

2n
=

n∑

k=0

1

2k
= 2− 1

2n

d)

n∑

k=1

1

4k2 − 1
=

n

2n+ 1

e)

n∑

k=1

(k + 1)(k + 2)− 4

(k + 1)(k + 2)
=

n2

n+ 2

f)

n∑

k=1

1

(3k − 2)(3k + 1)
=

n

3n+ 1
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g) n(n + 1)(n+ 2) est divisible par 6 ∀n ∈ N.

h) 7n+1 + 2 est divisible par 3 ∀n ∈ N.
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1.9 Solutions des exercices

1) N Z Q R Cab

c

d

e

f

g

h
i

j

k
l

m
n

2) i) 1, 4 · 107 j) 1, 004 · 100 k) 4 · 10−6

l) 8, 1 · 10−4 m) 1, 43 · 102 n) 2, 3090 · 101

3) 14′520 = 23 · 3 · 5 · 112, 10′725 = 3 · 52 · 11 · 13, 9126 = 2 · 33 · 132

pgdc = 3, ppmc = 23 · 33 · 52 · 112 · 132

4) a)
3

x
+ 2 + 4 · 3− 1 b) 4 · x+ 5 · (2 + x)

c) (x+ 2) · (x− 1) + 3 · x− (x+ 2) d) (x− 3)2 · (x− 4) + (x+ 2)3

5) a)
5

3
b) 7 c) 6 d)

5

8

6) a)
5

3
b)

8

3
c) 2 d)

13

12
e)

65

77
f)

5

9

g)
19

32
h)

49

36
i)

4

7
j)

113

42
k)

13

4
l)

59

30

m)
91

48
n)

215

72
o)

127

54
p) −12

5
q)

57

115

7) a)
3

2
b)

3

4
c) 2 d)

7

4

8) a)
1

15
b)

1

7
c)

2

3
d)

124

91

e)
29

23
f)

108

7

9) a) 1 b)
9

20
c)

7

3
d) 2 e)

1

7
f)

1

33

g) 3 h)
513

230
i)

2

7
j)

41

12
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10) a) 311 b) 145 c) 38 d) 56 e) 28 f) 39

g) 221 h) 66 · 23 i) 513 j) 317 k) 321 l) 218

m) 38 n) 28 o) a11 p) (b · c)3 q) 212m r) a6

s) a6 · b10 t) 6a3b7 u) 6a5b19 v) 24a5b19 w) 2m+n

x)





2m−n si m > n

1 si m = n

1÷ 2n−m si m < n

11) a) 10xn+1yn+3z5 b) 9x2n+2y4n+1z2p+6 c) 9x2n+4y4n+2z2p+6

d) a4b4n e)

{
an si n pair

−an si n impair
f) 3ambn+15c3m

g) 64a6m+8 h) −2x7y3 i) −8x19y12

j) xn+2 k) a6m l) a4m

12) 322 = 1024, 282 = 784, 21 · 19 = 399, 352 = 1225, 652 = 4225

13) a) x2 + 6x+9 b) 4a2b4 + 9+12ab2 c) 16a4 − 8a2y2+y4

d) x2 + bx+
b2

4
e) 4b4 + 9z12+12b2z6 f) 4a2b4 − ab2+ 1

16

14) a) x6 + 5x3, deg= 6 b) 3x2 − 6x, deg= 2

c) x4 + x2 − 12, deg= 4 d) x3 − 1, deg= 3

15) a) 2a2 − ab+ 3b2 b) 5x

c) x2 + 9x+ 14 d) x2 + 2x− 48

e) 9x2 + 12x+ 4 f) 25x4 − 20x2 + 4

g) a8 − 6a5 + 9a2 h) 49a4b2 − 42a3b4c+ 9a2b6c2

i) a2 + b2 + c2 + d2 + 2ab+ 2cd− 2ac− 2ad− 2bc− 2bd

j) 49x2y2 − 70x2y + 25x2 + 30xy − 42xy2 + 9y2

k) a6b8 − c2 l) x4 − 10x3 + 27x2 − 10x+ 1

m) a4 − a12 n) x8 − 2x4 + 1

17) a) 7t(3s+ t) b) 5m(1 + 3n) c) 11x(2− 3y)

d) 6b(a− 2 + c) e) 2b(a + 2b+ 3c) f) 5a(3ab− 2b+ 1)

g) 5xy(3x− 1 + 2y) h) 8xyz(2x+ 3z) i) (a + b)(c+ d)

j) (a− 1)(x− y) k) a(1 + 2b)(r − s) l) (x+ y)(x− y)
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18) a) yz(y2z2 − 3) b) (1− 4z)2 c) (2x+ 3y)(2x− 3y)

d) 9x(x+ 2)(x− 2) e) x(y + 1)2 f) 5y(y + 1)(y − 1)

g) (x+ 1)(x+ 2) h) (y + 7)(y + 8) i) (y − 7)(y − 8)

j) (x− 7)(x+ 5) k) 2(x+ 3)(x+ 4) l) 5(z + 5)(z − 2)

m) (x+ y)(x+ 2) n) (4x+ 9)(3y − 4) o) (4x− 3)(2x− y)
p) 3x2(y − 6)(y + 3) q) 4(3b+ 5)(3b− 5) r) b(b+ c)(b− c)

19) a) 7a · (b− a+ 1) b) (2a+ 1) · (2a− 1) c) (a− 2) · (a2 + 2a+ 4)

d) (x+ 3) · (a− b) e) (a− 3)2(a + 3) f) (x+ 3) · (x+ 2)

g) (a+2) · (a+1) · (a−1) h) (x+ 1) · (x− 1) · (x+ 2) · (x− 2)

i) (a+ b)2 · (a− b)2 j) (a+ b) · (2 + a + b) · (2− a− b)
k) (1 + xy) · (1− xy) l) (a+ 1)2 · (a− 1)2 m) (a + 1) · (a2 + 1)

n) 2(a− 1)3 o) (a+ b+x) · (a+ b−x) p) x · (x+ 3) · (x− 2)

q) (a+ b) · (a− b) · (a2 − ab+ b2) · (a2 + ab+ b2) r) (x+ y)2 · (x− y)2

s) 2 · (a− 3) · (a + 1) t) (a+ b− 1) · (a− b− 1)

u) a · (x4 + 1) · (x2 + 1) · (x+ 1) · (x− 1) v) (a+ b) · (2− a− b)
w) (2x− 1)(x− 3) x) (a + b)2 · (a− b)2

20) a)
1

x
b)

1

x− 2
c)

1

3x
d) x3

e)
x

3
f)

y2 + 1

5
g)

1

x+ 1
h) −−

21) a)
12n

5mp
b)

5

7
c)

1 + b

2b
d) b− a

e) x− 3 f)
2a+ 3

5
g)

5x

3(x− y) h)
2ab

3x(a + 2b)

22) a)
1

x
b)

3

2
c)

x+ y

2
d)

x

x+ 5

e) 8b f) −x
3

g) (e− 1)(e+ 2) h)
x+ y

x

23) a)
5a

6
b)

14a

15
c)

(2 + a)(2− a)
2a

d)
a + b

ab

e)
7

3x
f) 2a g)

x

(x+ 1)(x− 1)
h) y

i)
1

12a
j)

2− x
x− 1

k)
5x

(x+ 2)(x− 3)
l)

1

b− a
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m)
1

a+ 2
n)

1

2
x− 1

3
y o)

5x2 + 4

x2(3x− 2)
p)

2x− 1

x

24) a)
2(2x+ 3)

3x− 4
b)

2(3x+ 1)

x
c) 0 d)

b− a
a2 − ab+ b2

e)
1

xn−1
f)

2x2

x3 + y3
g) − x+ 5

(x+ 2)2
h)

1

x− 2

i)
14x+ 15

(x+ 3)(x− 3)
j)

4x(x+ 4)

(2x− 5)(2x+ 5)

k)
7x2 − 24x+ 21

(x+ 4)(x− 3)
l)
−11x− 5

(2x+ 1)2

m)
4x2 − x− 5

x(x+ 2)
n)

5x2 − 20x+ 14

2(x− 2)(x− 1)

o)
x(3x+ 5)

(x+ 2)2(x− 2)
p)

2x2 + 7x+ 15

x2 + 10x+ 7

25) a)
2(a− b)

3b
b)

a2(a− b)
x

c)
x(a + 2x)

a2

d)
(x− 4y)(9x2 + 6xy2 + 4y4)

2x
e)

3b2

a2 − 2c
f)

1

a2 − b2

26) a)
2xy

x2 + y2
b)

y

x
c)

a2 − 9a+ 16

a2 − 10a+ 20
d)

x− 1

x2

e) 1 f)
x2 − a2

2ax+ bx− ab g)
1 + a2

1 + a
h) 1

i) a j) 1

28) a) n + 1 b) 3n c) 2(n− 1) d) n · (n + 1)

e) 2n f) 2n g)
1

x
h) −x

i) 2

(
1

1− 4n

)2

29) x+ y −→ est une somme
x2 − y2 −→ est la différence des carrés

2(x+ y)2 −→ est le double du carré d’une somme
(x− y)2 −→ est le carré d’une différence

xy −→ est un produit
(x+ y)2 −→ est le carré d’une somme

(x− y)(x+ y) −→ est le produit d’une somme par une différence
2xy −→ est un double produit

(2(x+ y))2 −→ est le carré du double d’une somme
x2 + y2 −→ est la somme des carrés
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30) a)
t + 25 + 10

√
t

t− 25
b)

t + 16− 8
√
t

t− 16

c) (9x+ 4y) · (3
√
x+ 2

√
y) d) (4x+ y) · (2

√
x+
√
y)

31) a) 10 b) 24 c) 20 d) 54
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Chapitre 2

Equations

2.1 Généralités

Définition 2.1
Une équation est une égalité dont l’un ou les deux membres sont des expressions littérales
contenant une ou plusieurs lettres et des nombres.

Une lettre utilisée dans l’écriture d’une équation est une inconnue (ou une variable) dès
le moment où on s’intéresse à en déterminer la valeur pour que l’égalité soit vérifiée. La
ou les inconnues sont généralement désignées par les lettres x, y ou z.

Exemple

1) x2 − 5︸ ︷︷ ︸
membre de gauche

= 4x︸︷︷︸
membre de droite

: équation à une inconnue x.

2) 4y − 1 = x : équation à deux inconnues x et y si on cherche à déterminer leur
valeur.

3) x + y = b : équation à deux inconnues x et y si on cherche à déterminer leur
valeur et la lettre b représente une valeur fixe.

Définition 2.2
Pour les définitions suivantes, on considère le cas d’une équation en une inconnue notée
x.

1) Un nombre a qui vérifie l’égalité quand il est substitué à l’inconnue x est appelé
solution ou racine de l’équation. On dit alors que a vérifie ou satisfait l’équation.

2) Une équation est résolue lorsqu’on a déterminé toutes ses solutions. La recherche de
ses solutions se nomme la résolution de l’équation (on dira généralement ”résoudre
une équation”).

3) Toutes les solutions d’une équation forme l’ensemble des solutions, généralement
noté S. On énumérera parfois ces solutions en écrivant x1 = . . ., x2 = . . ., x3 = . . .,
. . .

Ces définitions peuvent s’étendre aux cas d’équations à plusieurs inconnues.

Exemple

5 est solution de l’équation x2 − 5 = 4x car 52 − 5 = 20 et 4 · 5 = 20 .

Une autre solution de cette équation est −1 car (−1)2−5 = −4 et 4 ·(−1) = −4 .

L’ensemble des solutions de cette équation est : S = {−1; 5}.
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Définition 2.3
Deux équations équivalentes sont deux équations qui ont exactement le même ensemble
de solutions.

Exemples

1) Les équations x − 5 = 8 − x et 5x = 32, 5 sont équivalentes. Leur
ensemble de solutions est S =

{
13
2

}
.

2) Les équations 10− 2y = y2 + y et y2 + 3y − 10 = 0 sont équivalentes.
Leur ensemble de solutions est S = {−5; 2}.

3) Les équations 5x = 15 et 5x2 = 15x ne sont pas équivalentes car 0 est
une solution de la deuxième équation sans en être une de la première.

Règles d’équivalence

Les règles suivantes permettent de transformer une équation en une équation équiva-
lente :

- permuter les deux membres de l’équation,

- effectuer du calcul littéral dans l’un ou l’autre de ses membres,

- additionner (ou soustraire) un même nombre, un même monôme ou un même
polynôme aux deux membres de l’équation,

- multiplier (ou diviser) les deux membres de l’équation par un même nombre
non nul.

Dans la pratique, on utilisera souvent une suite de transformations équivalentes sur
l’équation à résoudre afin d’obtenir une équation équivalente où l’ensemble des solutions
est plus facile à déterminer.

Exemple

Pour résoudre l’équation 4(x+ 2) = 9x− 12 + x, on peut procéder comme suit :

4(x+ 2) = 9x− 12 + x calcul littéral (CL)

4x+ 8 = 10x− 12 +12 (ajouter 12 aux deux membres)

4x+ 20 = 10x −4x (soustraire 4x aux deux membres)

20 = 6x permuter les deux membres

6x = 20 ÷6 (diviser les deux membres par 6)

x = 10
3

L’ensemble des solutions de toutes ces équations équivalentes (en particulier de
l’équation de départ) est donc : S =

{
10
3

}
.
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Remarques

Attention ! Si on multiplie ou on divise les deux membres d’une équation par l’inconnue
ou par un polynôme, on peut obtenir une équation non équivalente à la première. On
peut supprimer ou ajouter des solutions.
– Si on multiplie les deux membres de l’équation x

x−2
= 2

x−2
par le polynôme x − 2, on

trouve l’équation x = 2. La deuxième équation admet comme ensemble de solutions
S = {2} et la première S = ∅ → En substituant 2 à x dans la première équation, on
obtient une division par 0. On a donc ajouté la solution égale à 2.

– Si on divise les deux membres de l’équation x2 = x par le monôme x, on trouve
l’équations x = 1. La deuxième équation a comme ensemble de solutions S = {1} et la
première S = {0; 1}. On a perdu une solution égale à 0.

Dans la pratique, on se permettra tout de même de réaliser ces transformations dans
certaines résolutions mais il sera alors nécessaire de tester les solutions obtenues dans
l’équation de départ (en substituant ces solutions à l’inconnue, voir exemple au para-
graphe à complter).

Définition 2.4
On appelle zéros ou racines d’un polynôme p(x) les solutions de l’équation : p(x) = 0.

Si le nombre réel a est un zéro du polynôme p(x) alors p(a) = 0.

Exemple

2 est un zéro du polynôme p(x) = x2−4 car 2 est solution de l’équation x2−4 = 0.
De plus, p(2) = 22 − 4 = 0.

Dans la suite de ce chapitre, nous ne traiterons que des équations à une inconnue. On
désignera cette inconnue par la lettre x.

2.2 Equations du premier degré

Définition 2.5
Une équation du premier degré à une inconnue est une équation équivalente (qui
peut être mise sous la forme) à l’équation :

ax+ b = 0 (2.1)

où a, b ∈ R et a 6= 0.

Remarque

Dans une équation du premier degré, l’inconnue apparâıt seulement à la puissance 1. On
utilisera cette caractéristique pour identifier une telle équation.

Exemples

1) 3x− 2 = 0

2) 4x− 3 = 8x− 7 + 2x− 1
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Solution

L’équation (2.1) possède une unique solution : x = − b
a
.

Une équation du premier degré est rarement donnée sous la forme (2.1) et sa solution ne
peut donc pas être donnée immédiatement comme ci-dessus. On utilisera alors les règles
d’équivalence pour résoudre une telle équation.

2.2.1 Principe de résolution

Marche à suivre pour résoudre une équation du premier degré :

1. réduire les polynômes figurant dans chacun des deux membres,

2. ”passer” les termes en x dans un des membres et les termes constants dans
l’autre en utilisant la règle d’addition → obtenir une équation de la forme
ax = b,

3. isoler (on dit aussi expliciter) x en divisant les deux membres par a→ obtenir
x = . . ..

Il arrive qu’une, ou plusieurs, de ces étapes soient inutiles ou que d’autres méthodes soient
plus avantageuses, selon les cas.

Exemple

Résoudre : 4x+ 2− (1− x) = 3x+ 4− x.

4x+ 2− (1− x) = 3x+ 4− x CL (réduire les deux polynômes)

5x+ 1 = 2x+ 4 −1
5x = 2x+ 3 −2x
3x = 3 ÷3
x = 1

L’ensemble des solutions est : S = {1}.

2.3 Equations du deuxième degré

Définition 2.6
Une équation du deuxième degré à une inconnue est une équation équivalente à
l’équation :

ax2 + bx+ c = 0 (2.2)

où a, b, c ∈ R et a 6= 0.

Remarque

Dans une équation du deuxième degré, l’inconnue apparâıt à la puissance 2 et éventu-
ellement à la puissance 1. On utilisera cette caractéristique pour identifier une telle
équation.
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Exemples

1) 3x2 − 2x+ 1 = 0

2) 4(x− 2)2 = 2x− 1

2.3.1 Résolution par factorisation

Proposition 2.1
Soit p(x) un polynôme et a(x), b(x), . . . , m(x) des polynômes tels que p(x) = a(x) · b(x) ·
. . . ·m(x) : une factorisation de p(x).

L’ensemble des solutions de l’équation

p(x) = 0 ou (équivalent) a(x) · b(x) · . . . ·m(x) = 0

est égal à la réunion des ensembles de solutions des équations :

a(x) = 0,

b(x) = 0,
...

m(x) = 0.

Cette proposition découle immédiatement du fait qu’un produit de plusieurs facteurs est
nul si et seulement si au moins un de ces facteurs est nul.

En se fondant sur cette proposition, on peut résoudre certaines équations du deuxième
degré en devinant une factorisation du membre de droite ou de gauche de l’équation
(un polynôme de degré 2) si le membre de gauche, respectivement de droite, est égal à
0. On utilise les techniques vues au chapitre (1.4.3) pour déterminer une factorisation :
mise en évidence, identité remarquable, . . .

Exemples

1) Résoudre : x2 + 5x = 0.

En mettant x en évidence, on obtient l’équation équivalente :

x(x+ 5) = 0

D’où les 2 équations à résoudre :

* x1 = 0

* x+ 5 = 0 −→ x2 = −5
En conséquence : S = {0;−5}

2) Résoudre : x2 − 2x− 24 = 0.

En devinant une factorisation du membre de gauche, on obtient l’équation
équivalente :

(x+ 4)(x− 6) = 0

D’où les 2 équations à résoudre :

* x+ 4 = 0 −→ x1 = −4
* x− 6 = 0 −→ x2 = 6

En conséquence : S = {−4; 6}
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3) Résoudre : x2 = 3.

Cette équation est équivalente à l’équation x2− 3 = 0. En utilisant une identité
remarquable, on devine une factorisation du membre de gauche :

(x+
√
3)(x−

√
3) = 0

D’où les 2 équations à résoudre :

* x+
√
3 = 0 −→ x1 = −

√
3

* x−
√
3 = 0 −→ x2 =

√
3

En conséquence : S = {−
√
3;
√
3}

Remarque

Attention ! L’équation de l’exemple 3) possède deux solutions : ±
√
3. Ce résultat est

vrai pour toutes les équations du type x2 = a avec a > 0, qui admettent comme solutions
les nombres ±√a. Il faut prendre garde à ne pas oublier la solution −√a ! ! !

2.3.2 Résolution à l’aide d’une formule

Proposition 2.2
Soit l’équation du deuxième degré ax2+ bx+ c = 0 avec a 6= 0. On appelle discriminant
de cette équation le nombre :

∆ = b2 − 4ac

Le nombre de solutions de l’équation dépend du signe de ∆ :

- si ∆ > 0 : deux solutions distinctes : x1 =
−b+

√
∆

2a
et x2 =

−b−
√
∆

2a
,

- si ∆ = 0 : une solution double : x1 =
−b
2a

,

- si ∆ < 0 : pas de solution réelle (S = ∅).

Démonstration. Soit l’équation ax2 + bx + c = 0 avec a 6= 0. On transforme le membre
de gauche par une suite d’égalités :

ax2 + bx+ c = a ·
(
x2 +

b

a
x+

c

a

)

= a ·


x2 +

b

a
x+

b2

4a2
− b2

4a2︸ ︷︷ ︸
=0

+
c

a




id. rem.
= a

[(
x+

b

2a

)2

− b2 − 4ac

4a2

]

Comme a 6= 0, l’équation (
x+

b

2a

)2

=
b2 − 4ac

4a2
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est équivalente à l’équation de départ. La suite de la résolution dépend du signe de b2−4ac
4a2

.
Le dénominateur, 4a2, est toujours positif et le signe du numérateur, ∆ = b2−4ac, dépend
des valeurs de a, b et c.

Si ∆ > 0 : il y a deux nombres dont le carré est b2−4ac
4a2

.

* Première solution : x+
b

2a
=

√
b2 − 4ac

2a
−→ x1 =

−b+
√
∆

2a
.

* Seconde solution : x+
b

2a
= −
√
b2 − 4ac

2a
−→ x2 =

−b−
√
∆

2a
.

Si ∆ = 0 : le membre de droite de l’équation vaut 0.

* Une solution double : x+
b

2a
= 0 −→ x1 =

−b
2a

.

Si ∆ < 0 : le membre de droite de l’équation est négatif : b2−4ac
4a2

< 0.

* Pas de solution réelle :

(
x+

b

2a

)2

< 0.

Principe de résolution

Marche à suivre pour résoudre une équation du deuxième degré :

1. réduire les polynômes figurant dans chacun des deux membres,

2. ”passer” tous les termes en x dans un des membres en utilisant la règle d’ad-
dition → obtenir une équation de la forme ax2 + bx+ c = 0,

3. appliquer la formule de résolution ou deviner une factorisation pour obtenir la
ou les solutions.

Exemple

Résoudre : 2 · (x− 3)2 = x2 − 3 · (3x− 5) + 1.

2 · (x− 3)2 = x2 − 3 · (3x− 5) + 1 CL (réduire les deux polynômes)

2x2 − 12x+ 18 = x2 − 9x+ 16 −(x2 − 9x+ 16)

x2 − 3x+ 2 = 0

On applique la formule de résolution des équations du deuxième degré avec a = 1,
b = −3 et c = 2.
– Calcul du discriminant : ∆ = (−3)2 − 4 · 1 · 2 = 1.
– ∆ > 0 : 2 solutions distinctes :

* x1 =
−(−3) +

√
1

2 · 1 = 2

* x2 =
−(−3)−

√
1

2 · 1 = 1

– Ensemble des solutions : S = {1; 2}.
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2.3.3 Factorisation d’un polynôme de degré 2

Il est possible de factoriser directement un polynôme de degré 2 si on connâıt ses zéros,
sans devoir tâtonner.

Proposition 2.3
Soit p(x) = ax2 + bx + c un polynôme de degré 2 avec a 6= 0 et le nombre ∆ = b2 − 4ac,
le discriminant de l’équation p(x) = 0.

Si ∆ > 0 : le polynôme p(x) possède deux zéros distincts x1 et x2 et on peut écrire :

p(x) = a(x− x1)(x− x2)

Si ∆ = 0 : le polynôme p(x) possède un zéro double x1 et on peut écrire :

p(x) = a(x− x1)2

Si ∆ < 0 : le polynôme p(x) ne possède pas de zéro et on ne peut pas le décomposer en
un produit de deux facteurs du premier degré.

Remarque

Attention ! Lorsqu’on utilise cette proposition pour factoriser un polynôme de degré 2,
il ne faut pas oublier le coefficient dominant comme premier facteur ! ! !

Démonstration. Soit p(x) = ax2+bx+c un polynôme de degré 2 avec a 6= 0. On considère
ici uniquement le cas ∆ = b2 − 4ac > 0. La démonstration des autres cas est laissée au
lecteur.

Lors de la démonstration de la formule de résolution des équations du deuxième degré,

on a vu que ax2 + bx+ c = a ·
[(

x+
b

2a

)2

− b2 − 4ac

4a2

]
. Comme ∆ > 0, on peut utiliser

les identités remarquables et obtenir :

a ·
[(

x+
b

2a

)2

− b2 − 4ac

4a2

]
= a ·

[(
x+

b

2a
−
√
∆

2a

)
·
(
x+

b

2a
+

√
∆

2a

)]

= a ·
[(

x− −b+
√
∆

2a

)
·
(
x− −b−

√
∆

2a

)]

= a · (x− x1) · (x− x2)

Exemple

Le polynôme de degré 2, p(x) = 2x2 + 5x − 3, possède deux zéros : x1 = 1
2
et

x2 = −3. On peut donc écrire la factorisation :

p(x) = 2 · (x− 1

2
) · (x+ 3) = (2x− 1)(x+ 3)
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2.3.4 Formules de Viète

Théorème 2.4
Si p(x) = ax2 + bx + c est un polynôme du deuxième degré avec a 6= 0 qui admet deux
zéros distincts x1 et x2 alors :

x1 + x2 = − b
a

x1 · x2 =
c

a

Formules de Viète

Démonstration. Soit p(x) = ax2 + bx + c (a 6= 0) un polynôme du deuxième degré avec
deux zéros distincts x1 et x2. On peut écrire que

ax2 + bx+ c = a · (x− x1) · (x− x2) = ax2 − a(x1 + x2)x+ ax1x2

Par identification des coefficients :

− x2 : a = a ,

− x : b = −a · (x1 + x2) (1),

− 1 : c = a · x1x2 (2).

De l’équation (1), on tire que x1 + x2 = −
b

a
et, de l’équation (2), que x1x2 =

c

a
.

On pourra utiliser ces formules de Viète pour deviner les zéros d’un polynôme du deuxième
degré et ainsi déterminer une factorisation de ce polynôme.

Exemple

Les racines de x2 − 5x+ 6 sont, d’après les formules de Viète, deux nombres dont

la somme est −−5
1

= 5 et le produit
6

1
= 6. En tâtonnant, on trouve que ces deux

nombres sont 2 et 3.

On peut donc écrire que : x2 − 5x+ 6 = 1 · (x− 2) · (x− 3) = (x− 2) · (x− 3).

2.4 Equations bicarrées

Il existe un type particulier d’équations de degré différent de 2 qu’on peut résoudre à
l’aide de la formule vue au paragraphe précédent.

Définition 2.7
Une équation bicarrée à une inconnue est une équation équivalente à l’équation :

ax2n + bxn + c = 0 (2.3)

où a, b, c ∈ R, a 6= 0 et n ∈ N∗.

Exemples

1) 4x6 + 2x3 − 6 = 0 : équation bicarrée avec n = 3.

2) −2x10 − 7x5 + 4
5
= 0 : équation bicarrée avec n = 5.
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2.4.1 Principe de résolution

Marche à suivre pour résoudre une équation bicarrée (équation 2.3) :

1. poser t = xn et substituer → on obtient l’équation du deuxième degré
at2 + bt + c = 0,

2. trouver les solutions t1 et t2 (si elles existent) de cette équation à l’aide de la
formule de résolution ou d’une factorisation,

3. résoudre les équations xn = t1 et xn = t2 (inconnue : x).

Exemple

Résoudre : 4x4+11x2− 3 = 0. On reconnâıt une équation bicarrée avec n = 2. On
pose alors t = x2 et on substitue pour obtenir :

4t2 + 11t− 3 = 0

On peut résoudre cette équation à l’aide de la formule de résolution des équations
du second degré avec a = 4, b = 11 et c = −3.
– Calcul du discriminant : ∆ = 112 − 4 · 4 · (−3) = 169 = 132.
– ∆ > 0 : 2 solutions distinctes :

* t1 =
−11 +

√
169

2 · 4 =
−11 + 13

8
=

1

4

* t2 =
−11−

√
169

2 · 4 =
−11− 13

8
= −3

Pour la dernière étape, on utilise la relation entre x et t pour poser les équations :

* x2 = t1 −→ x2 =
1

4
. Deux solutions : x1 =

√
1

4
=

1

2
et x2 = −

√
1

4
= −1

2

* x2 = t2 −→ x2 = −3. Pas de solution : un nombre élevé au carré ne peut pas
être négatif.

L’ensemble des solutions est : S = {−1
2
; 1
2
}.

2.5 Equations polynomiales

Définition 2.8
Une équation polynomiale de degré n à une inconnue est une équation équivalente à
l’équation :

p(x) = 0 (2.4)

où p(x) = anx
n + an−1x

n−1 + an−2x
n−2 + . . .+ a2x

2 + a1x+ a0 est polynôme de degré n
(avec an 6= 0).

Remarque

Dans une équation polynomiale, l’inconnue apparâıt élevée à une ou plusieurs puissances.
La puissance la plus élevée nous donne, en principe, le degré du polynôme p(x). On
utilisera ces caractéristiques pour identifier une telle équation.
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Exemples

1) 2x3 − 4x+ 2 = 0 : équation polynomiale de degré 3.

2) 8x4 − 3x2 + 2 = −7x5 + 9x3 − 2x : équation polynomiale de degré 5.

3) 5x3 − 2x2 − x+ 1 = 5x3 − 3 : équation polynomiale de degré 2.

2.5.1 Division euclidienne

Rappel

La division euclidienne d’un nombre naturel a par un nombre naturel b a été étudiée à
l’école secondaire. Par exemple, pour diviser 535 par 6, on suit le schéma suivant :

5 3 5 6

−© 4 8 8 9

5 5

−© 5 4

1

où 89 est le quotient de la division et 1 le reste. Plus généralement, pour a et b, on
obtient :

a = b · q + r

où a est appelé le dividende, b le diviseur, q le quotient et r le reste qui doit être le plus
petit nombre positif ou nul possible.
A partir de la ”même” idée, on va pouvoir diviser deux polynômes en faisant apparâıtre
un reste et un quotient.

Définition 2.9
Diviser un polynôme p(x) par un polynôme d(x) à l’aide d’une division euclidienne
revient à chercher des polynômes q(x) et r(x) tels que

p(x) = d(x) · q(x) + r(x)

avec deg(r(x)) < deg(d(x)).

On appelle p(x) le dividende, d(x) le diviseur, q(x) le quotient et r(x) le reste.

Pour réaliser cette division, nous allons utiliser l’algorithme de division ci-dessous
illustré par un exemple.

Pour diviser p(x) = 6x4 + 4x3 − 7x2 + 3 par le polynôme d(x) = 2x2 − 1, on part du
tableau suivant :

6x4 + 4x3 − 7x2 + 3 2x2 − 1

On place à gauche le dividende en laissant un espace vide pour les puissances de x
”absentes” dans le polynôme et à droite le diviseur.

On suit ensuite les pas de l’algorithme :
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1) Déterminer le monôme m(x) par lequel il faut multiplier le terme de plus haut degré
du diviseur, ici 2x2, pour obtenir le terme de plus haut degré du dividende, ici 6x4

−→ Réponse : m(x) = 3x2.

2) Reporter m(x) dans la partie réservée au quotient (sous le diviseur).

3) Multiplier d(x) par m(x) et reporter le résultat sous le dividende en respectant les
puissances de x −→ Produit : 3x2 · (2x2 − 1) = 6x4 − 3x2.

4) Soustraire ce produit du dividende pour trouver un polynôme s(x) −→ Différence :
s(x) = (6x4 + 4x3 − 7x2 + 3)− (6x4 − 3x2) = 4x3 − 4x2 + 3.

5) - Si deg(s(x)) < deg(d(x)) : stop !
- Sinon : recommencer en 1 en prenant s(x) comme ”nouveau” dividende.

On obtient alors :

6x4 + 4x3 − 7x2 + 3 2x2 − 1

−© 6x4 − 3x2 3x2 + 2x− 2

4x3 − 4x2 + 3

−© 4x3 − 2x

− 4x2 + 2x + 3

−© − 4x2 + 2

2x + 1

La dernière ligne de gauche fournit le reste et la ligne sous le diviseur le quotient. On a
ainsi :

6x4 + 4x3 − 7x2 + 3︸ ︷︷ ︸
dividende

= (2x2 − 1)︸ ︷︷ ︸
diviseur

· (3x2 + 2x− 2)︸ ︷︷ ︸
quotient

+ (2x+ 1)︸ ︷︷ ︸
reste

Définition 2.10
Un polynôme p(x) est dit divisible par un polynôme d(x) si le reste de la division de
p(x) par d(x) vaut zéro.

Remarque

Si le polynôme p(x) est divisible par le polynôme d(x), il existe un polynôme q(x) tel
que :

p(x) = d(x) · q(x)
On peut donc écrire p(x) comme le produit de 2 polynôme. On obtient alors une facto-
risation de p(x).

Proposition 2.5
Si p(x) est un polynôme de degré n et d(x) un polynôme de degré m, le quotient de la
division de p(x) par d(x) est un polynôme de degré n − m et le reste un polynôme de
degré inférieur à m.

Il découle de cette proposition que le reste de la division d’un polynôme de degré quel-
conque par un polynôme de degré 1 est de degré 0, donc un nombre réel.
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Théorème 2.6
Le reste de la division d’un polynôme p(x) par le polynôme x− a vaut p(a), avec a ∈ R.

Démonstration. Si q(x) est le quotient et r (un nombre réel !) le reste de la division de
p(x) par x− a, on a :

p(x) = (x− a) · q(x) + r

En remplaçant x par a, on obtient p(a) = (a− a)︸ ︷︷ ︸
=0

·q(a) + r = r.

Il découle du théorème précédent et de la définition de la divisibilité le théorème suivant :

Théorème 2.7
Soit p(x) = anx

n + an−1x
n−1 + . . . + a1x + a0. Les trois propositions suivantes sont

équivalentes

1. a est une solution de l’équation p(x) = 0,

2. a est une racine de p(x),

3. p(x) est divisible par x− a.
avec a ∈ R.

Exemple

Divisons p(x) = x4− 3x3 +2x2−x+2 par d(x) = x− 2 à l’aide de l’algorithme de
division.

x4 − 3x3 + 2x2 − x + 2 x− 2

−© x4 − 2x3 x3 − x2 − 1

− x3 + 2x2 − x + 2

−© − x3 + 2x2

− x + 2

−© − x + 2

0

On obtient alors :

x4 − 3x3 + 2x2 − x+ 2 = (x− 2) · (x3 − x2 − 1)

Ainsi, p(x) est divisible par x−2 car le reste est nul. 2 est donc une racine de p(x),
ce qu’on peut facilement vérifier : p(2) = 24 − 3 · 23 + 2 · 22 − 2 + 2 = 0.

2.5.2 Schéma de Horner

Le schéma de Horner s’avère souvent très utile lorsqu’on désire :
– diviser un polynôme p(x) par le polynôme x− a,
– évaluer un polynôme p(x) en a.
avec a ∈ R.

Nous allons illustrer l’utilisation de ce schéma de Horner par un exemple.

On désire diviser le polynôme p(x) = 2x4−3x3−2x2−5x+4 par le polynôme d(x) = x−2.
On pourrait utiliser l’algorithme de division et trouver que :

2x4 − 3x3 − 2x2 − 5x+ 4 = (x− 2) · (2x3 + x2 − 5)− 6 (2.5)
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On peut également partir du tableau suivant (schéma de Horner) :

4−5−2−32

2

Les nombres de la première ligne sont les coefficients du polynôme, y compris ceux valant
0 ! Le 2© de la deuxième ligne du tableau est le zéro du diviseur d(x) = x− 2.

On construit ensuite, en partant du coin inférieur gauche, le schéma suivant :

4−5−2−32

−10024

+©+©+©+©

−6−5012
·2·2·2·2

2

La dernière ligne fournit les coefficients du quotient q(x) = 2x3+x2−5 et le reste r = −6.
On retrouve donc bien l’équation (2.5).

De plus, la valeur de p(x) en 2 est égale au reste r = −6 donnée par le schéma de Horner :
p(2) = 2 · 24 − 3 · 23 − 2 · 22 − 5 · 2 + 4 = −6.

2.5.3 Principe de résolution

Pour les équations de degrés 3 et 4, il existe des formules du même type que celles que
nous avons rencontrées pour le degré 2. Elles sont cependant relativement compliquées et
on ne les utilisera pas dans ce cours. En 1826, Abel, mathématicien norvégien, a montré
qu’une équation du cinquième degré ou plus ne peut se résoudre par radicaux (pas de
solutions générales comme pour les équations du second degré).

Dans ce cours, nous allons utiliser une technique qui permet de résoudre un petit nombre
d’équations polynomiales de degré supérieur à 2 et qui se base sur les techniques de
division de polynômes.

Soit p(x) un polynôme de degré supérieur à 2. Marche à suivre pour résoudre l’équation
p(x) = 0 :

1. chercher par tâtonnement une solution, a, de l’équation,

2. diviser le polynôme p(x) par le binôme x − a, −→ on obtient une polynôme
q(x) tel que p(x) = (x− a) · q(x),

3. - si deg(q(x)) > 2 : recommencer en 1 en considérant l’équation q(x) = 0,

- si deg(q(x)) 6 2 : résoudre l’équation q(x) = 0 à l’aide des techniques vues
dans les chapitres précédents.

Remarques

1) Pour résoudre une équation polynomiale quelconque, il faut, avant de pouvoir débuter
la procédure décrite ci-dessus, se ramener à une équation équivalente avec un des deux
membres égal à zéro.
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2) La solution a obtenue par tâtonnement est une racine de p(x) car p(a) = 0.

3) D’une manière générale, on cherche tout d’abord des racines entières proches de zéro
en testant dans l’ordre les nombres : 0, 1, −1, 2, −2, 3, −3, . . .

4) Le degré de q(x) est strictement inférieur à celui de p(x) ce qui permet de ”simplifier”
le problème (on ne peut pas itérer les opérations sans fin).

Exemple

Résoudre : x3 + x2 − 4x− 4 = 0.

Essais successifs pour découvrir une solution :

– x = 0 −→ 03 + 02 − 4 · 0− 4
?
= 0 : Non

– x = 1 −→ 13 + 12 − 4 · 1− 4
?
= 0 : Non

– x = −1 −→ (−1)3 + (−1)2 − 4 · (−1)− 4
?
= 0 : O.K

⇒ x1 = −1 est solution de l’équation.

On divise alors le polynôme x3+x2−4x−4 par le binôme x+1 à l’aide du schéma
de Horner.

−4−411

40−1
0−401

−1

On obtient l’égalité x3 + x2 − 4x− 4 = (x+ 1)(x2 − 4).

On résout alors l’équation x2−4 = 0. Cette équation est une équation du deuxième
degré qu’on peut résoudre par factorisation en utilisant une identité remarquable.
On trouve l’équation équivalente

(x− 2)(x+ 2) = 0

qui admet comme solution x2 = 2 et x3 = −2.
L’ensemble des solutions de l’équation de départ est : S = {−2;−1; 2}.

2.5.4 Factorisation d’un polynôme de degré supérieur à 2

Définition 2.11
Rappel : factoriser un polynôme de degré n consiste à écrire ce polynôme sous forme
d’un produit de polynômes de degré plus petit que n.

Un polynôme est dit irréductible s’il ne peut pas être écrit comme un produit de deux
polynôme de degré > 1.

Exemples

1) Le polynôme x2 + 4 est irréductible.

2) Le polynôme x2 − 4 n’est pas irréductible, car x2 − 4 = (x− 2) · (x+ 2)

Théorème 2.8
Les seuls polynômes irréductibles sont les polynômes de degré 1 et les polynômes de degré
2 dont le discriminant est négatif.
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Ainsi, tout polynôme peut s’écrire sous la forme d’un produit de polynômes irréductibles
de degré 1 ou 2.

Pour factoriser un polynôme p(x) de degré n avec n > 2 sous cette forme, on va procéder
comme si on voulait résoudre l’équation p(x) = 0 :

1. trouver une racine a de p(x),

2. diviser p(x) par x− a pour obtenir

p(x) = (x− a) · q(x),

ce qui permet d’effectuer une étape de la factorisation complète du polynôme,

3. factoriser q(x) en partant de 1 si deg(q(x)) = n − 1 > 2 ou en utilisant les
résultats de la section (2.3.3) si deg(q(x)) = 2.

Remarques

1) Cette méthode ne permet pas de trouver la factorisation d’un polynôme p(x) qui n’ad-
met pas de polynôme de degré 1 dans sa factorisation. Ainsi, elle n’est pas utilisable
pour le polynôme suivant qui se factorise pourtant facilement à l’aide d’une identité
remarquable : x4 + 2x2 + 1 = (x2 + 1)2.

2) Cette procédure a une fin car le degré du quotient est toujours inférieur de 1 au degré
du polynôme de départ (dividende).

Théorème 2.9
Un polynôme de degré n a au plus n zéros.

En se basant sur ce théorème et sur la procédure de factorisation ci-dessus, on peut,
comme pour les polynômes de degré 2, donner immédiatement la factorisation d’un po-
lynôme p(x) de degré n si on connâıt exactement les n zéros de celui-ci (donc l’ensemble
de ses zéros d’après le théorème).

Proposition 2.10
Soit p(x) = anx

n+an−1x
n−1+ . . .+a1x

1+a0 et x1, x2, . . . , xn les n zéros de ce polynôme.
On peut écrire :

p(x) = an · (x− x1) · (x− x2) · . . . · (x− xn)

Remarque

Attention ! Lorsqu’on utilise cette proposition pour factoriser un polynôme de degré n,
il ne faut pas oublier le coefficient dominant comme premier facteur ! ! !

Exemple

Soit le polynôme p(x) = 3x3 + 2x2 − 7x+ 2. Ses 3 zéros sont : x1 = 1, x2 = −2 et
x3 =

1
3
.

Une factorisation de ce polynôme en un produit de facteurs irréductibles est :

p(x) = 3 · (x− 1) · (x+ 2) · (x− 1

3
)
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Les zéros dans la proposition ci-dessus ne sont pas nécessairement tous différents. Par
exemple, p(x) = x3 + x2 − 5x+ 3 se factorise

p(x) = (x+ 3) · (x− 1) · (x− 1)

Si un facteur x− a apparâıt m fois, alors a est un zéro de multiplicité m du polynôme
p(x). Dans l’exemple ci-dessus, 1 est un zéro de multiplicité 2, et−3 un zéro de multiplicité
1.

A l’inverse, si a est un zéro de p(x) de multiplicité m, alors p(x) admet le facteur (x−a)m
dans sa factorisation.

Le théorème suivant permet de ”deviner” plus facilement un zéro de certains polynôme
qu’en testant tous les nombres entiers proche de zéro.

Théorème 2.11
Soit p(x) = anx

n + an−1x
n−1 + . . .+ a1x+ a0 un polynôme à coefficients entiers.

1) Si a est un zéro entier de p(x), alors a est un diviseur de a0.

2) Si a = u
v
est un zéro rationnel de p(x), avec u et v premiers entre eux, alors u est un

diviseur de a0 et v un diviseur de an

Exemple

Déterminer les zéros rationnels de p(x) = 3x3 + 2x2 − 7x+ 2.

Les zéros entiers possibles sont ±1, ±2, car les diviseurs de 2 sont ±1 et ±2.
Les zéros rationnels possibles sont ±1, ±2, ±1

3
, ±2

3
, car les diviseurs de 3 sont ±1

et ±3 et les diviseurs de 2 sont ±1 et ±2.
On obtient ici les trois zéros du polynôme car p(1) = 0, p(−2) = 0 et p(1

3
) = 0.

2.6 Equations rationnelles

Définition 2.12
Une équation rationnelle à une inconnue est une équation équivalente à l’équation :

p(x)

q(x)
= 0 (2.6)

où p(x) et q(x) sont des polynômes.

Remarque

Dans une équation rationnelle, l’inconnue apparâıt au dénominateur d’une (ou plusieurs)
fractions. On utilisera cette caractéristique pour identifier une telle équation.

Exemples

1)
3x− 2

4− x = 0

2)
1

x− 2
− 1

x
=

2

3x

3)
3

x
− 7

x− 1
= − 39

x(x− 1)
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Solutions

Les solutions de l’équation (2.6) sont les solutions de l’équation p(x) = 0 qui ne sont
pas solution de l’équation q(x) = 0. L’ensemble des solutions est donc donné par :
S = {a ∈ R | p(a) = 0 et q(a) 6= 0}.

Une équation rationnelle est rarement donnée sous la forme (2.6). Il faudrait donc trou-
ver, par une suite d’opérations, une équation équivalente de la forme souhaitée pour
pouvoir ”calculer” ses solutions comme proposé ci-dessus. Dans la pratique, on procédera
généralement un peu différemment.

2.6.1 Principe de résolution

Marche à suivre pour résoudre une équation rationnelle :

1. déterminer le polynôme de plus petit degré possible multiple de chaque
dénominateur −→ on appelle ce polynôme le ”ppmc” des dénominateurs,

2. multiplier chaque membre de l’équation par ce ”ppmc” et simplifier −→ les
dénominateurs ”disparaissent”,

3. résoudre l’équation ainsi obtenue,

4. vérifier les solutions obtenues dans l’équation de départ !

Remarque

Attention ! Le fait de multiplier les deux membres d’une équation par un polynôme
peut introduire des solutions qui ne satisfont pas l’équation initiale. C’est pourquoi il est
nécessaire de tester les solutions trouvées dans l’équation de départ.

Exemples

1. Le ”ppmc” des polynômes x3 · (x− 2) et x · (x− 2)2 · (x+ 4) est le polynôme
x3 · (x− 2)2 · (x+ 4).

Pour construire ce ”ppmc”, on multiplie chacun des facteurs différents appa-
raissant dans les polynômes initiaux. Si un même facteur élevé à différentes
puissances est présent dans plusieurs polynômes, on ne considère que la puis-
sance la plus grande pour la construction du ”ppmc”.

2. Résoudre :
1

x− 2
− 3

x+ 2
=

2

5x− 10
.

On détermine d’abord le ”ppmc” des dénominateurs qui est le polynôme 5 ·
(x− 2) · (x+ 2). Ensuite, on procède comme décrit ci-dessus :

1
x−2
− 3

x+2
= 2

5x−10
·5(x− 2)(x+ 2) (multiplier par

le ”ppmc”)
5(x−2)(x+2)

x−2
− 3·5(x−2)(x+2)

x+2
= 2·5(x−2)(x+2)

5x−10
simplifier

5(x+ 2)− 3 · 5(x− 2) = 2(x+ 2) CL

−10x+ 40 = 2x+ 4 −40
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−10x = 2x− 36 −2x
−12x = −36 ÷(−12)

x = 3

Important ! Il faut maintenant vérifier la solution obtenue en substituant 3 à
x dans l’équation de départ.

Vérification

*

1

3− 2
− 3

3 + 2︸ ︷︷ ︸
= 2

5

?
=

2

5
−→ O.K.

L’ensemble des solutions, après vérification, est : S = {3}.

2.7 Equations irrationnelles

Définition 2.13
Une équation irrationnelle à une inconnue est une équation où l’inconnue figure sous
un radical n

√
. . ..

Exemples

1)
√
3x− 2 = 8

2)
√
2 + x+ 4−

√
10− 3x = 0

3) 3
√
4x− 3 =

6
√
5x2 − 7x+ 2 + 23x− 4

2.7.1 Principe de résolution

Marche à suivre pour résoudre une équation irrationnelle :

1. isoler un radical n
√
. . . dans un des membres de l’équation à l’aide des règles

d’équivalence,

2. élever les deux membres de l’équation à la puissance n −→ le radical isolé
disparâıt,

3. répéter les points 1 et 2 afin de faire disparâıtre l’ensemble des radicaux,

4. résoudre l’équation à une inconnue obtenue,

5. vérifier les solutions obtenues dans l’équation de départ !

Remarque

Attention ! Le fait d’élever à la puissance n les deux membres d’une équation peut
introduire des solutions qui ne satisfont pas l’équation initiale. C’est pourquoi il est
nécessaire de tester les solutions trouvées dans l’équation de départ.
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Exemple

Résoudre :
√
x+ 5 + x− 1 = 0.

√
x+ 5 + x− 1 = 0 −(x− 1) (isoler le radical)

√
x+ 5 = −x+ 1 (. . .)2 (élever au carré)

x+ 5 = (−x+ 1)2 développer

x+ 5 = x2 − 2x+ 1 −(x+ 5)

0 = x2 − 3x− 4

On résout alors l’équation du deuxième degré x2−3x−4 = 0 à l’aide de la formule
de résolution avec a = 1, b = −3 et c = −4.
– Calcul du discriminant : ∆ = (−3)2 − 4 · 1 · (−4) = 25 = 52.
– ∆ > 0 : 2 solutions distinctes :

* x1 =
−(−3) +

√
25

2 · 1 =
3 + 5

2
= 4

* x2 =
−(−3)−

√
25

2 · 1 =
3− 5

2
= −1

Important ! Il faut maintenant vérifier les solutions obtenues en les substituant à
x dans l’équation de départ.

Vérification

*

√
4 + 5︸ ︷︷ ︸
=3

+4− 1
?
= 0 −→ Non

*

√
−1 + 5︸ ︷︷ ︸
=2

+(−1)− 1
?
= 0 −→ O.K.

L’ensemble des solutions, après vérification, est : S = {−1}.
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2.8 Exercices

1) Dans chacune des formules physiques suivantes, exprimer chaque lettre au moyen des
autres.

a) F = G
m1m2

r2
b) T = 2π

√
l

g
c) x =

1

2
at2 + x0 d)

1

R
=

1

R1
+

1

R2

2) Résoudre les équations suivantes.

a) 10x− 38 + 5x = 20x− 18 + 4x− 11 b) 4x+ 7 + 20x− 17 = 24x− 10

c) −x+ 8 = −1 + 2x d) x− 10 = −9 + 3x

e) 4x+ 12− (1− x) = 5x+ 2 f) 4x+ 12− (1− x) = 5x+ 11

g) 4x+ 3 = 2(7x− 1) h) 7(x+ 2)− x = 2(x− 1)

i) 4x− (x+ 3) = 5− (1− 3x) j) (3x− 2)2 = (x− 5)(9x+ 4)

k) (5x− 7)(2x+ 1)− 10x(x− 4) = 0 l)
3− x
2

=
9 + 7x

6

m)
x− 1

5
=

3x+ 2

20
n)

x

2
+

2x

3
+
x

6
− x = 18

o) 11− x

3
= 1 +

x

12
p)

1

5
x+ 2 = 3− 2

7
x

3) Résoudre les équations suivantes.

a) (x− 2)(x+ 3) = 0 b) (3x− 1)(3− 4x) = 0

c) x(2x+ 7) = 0 d) (2x+ 1)2 = 0

e) x2 + 4x = 0 f) x = 3x2

g) x2 − 9 = 0 h) (x− 2)2 = 9

i) (x+ 5)2 = −5 j) 1− (4x+ 11)2 = 0

4) Résoudre les équations suivantes.

a) 3x2 + 7x− 3 = 0 b) 2x2 − x− 1 = 0

c)
√
3x2 − 4x+ 2

√
3 = 0 d) x(x+

√
2) =

√
2(x−

√
2)

e) x2 − (3−
√
2)x+

√
2 = 0 f) x2 −

√
3(2−

√
3)x = 6

√
3

g) x(x+
√
5) = 2x h) x3 − 2x2 + 2x = 0

i) x3 + 6x2 + 5x = 0 j) x4 − x3 − 6x2 = 0
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5) Résoudre les équations suivantes.

a)
x− 3

x− 5
= 5 b)

x− 3

x− 5
= 0

c)
5

x+ 1
=

3

x+ 1
+

1

2
d)

1

x− 4
=

1

2x+ 1

e)
x− 5

x− 3
− x− 7

x− 1
=

1

2x− 2
f)

x

x− 1
+
x− 1

x
= 1

g)
1

x+ 1
+

4

x− 1
=

8

x2 − 1
h)

x

x+ 1
− 2x

x− 1
= 0

i)
1

x
+

1

x2
=

4

9
j)

5

x+ 1
+

4

x2 − 1
= 1

6) Résoudre les équations suivantes.

a) 2 + 3
√
1− 5t = 0 b)

4
√
2x2 − 1 = x

c)
√
7− x+ 5 = x d) 3

√
2x− 3 + 2

√
7− x = 11

e) x = 4 +
√
4x− 19 f) x+

√
5x+ 19 = −1

g)
√
7− 2x−

√
5 + x =

√
4 + 3x h)

√
11 + 8x+ 1 =

√
9 + 4x

i)

√
2
√
x+ 1 =

√
3x− 5 j)

√
1 + 4

√
x =
√
x+ 1
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2.9 Solutions des exercices

2) a) S = {−1} b) S = R c) S = {3} d) S = {−1
2
}

e) S = ∅ f) S = R g) S = {1
2
} h) S = {−4}

i) S = ∅ j) S = {−24
29
} k) S = { 7

31
} l) S = {0}

m) S = {6} n) S = {54} o) S = {24} p) S = {35
17
}

3) a) S = {−3; 2} b) S = {1
3
; 3
4
} c) S = {−7

2
; 0} d) S = {−0, 5}

e) S = {−4; 0} f) S = {0; 1
3
} g) S = {−3; 3} h) S = {−1; 5}

i) S = ∅ j) S = {−5
2
;−3}

4) a) S = {−7±
√
85

6
} b) S = {−1

2
; 1} c) S = ∅

d) S = ∅ e) S = ∅ f) S = {−3+2
√
3±
√

21+12
√
3

2
}

g) S = {0; 2−
√
5} h) S = {0} i) S = {−5;−1; 0}

j) S = {−2; 0; 3}

5) a) S = {11
2
} b) S = {3} c) S = {3} d) S = {−5}

e) S = {29
7
} f) S = ∅ g) S = ∅ h) S = {−3; 0}

i) S = {−3
4
; 3} j) S = {0; 5}

6) a) S = {9
5
} b) S = {1} c) S = {6} d) S = {6}

e) S = {5; 7} f) S = {−3} g) S = {−1} h) S = {−5
4
}

i) S = {3} j) S = {0; 4}
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Chapitre 3

Déterminants

3.1 Déterminants d’ordre 2

Définition 3.1
On appelle déterminant d’ordre 2, et on note

a1 b1
a2 b2

le nombre a1b2 − a2b1.

Exemple

1)
5 2
1 4

= 5 · 4− 1 · 2 = 18

2)
2 5
4 1

= 2 · 1− 5 · 4 = −18

3.1.1 Aire d’un parallélogramme

On peut utiliser un déterminant d’ordre 2 pour calculer l’aire d’un parallélogramme.
Considérons un plan muni d’un repère orthonormé d’origine O, et deux points A et B
de coordonnées (a1; a2) et (b1; b2). L’aire du parallélogramme construit sur OAB (voir le
dessin ci-dessous) vaut exactement :

A =
a1 b1
a2 b2

= a1b2 − a2b1

y

A(a1; a2)

B(b1; b2)

O a1b1

a2

b2

x
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Mathématiques, MAP 1ère année 3. Déterminants

Démonstration. On peut se convaincre de ce résultat en remarquant que a1b2 est l’aire
d’un rectangle de largeur a1 et de hauteur b2 auquel on soustrait a2b1 qui est l’aire d’un
rectangle de hauteur a2 et de largeur b1.

Or, sur le dessin ci-dessous, en déplaçant les parties hachurées du rectangle OPQR (d’aire
a1b2) et en éliminant les deux parties foncées (d’aire totale a2b1), on retrouve le pa-
rallélogramme de départ dont l’aire vaut donc bien a1b2 − a2b1.
On peut également se persuader de ceci en utilisant du papier et des ciseaux.

y

R
Q

O
P

b1

a2

a1b1

a2

b2

avec

x

Remarques

– On constate qu’en inversant les deux colonnes du déterminant, on trouve le résultat
opposé. Le déterminant peut donc être interprété comme une aire signée.

– On peut facilement voir que le déterminant est nul si les trois points O, A et B sont
alignés.

3.2 Déterminants d’ordre 3

Définition 3.2
On appelle déterminant d’ordre 3, et on note

a1 b1 c1
a2 b2 c2
a3 b3 c3

le nombre a1b2c3 + a3b1c2 + a2b3c1 − a3b2c1 − a1b3c2 − a2b1c3.
Pour calculer un tel déterminant, on utilise le tableau suivant :

a1

a2

a3

b1

b2

b3

c1

c2

c3

a1

a2

a3

b1

b2

b3

+ + +

− − −

On effectue le produit des éléments sur les diagonales puis on somme ces produits ; les
diagonales descendantes sont affectées du signe +, les diagonales montantes du signe −.
Ce procédé est appelé règle de Sarrus.

page 65
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Remarque

Attention ! La règle de Sarrus ne marche que pour des déterminants d’ordre trois.

Exemple

La valeur du déterminant
1 2 −4
2 0 4
−3 1 0

est donnée par

1

2

−3

2

0

1

−4
4

0

1

2

−3

2

0

1

+ + +

− − −

= 1 · 0 · 0 + 2 · 4 · (−3) + (−4) · 2 · 1
−(−3) · 0 · (−4)− 1 · 4 · 1− 0 · 2 · 2 = −36

3.2.1 Volume d’un parallélépipède

On peut utiliser un déterminant d’ordre 3 pour calculer le volume d’un parallélépipède.
Considérons celui représenté ci-dessous et construit sur le tétraèdre OABC. Son vo-
lume peut s’exprimer en fonction des coordonnées des points A(a1; a2; a3), B(b1; b2; b3) et
C(c1; c2; c3). Il est donné par le déterminant d’ordre 3 :

V =
a1 b1 c1
a2 b2 c2
a3 b3 c3

x

z

y

C(c1; c2; c3)

B(b1; b2; b3)

A(a1; a2; a3)

3.3 Quelques propriétés des déterminants

Définition 3.3
Le transposé d’un déterminant D est un déterminant D′ obtenu en permutant, dans D,
chaque colonne avec la ligne de même rang (première ligne avec première colonne, . . . ).
Une colonne ou une ligne d’un déterminant est appelée une rangée.

Exemple

Le déterminant transposé de D =
1 4 7
2 5 8
3 6 9

est le déterminant D′ =
1 2 3
4 5 6
7 8 9

.
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Remarque

Si D′ est le transposé de D, D est le transposé de D′.

Voici quelques propriétés des déterminants particulièrement utiles. Elles s’appliquent aux
déterminants de tous les ordres, mais nous utiliserons des déterminants d’ordre trois pour
illustrer notre propos.

Propriétés

Soit ai, bi et ci (i = 1, 2, 3) des nombres réels.

1. Deux déterminants transposés sont égaux.

Exemple :
a1 b1 c1
a2 b2 c2
a3 b3 c3

=
a1 a2 a3
b1 b2 b3
c1 c2 c3

2. Si l’on permute deux rangées parallèles d’un déterminant D, la valeur du déterminant
obtenu est l’opposée de celle de D.

Exemple :
b1 a1 c1
b2 a2 c2
b3 a3 c3

= −
a1 b1 c1
a2 b2 c2
a3 b3 c3

3. Si un déterminant a une rangée formée uniquement de zéros, alors il est nul.

Exemple :
a1 b1 c1
0 0 0
a3 b3 c3

= 0

4. Si on multiplie tous les éléments d’une rangée par un nombre λ, alors la valeur du
déterminant est multiplié par λ.

Exemple :
λa1 b1 c1
λa2 b2 c2
λa3 b3 c3

= λ ·
a1 b1 c1
a2 b2 c2
a3 b3 c3

5. Si deux rangées parallèles d’un déterminant sont proportionnelles (donc éventuelle-
ment identiques), alors il est nul.

Exemple :
a1 αa1 c1
a2 αa2 c2
a3 αa3 c3

= 0 avec α ∈ R.

6. Si on ajoute aux éléments d’une même rangée d’un déterminant une combinaison
linéaire des éléments correspondants de rangées parallèles, alors le déterminant ne
change pas de valeur.

Exemple :
a1 b1 c1 + αa1 + βb1
a2 b2 c2 + αa2 + βb2
a3 b3 c3 + αa3 + βb3

=
a1 b1 c1
a2 b2 c2
a3 b3 c3

avec α, β ∈ R.

7. (Corollaire des propriétés 3 et 6) Si les éléments d’une rangée d’un déterminant
peuvent être obtenus par une combinaison linéaire des éléments correspondants de
rangées parallèles, alors il est nul.

Exemple :
a1 b1 c1
a2 b2 c2

γa1 + δa2 γb1 + δb2 γc1 + δc2

= 0 avec γ, δ ∈ R.
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3.4 Déterminants d’ordre n

Définition 3.4
On appelle déterminant d’ordre n, et on note sous la forme d’un tableau de n lignes
et n colonnes

a11 a12 · · · a1n
a21 a22 a2n
...

. . .
...

an1 an2 · · · ann

le nombre

D =

n∑

i=1

ai1 ·Ai1 =

n∑

i=1

ai1 · (−1)i+1 ·Mi1

où
– aij est l’élément situé à la i-ème ligne et à la j-ème colonne,

– Mij est le mineur de l’élément aij défini comme le déterminant obtenu en suppri-
mant dans le tableau représentant le nombre D les rangées (lignes et colonnes) qui
contiennent aij ,

– Aij est le cofacteur de l’élément aij qui est défini par : Aij = (−1)i+j ·Mij .

Un déterminant d’ordre n est donc égal à la somme des produits des éléments de la
première colonne par les cofacteurs correspondants. On dit dans ce cas que le déterminant
est développé par rapport à la première colonne.

Proposition 3.1
Un déterminant d’ordre n peut être développé par rapport à n’importe quelle rangée
et est donc égal à la somme des produits des éléments d’une rangée par les cofacteurs
correspondants.

En développant par rapport à la i-ème ligne, on obtient :

D =

n∑

j=1

aij · Aij =

n∑

j=1

aij · (−1)i+j ·Mij .

En développant par rapport à la j-ème colonne, on obtient :

D =
n∑

i=1

aij · Aij =
n∑

i=1

aij · (−1)i+j ·Mij .

Remarque

Pour un déterminant d’ordre n, les cofacteurs obtenus sont d’ordre n−1. On peut calculer
ces derniers en utilisant la même définition. Le processus de calcul est donc itératif jus-
qu’au moment où on obtient des déterminants d’ordre 2 qu’on peut facilement calculer.
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Exemples

1) Soit D =
a11 a12 a13
a21 a22 a23
a31 a32 a33

Le cofacteur de a21 est :

A21 = (−1)2+1 a12 a13
a32 a33

= − a12 a13
a32 a33

Le cofacteur de a13 est :

A13 = (−1)1+3 a21 a22
a31 a32

=
a21 a22
a31 a32

2) Calculer la valeur de D =

−1 2 0 −2
2 −1 1 2
1 4 −3 −1
1 1 0 1

Important ! Pour réduire au maximum le nombre de calculs (et donc l’effort),
on va toujours choisir de développer un déterminant selon la rangée comportant
le plus de 0 possible : ici la troisième colonne.

D = 1 · (−1)2+3 ·
−1 2 −2
1 4 −1
1 1 1

− 3 · (−1)3+3 ·
−1 2 −2
2 −1 2
1 1 1

= (−1) ·
(
(−1) · 4 −1

1 1
− 1 · 2 −2

1 1
+ 1 · 2 −2

4 −1

)

−3 ·
(
(−1) · −1 2

1 1
− 2 · 2 −2

1 1
+ 1 · 2 −2

−1 2

)

= (−1) · (−5− 4 + 6)− 3 · (3− 8 + 2)

= 12
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3.5 Exercices

1) Calculer les déterminants :

a)
1 2
−1 3

b)
−1 1
3 −2 c)

0 7
0 3

d)
−7 9
1 −8

e)
0 −1
−1 0

f)
2 0
−5 1

g)
3 2
1 −4 h)

2 −10
3 −15

2) Calculer les déterminants :

a)
2 −1 −2
6 −1 1
4 5 3

b)
2 0 −5
5 3 3
0 4 6

c)
3 7 4
0 5 0
3 13 6

d)
1 2 3
3 2 1
1 3 2

e)
0 1 −1
2 4 −5
−1 −1 1

f)
1 0 8
9 1 16
3 0 4

g)
3 2 1
1 −2 4
4 2 3

h)
4 −3 2
5 9 −7
4 −1 4

3) Vérifier :

a)
0 4 7
0 0 1
0 0 0

= 0 b)
1 0 0
0 a b
0 c d

=
1 0 0
0 a c
0 b d

c)
1 5 7
2 9 −5
−2 −10 −14

= 0 d)
−1 3 −17
3 −9 51
−8 24 −101

= 0

e)
1 a b+ c
1 b a+ c
1 c a+ b

= 0 f)
0 1 1
1 75 83
0 2 2

= 0

g)
1 21 43
0 2 75
0 0 3

= 6 h)
0 a b
−a 0 c
−b −c 0

=
0 −a −b
a 0 −c
b c 0

i)
a a′ a′′

b b′ b′′

c c′ c′′
=

a′ a′′ a
b′ b′′ b
c′ c′′ c

j)
0 a b
−a 0 c
−b −c 0

= 0
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4) Exprimer D2, D3, D4, D5, D6 à l’aide de D1 :

D1 =
a a′ a′′

b b′ b′′

c c′ c′′
D2 =

a′′ a′ a
b′′ b′ b
c′′ c′ c

D3 =
c c′ c′′

b b′ b′′

a a′ a′′

D4 =
b b′ b′′

c c′ c′′

a a′ a′′
D5 =

a b c
a′′ b′′ c′′

a′ b′ c′
D6 =

a′ b′ c′

a′′ b′′ c′′

a b c

5) Exprimer D2, D3, D4, D5, D6 à l’aide de D1 :

D1 =
a1 a2 a3
b1 b2 b3
c1 c2 c3

D2 =
a1 a2 λa3
b1 b2 λb3
c1 c2 λc3

D3 =
a1 a2 a3
λb1 λb2 λb3
λc1 λc2 λc3

D4 =
2a1 2a2 2a3
−2b1 −2b2 −2b3
−c1 −c2 −c3

D5 =
a1 b1 c1
−a3 −b3 −c3
a2 b2 c2

D6 =
c1 −a1 b1
−c2 a2 −b2
c3 −a3 b3

6) Vérifier :

a)
2 1 −1
3 4 2
−2 −5 3

=
0 1 0
−5 4 6
8 −5 −2

b)
1 2 3
4 5 6
7 8 9

=
1 1 2
4 1 2
7 1 2

c)
1 2 3
1 2 1
1 3 2

=
0 −1 1
0 −1 −1
1 3 2

d)
1 3 2
1 1 4
2 2 2

=
1 0 2
1 −4 4
2 −2 2

e)
1 1 1
15 14 16
0 −1 1

=
0 0 1
1 −2 16
1 −2 1

f)
−3 −1 2
−1 3 −3
4 −2 1

= 0

7) Résoudre en utilisant les propriétés des déterminants :

a)
1 a b
1 x b
1 a x

= 0 b)
x a 1
a x 1
a b 1

= 0 c)
x 1 a
1 1 a
1 1 x

= 0

8) Calculer les déterminants :

a)

1 0 −1 2
3 1 4 −2
−1 1 1 2
3 0 5 1

b)

2 4 −2 6
1 −1 0 2
−1 −2 1 −3
2 1 −1 −1

c)

1 −1 2 0 0
2 0 −1 0 1
0 0 0 1 −1
2 0 1 −1 0
−1 2 0 1 0

page 71
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3.6 Solutions des exercices

1) a) 5 b) −1 c) 0 d) 47

e) −1 f) 2 g) −14 h) 0

2) a) −70 b) −88 c) 30 d) 12

e) 1 f) −20 g) −6 h) 178

4) D2 = −D1 D3 = −D1 D4 = D1 D5 = −D1 D6 = D1

5) D2 = λD1 D3 = λ2D1 D4 = 4D1 D5 = D1 D6 = D1

7) a) S = {a; b} b) S = {a; b} c) S = {1; a}

8) a) −61 b) 0 c) −20
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Chapitre 4

Systèmes d’équations linéaires

4.1 Généralités

4.1.1 Systèmes de deux équations linéaires à deux inconnues

Définition 4.1
Une équation linéaire à deux inconnues x et y est une condition pour (x; y) du type :

ax+ by = c

où a, b, c sont des nombres réels.

Tout couple (x; y) qui vérifie ax+ by = c est une solution de l’équation.

Il existe une infinité de couples solutions. Dans le plan R2, l’ensemble de ces couples
définit une droite.

Exemple

L’équation
2x− 3y = −6

est une équation linéaire à deux inconnues. Quelques couples solutions de cette
équation :

(3; 4), (0; 2), (−3; 0), (15; 12), (−6;−2),
(
1

2
;
7

3

)
, . . .

On peut vérifier l’égalité si on substitue 3 à x et 4 à y : 2 · 3− 3 · 4 = −6 ; de même
pour les autres couples de solutions.

Pour déterminer un couple de solutions, on peut isoler y par des transformations
équivalentes :

2x− 3y = −6 −2x
−3y = −2x− 6 ÷(−3)
y = 2

3
x+ 2

puis choisir une valeur pour x, par exemple 3, et obtenir la valeur de y correspon-
dante en substituant 3 à x dans l’équation ci-dessus : y = 2

3
· 3 + 2 = 4 −→ on

obtient le couple solution (3; 4).
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Pour dessiner la droite représentant l’ensemble des solutions de l’équation linéaire
à deux inconnues 2x−3y = −6 (cas général ax+ by = c), on peut procéder comme
suit :

1) déterminer deux couples de solutions (x1; y1) et (x2; y2) de l’équation,

2) reporter dans le plan muni d’un système d’axes (orthonormés) les points
(x1; y1) et (x2; y2) ,

3) tracer la droite passant par ces deux points.

y

1

2

3

4

5

−1

−2

−3

1 2 3 4 5−1−2−3−4−5

b

b

(3; 4)

(−3; 0)

2x− 3y = −6

x

Remarque

Une équation linéaire à deux inconnues ax + by = c peut être mise sous la forme (voir
l’exemple) :

y = mx+ h

où m et h sont deux nombres réels. Cette équation s’appelle aussi équation réduite de la
droite formée par l’ensemble des solutions. On appelle :
– m la pente de la droite,
– h l’ordonnée à l’origine de la droite.
Nous reviendrons sur cette équation plus en détails dans la suite du cours.

Définition 4.2
Un système de deux équations linéaires à deux inconnues est une condition pour
(x; y) (ou de manière plus générale (x1; x2)) du type :

a1x+ b1y = c1 et a2x+ b2y = c2

où a1, a2, b1, b2, c1 et c2 sont des nombres réels.

On convient, le plus souvent, de noter ce système comme suit :
{
a1x + b1y = c1
a2x + b2y = c2

(4.1)

Une solution du système (4.1) est un couple de nombres réels (x; y) qui vérifie les deux
équations du système simultanément.

Résoudre un système d’équations signifie trouver toutes les solutions de celui-ci.
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Exemple

Le système {
3x − y = 3
x + 2y = 8

est un système de deux équations linéaires à deux inconnues qui admet comme
solution unique le couple (2; 3). Comme pour les équations à une inconnue, on
donne l’ensemble de solutions sous la forme : S = {(2; 3)}

4.1.2 Systèmes de trois équations à trois inconnues

Définition 4.3
Une équation linéaire à trois inconnues x, y et z est une condition pour (x, y, z) du
type :

ax+ by + cz = d

où a, b, c et d sont des nombres réels.

Tout triplet (x; y; z) qui vérifie ax+ by + cz = d est une solution de l’équation.

Il existe une infinité de triplets solutions. Dans l’espace R3, l’ensemble de ces triplets
définit un plan.

Un système de trois équations à trois inconnues est une condition pour (x; y; z) du
type : 




a1x + b1y + c1z = d1
a2x + b2y + c2z = d2
a3x + b3y + c3z = d3

(4.2)

où ai, bi, ci et di (i = 1, 2, 3) sont des nombres réels.

Une solution du système (4.2) est un triplet de nombres réels (x; y; z) qui vérifie les trois
équations du système simultanément.

Exemple

Le système 



2x − 5y + z = −10
x + 2y + 3z = 26

−3x − 4y + 2z = 5

est un système de trois équations linéaires à trois inconnues qui admet comme
solution unique le triplet (−1; 3; 7). On note : S = {(−1; 3; 7)}

4.1.3 Systèmes de m équations linéaires à n inconnues

Définition 4.4
Une équation linéaire à n inconnues x1, x2, . . . , xn est une condition du type :

a1x1 + a2x2 + . . .+ anxn = b (4.3)

où a1, . . . , an et b sont des nombres réels. On peut remarquer que tous les xi sont à la
puissance 1, si ce n’était pas le cas, l’équation ne serait pas linéaire.

Un système de m équations linéaires à n inconnues x1, . . . , xn est une condition composée
de m équations du type (4.3).
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Une solution d’un tel système est un n-uplets de nombres réels (x1; x2; . . . ; xn) qui vérifie
les m équations simultanément.

Exemple

Le système 



x1 − 4x2 + x3 − 7x4 = 23
−3x1 + x2 − 9x3 = 56

− 4x2 + 3x3 − 4x4 = 65

est un système de trois équations linéaires à quatre inconnues.

4.1.4 Systèmes équivalents

Deux systèmes sont équivalents s’ils admettent le même ensemble de solutions. Pour
résoudre un système, on va transformer le système original en un système équivalent dont
les solutions peuvent être déterminées de manière simple.

Règles d’équivalence

Les règles suivantes permettent de transformer un système d’équations en un système
équivalent :

- permuter deux équations,

- multiplier une équation par un nombre réel non nul,

- additionner un multiple d’une équation à une autre équation.

4.2 Méthodes de résolution

Dans cette partie, nous allons décrire quatre méthodes de résolution de systèmes de deux
équations linéaires à deux inconnues. On précisera à chaque fois si l’idée de la méthode
peut s’appliquer à d’autre types de systèmes.

On cherchera donc à résoudre le système de deux équations linéaires à deux inconnues :

{
a1x + b1y = c1
a2x + b2y = c2

(4.4)

où a1, a2, b1, b2, c1 et c2 sont des nombres réels.

4.2.1 Graphiquement

Note : cette méthode ne s’applique qu’aux systèmes de 2 équations à 2 inconnues.

Idée : La solution du système est l’intersection des ensembles de solutions de chaque
équation. Comme l’ensemble des solutions de chaque équation correspond à une droite,
la solution du système correspond au point d’intersection de ces deux droites.
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Principe de résolution

Marche à suivre pour résoudre le système (4.4) :

1) déterminer deux couples de solutions de la première équation et deux couples
de solutions de la seconde équation,

2) reporter dans un système d’axes (orthonormés) les points correspondant à ces
solutions,

3) tracer les deux droites passant par ces points représentant respectivement les
solutions de la première et de la seconde équation,

4) lire sur la représentation graphique les coordonnées du ou des (infinité) points
d’intersection −→ solution(s) du système.

Exemple

Résoudre graphiquement le système :

{
3x − y = 3
x + 2y = 8

– 2 couples solutions de 3x− y = 3 : (0;−3) et (1, 0).
– 2 couples solutions de x+ 2y = 8 : (0; 4) et (8, 0).

Résolution graphique :

y

1

2

3

4

5

6

−1

−2

−3

1 2 3 4 5−1−2−3−4−5

b (2; 3)

x+ 2y = 8

3x− y = 3

x

Ensemble de solutions : S = {(2; 3)}
Comme le graphique de toute équation linéaire ax+ by = c est une droite, tout système
de deux équations de ce type correspond à exactement un des trois cas énumérés dans le
tableau ci-dessous.
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Graphique
Nombre

de solutions

Coefficients
des équations

Classification

droites sécantes

UNE
seule solution

a1
a2
6= b1
b2

système
déterminé

droites parallèles

AUCUNE
solution

a1
a2

=
b1
b2
6= c1
c2

système
impossible

droites confondues

IINFINITE
de solutions

(mais S 6= R× R)

a1
a2

=
b1
b2

=
c1
c2

système
indéterminé

Remarques

1. On note S = ∅ lorsqu’un système n’admet pas de solution. Par exemple, le système

{
x + y = 1
x + y = 2

n’a pas de solution, car les deux équations sont contradictoires (droites parallèles).

2. Avoir une infinité de couples solutions, ne signifie pas que tous les couples de
nombres réels sont solutions. Par exemple, le système

{
x + y = 1
2x + 2y = 2

(4.5)

a une infinité de solutions (droites confondues). Pour exprimer l’ensemble des so-
lutions, on peut choisir la valeur d’une variable arbitrairement, et la valeur de la
seconde variable sera déterminée d’après la valeur de la première. On peut choisir
ici :

x = λ avec λ ∈ R

et y est alors déterminée par :
y = 1− λ

λ n’est pas une inconnue, mais un paramètre, c’est-à-dire une valeur que l’on peut
choisir arbitrairement.

On note l’ensemble de solutions ainsi : S = {(λ, 1− λ) | λ ∈ R}.

4.2.2 Par substitution

Note : cette méthode peut s’appliquer à l’ensemble des systèmes d’équations.

Idée : isoler une des inconnues dans une des équations puis remplacer cette inconnue par
la valeur trouvée dans les autres équations.
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Principe de résolution

Marche à suivre pour résoudre le système (4.4) :

1) expliciter (isoler) y dans la première équation −→ y est exprimé en fonction
de x,

2) remplacer (=substituer) y, dans la seconde équation, par son expression en
fonction de x trouvé en 1 −→ on obtient une équation à une inconnue, x,

3) résoudre l’équation obtenue en 2 −→ valeur(s) pour x,

4) substituer la (ou les) valeur(s) de x trouvée(s) en 3 dans l’équation de l’étape
1 pour trouver les valeurs correspondantes de y −→ solution(s) du système.

Remarques

1. A l’étape 1, on peut choisir d’isoler x au lieu d’y. On modifie alors la procédure
pour être cohérent avec ce choix.

2. A l’étape 1, on peut choisir la seconde équation au lieu de la première.

3. Il n’y pas de règle pour savoir quelle équation et quelle inconnue choisir à l’étape 1.
On effectuera cependant le choix qui ”demandera” le moins de calculs et d’efforts.

Exemple

Résoudre par substitution le système :

{
4x + y = 5
3x + 6y = −12

On exprime y en fonction de x dans la première équation. On écrira souvent ceci
de la manière suivante.

{
4x + y = 5 −→ y = 5− 4x (1)
3x + 6y = −12 ←֓

On remplace alors y par 5 − 4x dans la deuxième équation. On obtient l’équation
à une inconnue 3x+ 6 (5− 4x)︸ ︷︷ ︸

=y

= −12, qu’on résout :

3x+ 6(5− 4x) = −12 CL (réduire les deux polynômes)

−21x+ 30 = −12 −30
−21x = −42 ÷(−21)

x = 2

On remplace ensuite x par 2 dans (1) : y = 5− 4 · 2 = −3.
Pour vérifier la solution obtenue, on remplace x par 2 et y par −3 dans chaque
équation du système à résoudre :

{
4 · 2 + (−3) ?

= 5 O.K.

3 · 2 + 6 · (−3) ?
= −12 O.K.

Ensemble de solutions : S = {(2;−3)}.
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4.2.3 Par combinaisons linéaires

Note : cette méthode peut s’appliquer à l’ensemble des systèmes d’équations linéaires.

Idée : on somme un multiple de la première équation avec un multiple de la seconde de
façon à obtenir une nouvelle équation où au moins une inconnue a été éliminée.

Principe de résolution

Marche à suivre pour résoudre le système (4.4) :

1) choisir x comme inconnue à éliminer,

2) multiplier chaque équation par un facteur ”convenablement choisi” de manière
à ce que x soit multiplié, dans chacune des équations, par des nombres opposés,

3) additionner les deux équations (=combinaison linéaire) −→ on obtient une
équation à une inconnue y,

4) résoudre l’équation obtenue en 3 −→ valeur(s) pour y,

5) recommencer en 1 en choisissant y comme inconnue à éliminer −→ solution(s)
du système.

Exemple

Résoudre par combinaisons linéaires le système :

{
2x + 3y = 27
5x − 2y = 1

{
2x + 3y = 27 ·5 ·2
5x − 2y = 1 ·(−2) ·3

{
10x + 15y = 135
−10x + 4y = −2 +©

Multiplication des mem-
bres de la 1ère équation
par 5 et ceux de la 2ème

par (−2)

{
4x + 6y = 54
15x − 6y = 3 +©

Multiplication des mem-
bres de la 1ère équation
par 2 et ceux de la 2ème

par 3

Addition membre à mem-
bre des deux équations

19y = 133

Résolution de l’équation à
une inconnue y (÷19)

y = 7

Addition membre à mem-
bre des deux équations

19x = 57

Résolution de l’équation à
une inconnue x (÷19)

x = 3

Pour vérifier la solution obtenue, on remplace x par 3 et y par 7 dans chaque
équation du système à résoudre :

{
2 · 3 + 3 · 7 ?

= 27 O.K.

5 · 3 − 2 · 7 ?
= 1 O.K.

Ensemble de solutions : S = {(3; 7)}.
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Remarques

1. On combinera parfois les méthodes de résolution par substitution et par combinai-
son linéaire.

2. Dans un système d’équations, on dit qu’une équation est indépendante si elle ne
peut pas être obtenue en combinant d’autre équations du système.

Dans un système d’équations,
– il n’y a pas de solution quand il y a plus d’équations indépendantes que d’incon-
nues,

– il y a une infinité de solutions quand il y a plus d’inconnues que d’équations
indépendantes.

3. Soient ni le nombre d’inconnues et ne le nombre d’équations indépendantes d’un
système. Le nombre n = ni − ne est appelé nombre de degrés de liberté.

Le nombre de degrés de liberté nous indique le nombre d’inconnues dont on pourra
choisir la valeur. Par exemple, pour le système (4.5), on a n = 2 − 1 = 1 degré de
liberté (on a donc pu choisir la valeur de l’inconnue x).

4.2.4 Par les formules de Cramer

Note : cette méthode ne s’applique qu’aux systèmes de deux équations linéaires à deux
inconnues et aux systèmes de trois équations linéaires à trois inconnues.

Idée : on applique des formules qui donnent directement les solutions.

Théorème 4.1

Soit le système d’équations linéaires :

{
a1x + b1y = c1
a2x + b2y = c2

On appelle D =
a1 b1
a2 b2

le déterminant principal de ce système.

– Si D 6= 0, ce système admet pour solution unique le couple (x; y) tel que :

x =

c1 b1
c2 b2

D
y =

a1 c1
a2 c2

D
Formules de Cramer (4.6)

– Si D = 0, ce système peut ne pas avoir de solution ou une infinité de solutions.

Pour démontrer ce théorème, il suffit d’isoler y dans l’équation a1x + b1y = c1, puis de
le substituer dans l’équation suivante. En isolant x, on trouve la première égalité du
théorème ; on agit de manière analogue pour trouver la seconde formule.

Exemples

1) Résoudre le système :

{
4x − y = −6
2x + 2y = 7

.

Le déterminant principal du système est :

D =
4 −1
2 2

= 4 · 2− 2 · (−1) = 10
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Ce système admet donc une solution unique déterminée à l’aide des formules
de Cramer :

x =

−6 −1
7 2

10
=

(−6) · 2− 7 · (−1)
10

=
−5
10

= −1
2

y =

4 −6
2 7

10
=

4 · 7− 2 · (−6)
10

=
40

10
= 4

L’ensemble des solutions : S = {(−1
2
; 4)}.

2) Résoudre et discuter le système :

{
m2x + y = 2
x + y = 2m

dans lequel m est un paramètre réel.

Le déterminant principal du système est :

D =
m2 1
1 1

= m2 − 1

Il s’annule pour m = 1 ou m = −1.
a) Si D 6= 0, c’est-à-dire si m 6= 1 et m 6= −1, le système admet une solution

unique :

x =

2 1
2m 1

m2 − 1
=
−2

m+ 1
, y =

m2 2
1 2m

m2 − 1
=

2(m2 +m+ 1)

m+ 1

Ensemble des solutions : S = {( −2
m+1

; 2(m2+m+1)
m+1

) | m ∈ R, m 6= 1,−1}.

b) Si m = 1, le système est :

{
x + y = 2
x + y = 2

Il admet une infinité de solutions de la forme (λ; 2− λ). Ensemble des solu-
tions : S = {(λ; 2−λ) | λ ∈ R}. Dans R2, l’ensemble de ces solutions forme
une droite.

c) Si m = −1, le système est :

{
x + y = 2
x + y = −2

Il n’admet aucune solution. Ensemble des solutions : S = ∅.

Théorème 4.2

Soit le système





a1x + b1y + c1z = d1
a2x + b2y + c2z = d2
a3x + b3y + c3z = d3

.

On appelle D =
a1 b1 c1
a2 b2 c2
a3 b3 c3

le déterminant principal de ce système.
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– Si D 6= 0, ce système admet pour solution unique le triplet (x; y; z) tel que :

x =

d1 b1 c1
d2 b2 c2
d3 b3 c3

D
, y =

a1 d1 c1
a2 d2 c2
a3 d3 c3

D
, z =

a1 b1 d1
a2 b2 d2
a3 b3 d3

D
(4.7)

Formules de Cramer

– Si D = 0, ce système peut ne pas avoir de solution ou avoir une infinité de solutions.

Exemple

Résoudre le système :





2x + y = 2
− 4y + z = 0

4x + z = 6

Le déterminant principal du système est

D =
2 1 0
0 −4 1
4 0 1

= −8 + 4 + 0− 0− 0− 0 = −4

Ce système admet donc une solution unique déterminée à l’aide des formules de
Cramer :

x =

2 1 0
0 −4 1
6 0 1

−4 =
−8 + 6 + 0− 0− 0− 0

−4 =
−2
−4 =

1

2

y =

2 2 0
0 0 1
4 6 1

−4 =
0 + 8 + 0− 0− 12− 0

−4 =
−4
−4 = 1

z =

2 1 2
0 −4 0
4 0 6

−4 =
−48 + 0 + 0− (−32)− 0− 0

−4 =
−16
−4 = 4

L’ensemble des solutions : S = {(1
2
; 1; 4)}.

4.3 Systèmes linéaires homogènes

Définition 4.5
Les systèmes

{
a1x + b1y = 0
a2x + b2y = 0





a1x + b1y + c1z = 0
a2x + b2y + c2z = 0
a3x + b3y + c3z = 0

sont appelés systèmes linéaires homogènes à deux, respectivement trois inconnues.

Le couple (0; 0) (respectivement le triplet (0; 0; 0)) est solution de tout système homogène
d’ordre deux (respectivement d’ordre trois). C’est l’unique solution d’un tel système si et
seulement si le déterminant principal est non nul.
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4.4 Exercices

1) Résoudre les systèmes suivants :

a)

{
4x − y = −6
2x + 2y = 7

b)

{
x − 6y + 6 = 0
3x − 4y − 3 = 0

c)

{
x + y = 2
x + y = 3

d)





x

5
+
y

6
= 18

x

2
− y

4
= 21

e)





x

3
− 2y

15
= 4

x

12
− y

10
= 1

f)





x

3
+
y

4
= 14

−x
6
+
y

2
= 16

g)

{
x + 3y = 2
2x + 6y = 4

h)

{
9x − 5y = 38
24x − 25y = 148

i)





x

3
− y

3
= 8

x

12
− y

4
= 2

2) Résoudre et discuter les systèmes suivants :

a)

{
x + m(m− 1)y = 2m2

x − (m2 − 1)y = m(1−m)
b)

{
2mx − (m+ 2)y = 3m

2(m− 1)x − my = 3(m− 1)

c)

{
(m+ 1)x + (m− 1)y = m

mx + (m+ 1)y = (m− 1)
d)

{
(m+ 1)2x + (m2 − 1)y = m+ 1
(m− 1)2x + (m2 − 1)y = (m− 1)2

e)

{
(m− 3)x + my = 5

mx + (m− 4)y = 2
f)

{
(m+ 2)x + (m− 1)y = 5m+ 1
(m+ 1)x + (m+ 4)y = −8

g)

{
(m− 1)x + (m− 2)y + 5m+ 10 = 0
(m+ 5)x + (3m+ 9)y − 10 = 0

h)

{
(m+ 1)x + (m− 1)y = (m+ 1)(m− 1)2

(m− 1)x + (m+ 1)y = (m− 1)(m+ 1)2

3) Résoudre les systèmes suivants :

a)





x + 3y + 2z = −13
2x − 6y + 3z = 32
3x − 4y − z = 12

b)





2x − 3y + 2z = 6
x + 8y + 3z = −31
3x − 2y + z = −5

c)





2x + y = 2
− 4y + z = 0

4x + z = 6
d)





x + y − z = 1
x − y − z = −1
x + y − z = 1

e)





x + y + z = 14
x − y + z = 6
x − y − z = 4

f)





x + y − 6z = 9
x − y + 4z = 5
2x − 3y + z = −4

page 84
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g)





2x − 3y + 5z = 4
3x + 2y + 2z = 3
4x + y − 4z = −6

h)





2x − 3y + z = 0
x + 5y − 3z = 3
5x + 12y − 8z = 9

i)





x + 2y + 3z = 2
2x + 4y + z = −1
3x + 6y + 5z = 2

j)





6x − 2y + z = 1
x − 4y + 2z = 0
4x + 6y − 3z = 0

k)





x + y + z = 1
x + y + z = 1
x + y + z = 1

l)





2x + 3y − 4z = 1
3x − y + 2z = −2
5x − 9y + 14z = 3

4) Résoudre et discuter les systèmes suivants :

a)





mx + y + z = m2

x + my + z = 3m− 2
x + y + mz = 2−m

b)





mx + y − z = 1
x + my − z = 1
−x + y + mz = 1

5) Résoudre les systèmes homogènes suivants :

a)





2x − 3y + 3z = 0
3x − 4y + 5z = 0
5x + y + 2z = 0

b)





4x + y − 2z = 0
x − 2y + z = 0

11x − 4y − z = 0

c)





x + 2y + z = 0
4x + 8y + 4z = 0
5x + 10y + 5z = 0

d)





3x + y − 9z = 0
4x − 3y + z = 0
6x − 11y + 21z = 0

6) Résoudre et discuter les systèmes homogènes suivants :

a)

{
(m2 + 1)x − (m+ 1)y = 0

5x − 3y = 0
b)

{
(m− 5)x + (2m+ 1)y = 0
(3m+ 5)x + (m− 7)y = 0
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4.5 Solutions des exercices

Remarque : on indique ci-dessous uniquement l’ensembles des solutions des différentes
équations sous la forme {. . .} sans la mention du S = . . ..

1) a) {(−1
2
; 4)} b) {(3; 3

2
)} c) ∅

d) {(60; 36)} e) {(12; 0)} f) {(14, 4; 36, 8)}
g) {(λ; 2−λ

3
) | λ ∈ R} h) {(2;−4)} i) {(24; 0)}

2) Pour tout l’exercice : m ∈ R.

a) Si m 6= 1 et m 6= −1
2
:
{
(m

2(m+3)
2m+1

; m(3m−1)
(m−1)(2m+1)

)
}
,

Si m = 1 ou m = −1
2
: ∅.

b) Si m 6= 2 :
{
(3
2
; 0)
}
,

Si m = 2 :
{
(λ; 2λ−3

2
) | λ ∈ R

}
.

c) Si m 6= −1
3
:
{
(3m−1
3m+1

; −1
3m+1

)
}
,

Si m = −1
3
: ∅.

d) Si m 6= −1 et m 6= 0 et m 6= 1 :
{
(3−m

4
; m−1

4
)
}

Si m = −1 : {(1;λ) | λ ∈ R},
Si m = 0 : {(λ;λ− 1) | λ ∈ R},
Si m = 1 :

{
(1
2
;λ) | λ ∈ R

}
.

e) Si m 6= 12
7
:
{
(3m−20
12−7m

; 3m+6
7m−12

)
}
,

Si m = 12
7
: ∅.

f) Si m 6= −3
2
:
{
(5m

2+29m−4
6m+9

; −5m2−14m−17
6m+9

)
}
,

Si m = −3
2
: ∅.

g) Si m = −1
2
et m 6= −1 :

{
(−5(3m+4)

2m+1
; 5(m+8)

2m+1
)
}
,

Si m = −1
2
: ∅,

Si m = −1 :
{
(λ; 5−2λ

3
) | λ ∈ R

}
.

h) Si m 6= 0 : {(0;m2 − 1)},
Si m = 0 : {(λ;λ− 1) | λ ∈ R}.

3) a) {(−2;−5; 2)} b) {(−5;−4; 2)}
c) {(0, 5; 1; 4)} d) {(λ; 1;λ) | λ ∈ R}
e) {(9; 4; 1)} f) {(8; 7; 1)}
g)
{
(−1

3
; 2
3
; 4
3
)
}

h)
{
(4λ+9

13
; 7λ+6

13
;λ) | λ ∈ R

}

i) {(−1− 2λ;λ; 1) | λ ∈ R} j) ∅
k) {(λ;µ;−λ− µ+ 1) | λ, µ ∈ R} l) ∅
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4) Pour tout l’exercice : m ∈ R.

a) Si m 6= 1 et m 6= −2 : {(m; 2;−2)}
Si m = 1 : {(λ;µ; 1− λ− µ) | λ, µ ∈ R}
Si m = −2 : {(λ; 4 + λ;λ) | λ ∈ R}

b) Si m 6= 0 et m 6= 1 et m 6= −1 :
{
( 1
m
; 1
m
; 1
m
)
}

Si m = 0 : ∅,
Si m = 1 : {(λ; 1;λ) | λ ∈ R},
Si m = −1 : {(λ;λ;−1) | λ ∈ R}.

5) a) {(0; 0; 0)} b)
{
(λ
3
; 2λ

3
;λ) | λ ∈ R

}

c) {(−2λ− µ;λ;µ) | λ, µ ∈ R} d) {(2λ; 3λ;λ) | λ ∈ R}

6) Pour tout l’exercice : m ∈ R.

a) Si m 6= 2 et m 6= −1
3
: {(0; 0)},

Si m = 2 :
{
(λ; 5λ

3
) | λ ∈ R

}
,

Si m = −1
3
:
{
(λ; 5λ

3
) | λ ∈ R

}

b) Si m 6= 1 et m 6= −6 : {(0; 0)},
Si m = 1 :

{
(λ; 4λ

3
) | λ ∈ R

}
,

Si m = −6 : {(λ;−λ) | λ ∈ R}
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Chapitre 5

Inéquations

5.1 Introduction

Jusqu’à présent, nous avons surtout étudié la résolution d’équations du premier degré
(comme l’équation 2x+ 3 = 11), du deuxième degré ou de degré supérieur. Le but de ce
chapitre est de résoudre des problèmes du type suivant :

Pour quelles valeurs de x l’expression 2x+ 3 est-elle plus grande que 11 ?

Remplaçons x par 3, 4, 5, 6 et regardons si cette comparaison est vérifiée.

x 2x+ 3 > 11 Conclusion

3 9 > 11 Faux

4 11 > 11 Faux

5 13 > 11 Vrai

6 15 > 11 Vrai

Si un nombre b vérifie la relation lorsqu’on le substitue à x, alors b est une solution de
l’inéquation.

Définition 5.1
Une inéquation est une comparaison semblable à une équation, mais où le symbole
d’égalité, =, y est remplacé par un symbole d’inégalité : > (plus grand que), < (plus
petit que), > (plus grand ou égal à) ou 6 (plus petit ou égal à).

Exemple

Pour l’inéquation 2x + 3 > 11, on voit que, grâce au tableau ci-dessus, parmi les
nombres 3, 4, 5, 6, seuls 5 et 6 sont solutions de l’inéquation.

En procédant encore à quelques essais, il semble que tous les nombres supérieurs à 4
vérifient cette comparaison. Il y a donc une infinité de solutions à cette inéquation.

Comme pour les équations, résoudre une inéquation va signifier trouver toutes les solu-
tions de l’inéquation.

Que faut-il comprendre lorsque qu’on rencontre le signe >, plus grand ou égal à ?
– Si la comparaison plus grand que est vérifiée, alors l’expression plus grand ou égal à
l’est aussi.
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– Si la comparaison égal est vérifiée, alors l’expression plus grand ou égal à l’est aussi.
Pour voir la différence entre les symboles > et >, on peut reprendre l’exemple précédent
en le modifiant quelque peu :

x 2x+ 3 > 11 Conclusion

3 9 > 11 Faux

4 11 > 11 Vrai

5 13 > 11 Vrai

6 15 > 11 Vrai

Le nombre 4 est maintenant solution de l’inéquation.

Nous avons déjà vu qu’il est possible de représenter les nombres réels sur une droite allant
de moins l’infini (−∞) à plus l’infini (+∞).

−∞ +∞
ba

Sur la droite réelle, le nombre a est à gauche du nombre b si a est plus petit que b. On
voit immédiatement que tous les nombres à gauche de b satisfont l’inéquation x < b.
La solution d’une inéquation n’est donc pas un nombre, mais un ensemble de nombres,
qu’on nomme intervalle (consulter le chapitre sur les ensembles). Ainsi, la solution de
l’inéquation x < b est l’ensemble S = ]−∞; b[.

5.2 Quelques propriétés

Comme nous le verrons, les méthodes pour résoudre les inéquations sont semblables
à celles utilisées pour résoudre les équations. Les propriétés que nous allons voir sont
valables pour tous les types d’inéquations.

Pour énoncer ces propriétés, nous considérerons deux nombres réels a et b (a, b ∈ R) tel
que a < b. Des propriétés équivalentes peuvent être données pour a > b, a 6 b ou a > b.

5.2.1 Propriété d’addition

Pour tous les nombres réels a, b et c, avec a < b, on a :

a < b =⇒ a+ c < b+ c et a− c < b− c

Exemple

On considère les trois nombres 2, 3 et 7. Comme 2 < 7, on a alors que :

• 2 + 3 < 7 + 3 ou 5 < 10,

• 2− 3 < 7− 3 ou −1 < 4.

Cette propriété va nous permettre de passer un terme d’un membre de l’inéquation à
l’autre en l’additionnant (ou en le soustrayant) des deux côtés.

On peut ainsi transformer l’inéquation x+ 2 < 0 en une inéquation équivalente :

page 89
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x+ 2 < 0 −2 (Soustraire 2 aux deux membres)

x+ 2− 2 < −2 Calcul littéral

x < −2 Inéquation équivalente

L’ensemble des solutions de l’inéquation x+ 2 < 0 est donc S = ]−∞;−2[.

5.2.2 Propriété de multiplication

Pour tous les nombres réels a, b et c, avec a < b, on a :

a < b et c > 0 =⇒ a · c < b · c et
a

c
<
b

c

a < b et c < 0 =⇒ a · c > b · c et
a

c
>
b

c

Exemples

1. On considère les trois nombres 2, 5 et 7. Comme 2 < 7, on a alors que :

• 2 · 5 < 7 · 5 ou 10 < 35,

• 2

5
<

7

5
ou 0, 4 < 1, 4.

2. On considère les trois nombres −5, 2 et 7. Comme 2 < 7, on a alors que :

• 2 · (−5) > 7 · (−5) ou −10 > −35,

• 2

−5 <
7

−5 ou −0, 4 > −1, 4.

Remarque

La dernière propriété est source de beaucoup d’erreurs. Il faut y faire très attention. Si
on multiplie (ou divise) une inéquation par un nombre négatif, il faut changer le signe de
l’inégalité, c’est-à-dire :

< devient >,
> devient <,
6 devient >,
> devient 6.

Cette propriété n’a rien de comparable pour les équations.

5.2.3 Propriété d’inversion

Pour tous nombres réels a et b de même signe (donc a · b > 0), avec a < b, on a :

a < b et a · b > 0 =⇒ 1

a
>

1

b
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Exemples

1. On considère les deux nombres 2 et 5. Comme 2 < 5, on a alors que :

• 1

2
>

1

5
ou 0.5 > 0.2.

2. On considère les deux nombres −2 et −5. Comme −5 < −2, on a alors que :

• 1

−5 >
1

−2 ou −0.2 > −0.5.

5.3 Inéquation du premier degré

Définition 5.2
Une inéquation du premier degré est une inéquation qui peut être ramenée à la forme
générale

a · x+ b > 0

où a ∈ R∗, b ∈ R et le symbole > peut être remplacé par un des symboles <, 6 ou >.

Exemple

L’inéquation 2x+ 3 > 0 est une inéquation du premier degré.

Dans la suite de ce cours, nous allons travailler sur des exemples pour donner les idées
générales de résolution de différents types d’inéquations.

5.3.1 Résolution algébrique

La résolution algébrique d’une inéquation du premier degré est analogue à celle d’une
équation du premier degré, cependant il faut changer le sens de l’inégalité lorsqu’on
multiplie ou divise les deux membres par un nombre négatif.

Exemple 1

A résoudre : −3x+ 4 < 11.

On peut procéder de la manière suivante en s’inspirant de ce qu’on fait avec une équation
du premier degré et en respectant les propriétés énoncées au paragraphe précédant. Le
but est d’isoler x d’un côté de l’inéquation.

−3x+ 4 < 11 −4 (Soustraire 4 aux deux membres)

(−3x+ 4)− 4 < 11− 4 Réduire

−3x < 7 ÷(−3) (Diviser par −3, changer le sens de l’inégalité)

−3x
−3 >

7

−3 Simplifier

x > −7
3

Inéquation équivalente

L’ensemble des solutions de −3x+ 4 < 11 est S =
]
−3

7
; +∞

[
.
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Exemple 2

A résoudre : −6 < 2x− 4 < 2.

Un nombre réel est solution de cette inéquation si et seulement s’il est solution des deux
inéquations :

a) −6 < 2x− 4

b) 2x− 4 < 2

On résout alors chacune de ces deux inéquations séparément. Pour la première :

−6 < 2x− 4 +4 (Additionner 4 aux deux membres)

−6 + 4 < (2x− 4) + 4 Réduire

−2 < 2x ÷2 (Diviser par 2)

−1 < x Permuter les termes

x > −1 Inéquation équivalente

Pour la seconde :

2x− 4 < 2 +4 (Additionner 4 aux deux membres)

2x < 6 ÷2 (Diviser par 2)

x < 3 Inéquation équivalente

Ainsi, x est solution de l’inéquation de départ si et seulement si on a à la fois

x > −1 et x < 3,

c’est-à-dire −1 < x < 3. Ainsi, les solutions de l’inéquation sont tous les nombres appar-
tenant à l’intervalle ]−1; 3[.
En fait, cet intervalle correspond à l’intersection des deux intervalles qui représentent la
solution de la première et de la seconde équation : ]−1; 3[ = ]−1;+∞[

⋂
]−∞; 3[.

5.3.2 Résolution graphique

Pour résoudre une inéquation du type ax+ b > 0 (ou avec un autre signe d’inégalité), on
peut également observer le graphe de la fonction donnée par f(x) = ax+ b.

Exemple 3

A résoudre : 1
2
x+ 1 > 0.

La fonction donnée par f(x) = 1
2
x+ 1 coupe l’axe Ox en x = −2.

On observant le graphe de f esquissé ci-dessous, on constate que

1

2
x+ 1 > 0 si x > −2

page 92
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y

1

2

−1

1 2−1−2−3

y = 1
2
x+ 1

x

L’ensemble des solutions de l’inéquation est donc l’intervalle S = ]−2;+∞[.

On peut s’inspirer de l’exemple ci-dessus pour construire un tableau qui résume la
résolution graphique des inéquations qui peuvent se ramener à la forme :

ax+ b > 0 ou ax+ b < 0 (a 6= 0)

a > 0 a < 0

Graphe de
f(x) = ax+ b

- b
a

- b
a

Valeur de
x

− b
a

− b
a

Signe de
ax+ b

− 0 + + 0 −

Solutions de
ax+ b > 0

]
− b
a
; +∞

[ ]
−∞;− b

a

[

Solutions de
ax+ b < 0

]
−∞;− b

a

[ ]
− b
a
; +∞

[

Un tableau similaire pourrait être construit pour les inéquations pouvant se ramener à
la forme ax + b > 0 ou ax + b 6 0 (a 6= 0). En fait, il suffit de modifier la forme des
intervalles et d’inclure à chaque fois la borne − b

a
.

5.4 Inéquations de degrés égal ou supérieur à 2

Définition 5.3
Une inéquation du deuxième degré est une inéquation qui peut être ramenée à la
forme générale

a · x2 + b · x+ c > 0

page 93
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où a ∈ R∗, b, c ∈ R et le symbole > peut être remplacé par un des symboles <, 6 ou >.

Une inéquation polynomiale de degré supérieur à 2 est une inéquation qui peut
être ramenée à la forme générale

p(x) > 0

où p(x) est un polynôme de degré supérieur à 2 et le symbole > peut être remplacé par
un des symboles <, 6 ou >.

Exemple

L’inéquation 3x2 + 4 > 0 est une inéquation du deuxième degré et l’inéquation
3x3 − 2x2 + x 6 0 est une inéquation polynomiale de degré 3.

5.4.1 Résolution algébrique

La résolution algébrique d’une inéquation du deuxième degré du type ax2 + bx + c > 0
ou de degré supérieur du type p(x) > 0 utilise fortement la résolution de l’équation
du deuxième degré correspondante ax2 + bx + c = 0 ou, respectivement, de l’équation
correspondante p(x) = 0. Nous allons à nouveau prendre un exemple pour comprendre
comment cela fonctionne.

Exemple 4

A résoudre : 2x2 − 6x+ 4 < 0.

1) On commence par résoudre l’équation correspondante : 2x2 − 6x+ 4 = 0.

Le discriminant vaut ∆ = (−6)2− 4 · 2 · 4 = 4 et les deux solutions sont alors données

par la formule : x1,2 =
−(−6)±

√
4

2 · 2 . Après calcul, on trouve que x1 = 1 et x2 = 2.

2) On peut factoriser notre polynôme du deuxième degré et écrire que 2x2 − 6x+ 4 =
2(x− 1)(x− 2).

Au niveau de l’inéquation, on utilise cette factorisation pour passer à une nouvelle
inéquation équivalente à la première.

2x2 − 6x+ 4 < 0 Factoriser

2(x− 1)(x− 2) < 0 Inéquation équivalente

3) On doit maintenant étudier le signe de 2(x − 1)(x − 2) suivant les valeurs de x, afin
de déterminer celles qui le rendent positif. Pour déterminer le signe de ce produit, on
étudie le signe de chacun de ses facteurs :

a) Pour 2, on a que 2 > 0.

b) Pour x− 1, on a trois solutions possibles :
• x− 1 > 0, si x > 1,
• x− 1 = 0, si x = 1,
• x− 1 < 0, si x < 1.

c) Pour x− 2, on a trois solutions possibles :
• x− 2 > 0, si x > 2,
• x− 2 = 0, si x = 2,
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• x− 2 < 0, si x < 2.

Pour 2(x− 1)(x− 2), on construit un tableau de signes :

x 1 2

2 + + + + +

x− 1 − 0 + + +

x− 2 − − − 0 +

2(x− 1)(x− 2) + 0 − 0 +

Ce tableau de signes a été construit de la manière suivante :

1) Sur la première ligne, on représente les valeurs possibles de x (en fait la droite
réelle). On construit une colonne pour chacune des racines et une colonne pour
chacun des intervalles compris entre deux racines ou entre l’infini et une racine
(première et dernière colonne).

Important ! Dans la première ligne du tableau, les racines sont classées par ordre
croissant.

2) On construit ensuite une ligne pour chacun des facteurs qu’on a déterminés et on
étudie le signe de ces derniers. Pour chacune des colonnes construites (pour chaque
racine et chaque intervalle), on détermine si le facteur est positif (+), nul (0) ou
négatif (−) sur ceux-ci.

3) Sur la dernière ligne, on étudie le signe de l’expression de départ : 2(x− 1)(x− 2).
Pour cela, on résume chacune des colonnes en utilisant la règle des signes (+·+ = +,
+ · − = − ,. . . voir page 12).

4) On lit sur la dernière ligne du tableau que l’inéquation proposée a comme solution
tous les x tels que 1 < x < 2. L’ensemble des solutions est donc S = ]1; 2[.

Méthode générale de résolution

Si l’inéquation ne se ramène pas après simplification à une inéquation du premier degré,
on suit la démarche suivante :

1. On regroupe tous les termes dans le membre de gauche pour que celui
de droite soit égal à zéro.

2. On factorise (si possible) le membre de gauche en le mettant sous la
forme d’un produit (ou d’un quotient).

3. On étudie le signe de chacun des facteurs dans un tableau de signes
(voir les exemples).

4. On conclut en observant la dernière ligne du tableau.

Exemple 5

A résoudre : x3 > 4x2 + x− 4
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Pour résoudre cette inéquation, on suit la démarche proposée ci-dessus.

x3 > 4x2 + x− 4 −4x2 − x+ 4 (Membre de droite = 0)

x3 − 4x2 − x+ 4 > 0 Factoriser

(x+ 1)(x− 1)(x− 4) > 0 Inéquation équivalente

On voit immédiatement que les facteurs s’annulent en −1, 1 et 4. On construit le tableau
de signes :

x −1 1 4

x+ 1 − 0 + + + + +

x− 1 − − − 0 + + +

x− 4 − − − − − 0 +

(x+ 1)(x− 1)(x− 4) − 0 + 0 − 0 +

L’ensemble des solutions est donné par : S = [−1; 1]⋃ [4; +∞[.

5.4.2 Résolution graphique

Pour résoudre une équation polynomiale du type p(x) > 0 (ou un autre signe d’inégalité)
de manière graphique, on résout également l’équation p(x) = 0, puis, au lieu de construire
la tableau de signes, on observe le graphe de la fonction donnée par f(x) = p(x) afin de
déterminer les solutions de l’inéquation.

Exemple 6

A résoudre : x2 + 4x− 5 < 0.

1) On recherche les solutions de l’équation correspondante : x2 + 4x− 5 = 0. On trouve
x1 = 1 et x2 = −5.

2) On réalise une esquisse du graphe de la fonction donnée par f(x) = x2 + 4x− 5 (cas
où a > 0). Celle-ci est donnée ci-dessous. On l’observant, on constate que :

x2 + 4x− 5 < 0 si − 5 < x < 1

y

2

4

−2
−4
−6
−8

1 2−1−2−3−4−5−6

y = x2 + 4x− 5

x

L’ensemble des solutions de l’inéquation est donc l’intervalle S =]− 5; 1[.

On peut s’inspirer de l’exemple ci-dessus pour construire un tableau qui résume la
résolution graphique des inéquations qui peuvent se ramener à la forme :

ax2 + bx+ c > 0 ou ax2 + bx+ c < 0 (avec a > 0)
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a > 0

∆ > 0 ∆ = 0 ∆ < 0

Graphe de
f(x) = ax2 + bx+ c

x1 x2 x1

Valeur de
x

x1 x2 x1

Signe de
ax2 + bx+ c

+ 0 − 0 + + 0 + +

Solutions de
ax2 + bx+ c > 0

]−∞; x1[
⋃

]x2; +∞[ R \ {x1} R

Solutions de
ax2 + bx+ c < 0

]x1; x2[ pas de solution (S = ∅)

Un tableau similaire pourrait être construit pour les inéquations pouvant se ramener à
la forme ax2 + bx+ c > 0 ou ax2 + bx+ c 6 0 (a > 0). De même, on pourrait construire
ce tableau pour a < 0 (laissé au lecteur).

5.5 Inéquations rationnelles

Définition 5.4
Une inéquation rationnelle est une inéquation qui peut être ramenée à la forme
générale

p(x)

q(x)
> 0

où p(x), q(x) sont des polynômes et le symbole > peut être remplacé par un des symboles
<, 6 ou >.

Exemple

L’inéquation
x2 − 3x+ 2

3x− 2
6 0 est une inéquation rationnelle.

Exemple 7

A résoudre :
(x+ 2)(3− x)
(x+ 1)(x2 + 1)

6 0.

L’expression est déjà factorisée, on peut donc directement établir le tableau de signes.
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x −2 −1 3

x+ 2 − 0 + + + + +

3− x + + + + + 0 −
x+ 1 − − − 0 + + +

x2 + 1 + + + + + + +

(x+ 2)(3− x)
(x+ 1)(x2 + 1)

+ 0 − + 0 −

La solution de notre problème est donc l’ensemble S = [−2;−1[⋃ [3; +∞[.

Remarques

1. Le quotient n’est pas défini en x = 1 (on a 1
0
). x = 1 ne peut donc pas être une

solution ! Dans le tableau, lorsque le quotient n’est pas défini, on achure les points ou
les intervalles où ceci a lieu (dans la dernière ligne).

2. Le terme (x2 + 1) est toujours positif, il n’a donc pas d’effet sur le signe du quotient.
On pourrait ainsi omettre la ligne correspondante dans le tableau.

Exemple 8

A résoudre :
x+ 1

x+ 3
6 2.

Attention ! Une erreur fréquente est de multiplier par x + 3. Or, on n’a pas le droit
de multiplier l’inégalité par le dénominateur de la fraction s’il contient une variable. En
effet, comme la valeur de x est inconnue, on ne sait pas si c’est un nombre positif ou
négatif ! On ne sait donc pas si le sens de l’inéquation changera après multiplication.
On ne peut multiplier (ou diviser) les deux côtés d’une inégalité que par des
valeurs connues (des constantes). La résolution correcte est la suivante.

x+ 1

x+ 3
6 2 −2 (Membre de droite = 0)

x+ 1

x+ 3
− 2 6 0 Mettre au même dénominateur

x+ 1− 2(x+ 3)

x+ 3
6 0 Réduire

−x− 5

x+ 3
6 0 ·(−1) (Multiplier par −1)

x+ 5

x+ 3
> 0 Inéquation équivalente

x −5 −3
x+ 5 − 0 + + +

x+ 3 − − − 0 +

x+ 5

x+ 3
+ 0 − +
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L’ensemble des solutions est donné par S =]−∞;−5]∪]− 3;+∞[.

Le nombre −5 est inclus puisque le quotient s’annule en −5. Le quotient n’est pas défini
en −3 ; ce nombre n’appartient donc pas à l’ensemble des solutions.

5.6 Fonction valeur absolue et fonctions définies par

morceaux

Le graphe de la fonction valeur absolue donnée par f(x) = |x| est représenté ci-dessous.
Cette fonction permet, en langage familier, ”d’ôter” le signe d’un nombre, et de le rendre
positif.

On constate que ce graphe est formé de deux demi-droites, la demi-droite d’équation
y = −x pour les x négatifs et la demi-droite d’équation y = x pour les x positifs.

y

1

2

3

4

−1

1 2 3−1−2−3

y = |x|

x

On peut donner une expression de cette même fonction sans utiliser le symbole valeur
absolue, | . |, en séparant, dans la définition de f , les x positifs des x négatifs.

Définition 5.5
La fonction valeur absolue est définie par :

f : R −→ R

x 7−→ |x| =
{
−x si x < 0
x si x > 0

Exemples

1) |5| = 5 puisque 5 > 0.

2) | − 5| = −(−5) = 5 puisque −5 < 0

Une fonction donnée de cette façon est dite définie par morceaux ou définie par inter-
valles. On donne ci-dessous 3 exemples de telles fonctions.
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Exemples

1.

y

1

2

3

−1

1 2 3−1−2−3

y =
1
2
x+

3
2

y
= −

x
+
3

x

f(x) =





1
2
x+ 3

2
si x < 1

−x+ 3 si x > 1

2.

y

1

2

3

−1

1 2 3−1−2−3

y
= −

x
+
1

y
= −

x
+
3

x

f(x) =




−x+ 1 si x < 1

−x+ 3 si x > 1

Le graphe de cette fonction présente un
saut en x = 1.

3.

y

1

2

−1

−2

1 2 3−1−2−3

y = sgn(x)

b x

La fonction signe donnée par f(x) =
sgn(x) prend la valeur 1 si x est posi-
tif, la valeur −1 si x est négatif et la
valeur 0 si x est nul. Elle est définie
par morceaux et peut être donnée par
l’expression :

sgn(x) =





−1 si x < 0
0 si x = 0
1 si x > 0

On peut également utiliser le symbole valeur absolue pour poser une inéquation.

Exemple 9

A résoudre : |x| < 3.

Essayons de comprendre ce que veut dire |x| < 3.

Si x > 0, cela signifie que x < 3. Si x < 0, cela veut dire que −x < 3, donc x > −3 (on
multiplie par un nombre négatif, le signe de l’inéquation change). On en déduit :

|x| < 3 est équivalent à − 3 < x < 3.

De même, pour |x| > 3 on a :

|x| > 3 est équivalent à x < −3 ou x > 3.

On peut généraliser ce qui précède et on obtient, si a et b sont des nombres réels, :

1) |a| < b est équivalent à −b < a < b,
2) |a| > b est équivalent à a < −b ou a > b.
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Chapitre 6

Nombres complexes

6.1 Introduction

Dans le premier chapitre de ce cours, nous avons décrit les ensembles de nombres suivants :

1. N = {0; 1; 2; . . .}, l’ensemble des nombres naturels ;

2. Z = {. . . ;−2;−1; 0; 1; 2; . . .}, l’ensemble des nombres entiers ;

3. Q =

{
p

q
| p ∈ Z et q ∈ Z∗

}
, l’ensemble des nombres rationnels ;

4. R, l’ensemble des nombres réels. Cet ensemble est constitué des nombres rationnels et
des nombres irrationnels.

Nous avons alors remarqué que N ⊂ Z ⊂ Q ⊂ R.

Historiquement, ces ensembles de nombres ont été définis successivement.

Les nombres naturels ont été les premiers à être utilisés. En effet, c’est cet ensemble de
nombres qui est utilisé la plupart du temps pour compter. Historiquement, le zéro n’est
pas apparu en même temps que les autres nombres. On le rencontre pour la première fois
en Inde.

Dans N, l’opposé d’un nombre n’existe pas ou, de manière équivalente, l’équation x+1 = 0
n’a pas de solution. Par contre, dans Z, cette équation admet une solution : −1. Z est
une extension de N.

Dans Z, l’inverse d’un nombre différent de 1 n’existe pas ou, de manière équivalente,
l’équation 2x = 1 n’a pas de solution. Par contre, dans Q, une solution existe : 1

2
. Q est

une extension de Z.

Dans Q, il n’existe pas de nombre ayant pour carré 2 ou, de manière équivalente, la
diagonale d’un carré de côté 1 n’est pas mesurable ou l’équation x2 = 2 n’a pas de
solution. Par contre dans R, cette équation admet 2 solutions :

√
2 et −

√
2. R est une

extension de Q.

Dans R, il n’existe pas de nombre ayant pour carré −1 ou, de manière équivalente,
l’équation x2 = −1 n’a pas de solution.

L’objectif de ce cours est donc de définir un ensemble de nombres tel que les racines de
nombres négatifs soient définies. Nous noterons ce nouvel ensemble C et nous appellerons
ces nouveaux nombres nombres complexes.

On peut montrer que dans C toute équation polynomiale de degré n admet n solutions
(théorème fondamental de l’algèbre). De plus, en utilisant cet ensemble, il est possible de
déterminer une formule qui permet de résoudre toutes les équations du troisième degré.
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6.2 Présentation des nombres complexes sous forme

de couples

Il existe plusieurs manières de définir l’ensemble des nombres complexes. Selon le modèle
de Hamilton, nous définirons l’ensemble C à partir de l’ensemble produit R2.

Définition 6.1
L’ensemble des nombres complexes, noté C, peut être défini comme l’ensemble pro-
duit

C = R× R = {(a; b) | a, b ∈ R}
muni des opérations d’addition et de multiplications ci-dessous.

6.2.1 Addition des couples

Définition 6.2
L’addition dans C est l’opération interne (C× C→ C), notée +, définie par :

(a; b) + (a′; b′) = (a + a′; b+ b′)

Propriétés

L’addition des couples :

– est associative :

(a; b) + [(a′; b′) + (a′′; b′′)] = [(a; b) + (a′; b′)] + (a′′; b′′)

– possède un élément neutre dans C, le couple (0; 0) :

(a; b) + (0; 0) = (0, 0) + (a; b) = (a; b)

– est telle que tout couple de C possède un opposé, le couple (−a;−b) :

(a; b) + (−a;−b) = (−a;−b) + (a; b) = (0; 0)

– est commutative :
(a; b) + (a′; b′) = (a′; b′) + (a; b)

En raison de ces propriétés, on dit que l’ensemble C muni de l’addition des couples a une
structure de groupe abélien.

6.2.2 Multiplication par un scalaire

Définition 6.3
La multiplication par un scalaire est l’opération externe (R × C → C), notée ·, définie
par :

λ · (a; b) = (λa;λb)

avec λ ∈ R.
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Propriétés

La multiplication par un scalaire vérifie :

– 1 · (a; b) = (a; b)

– λ · [µ · (a; b)] = (λµ) · (a; b)
– λ · (a; b) + µ · (a; b) = (λ+ µ) · (a; b)
– λ · (a; b) + λ · (a′; b′) = λ · [(a; b) + (a′; b′)]

En raison de ces propriétés, on dit que l’ensemble C muni de l’addition des couples et de
la multiplication par un scalaire a une structure d’espace vectoriel réel.

L’ensemble ordonné ((1; 0); (0; 1)) est une base de cet espace vectoriel réel. En effet, tout
couple (a; b) de C peut être engendré de manière unique comme combinaison linéaire de
(1; 0) et (0; 1) :

(a; b) = a · (1; 0) + b · (0; 1)
C muni de l’addition des couples et de la multiplication par un scalaire est donc un espace
vectoriel réel de dimension 2.

6.2.3 Multiplication des couples

Définition 6.4
La multiplication dans C est l’opération interne (C× C→ C), notée ∗, définie par :

(a; b) ∗ (a′; b′) = (aa′ − bb′; ab′ + a′b)

Propriétés

La multiplication des couples :

– est associative :

(a; b) ∗ [(a′; b′) ∗ (a′′; b′′)] = [(a; b) ∗ (a′; b′)] ∗ (a′′; b′′)
– possède un élément neutre dans C, le couple (1; 0) :

(a; b) ∗ (1; 0) = (1, 0) ∗ (a; b) = (a; b)

– est telle que tout couple de C∗ possède un inverse, le couple

(
a

a2 + b2
;
−b

a2 + b2

)
:

(a; b) ∗
(

a

a2 + b2
;
−b

a2 + b2

)
=

(
a

a2 + b2
;
−b

a2 + b2

)
∗ (a; b) = (1; 0)

– est commutative :
(a; b) ∗ (a′; b′) = (a′; b′) ∗ (a; b)

– est distributive par rapport à l’addition des couples :

(a; b) ∗ [(a′; b′) + (a′′; b′′)] = (a; b) ∗ (a′; b′) + (a; b) ∗ (a′′; b′′)
En raison des propriétés liées aux opérations internes, on dit que l’ensemble C muni de
l’addition et de la multiplication des couples a une structure de corps commutatif .
Ainsi, toutes les propriétés des opérations dans un corps sont vérifiées. Par exemple, la
multiplication n’a pas de diviseurs de zéro, c’est-à-dire que l’équation (x; y) ∗ (x′; y′) =
(0; 0) a pour solution (x, y) = (0; 0) ou (x′; y′) = (0; 0). Pour cette même raison, on a le
droit de simplifier une équation :

(x; y) ∗ (x′; y′) = (x; y) ∗ (x′′; y′′)⇒ (x′; y′) = (x′′; y′′) ou (x; y) = (0; 0)
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6.2.4 Prolongement de l’ensemble des nombres réels

Définition 6.5
On note C′ l’ensemble des éléments de C tels que leur deuxième coordonnée est égale à
0 :

C′ = {(a; 0) | a ∈ R} ⊂ C

Opérations dans C′

Considérons l’addition et les multiplications dans ce sous-ensemble C′ de C.

– Addition : (a; 0) + (a′; 0) = (a+ a′; 0) ∈ C′

On dit que C′ est stable pour l’addition.

– Multiplication par un scalaire : λ · (a; 0) = (λa; 0) ∈ C′

C′ est stable pour la multiplication par un scalaire. C’est aussi un espace vectoriel réel
de base ((1; 0)). Tout couple (a; 0) de C′ peut s’exprimer comme a · (1; 0).

– Multiplication : (a; 0) ∗ (a′; 0) = (aa′ − 0 · 0; a · 0 + a′ · 0) = (aa′; 0) ∈ C′

C′ est stable pour la multiplication.

Définition 6.6
Soient E et F deux espaces vectoriels réels.

On appelle application linéaire de E vers F toute application h de E vers F telle que :

h(u+ v) = h(u) + h(v)

h(λ · u) = λ · h(u)

quels que soient u, v ∈ E et λ ∈ R.

Une application linéaire bijective de E vers F est appelée isomorphisme de E vers F .

Deux espaces vectoriels E et F sont dits isomorphes s’il existe un isomorphisme de E
vers F . On note E ∼= F .

Lorsque deux espaces vectoriels sont isomorphes, on peut presque dire qu’ils sont iden-
tiques. Les mêmes éléments se trouvent dans les deux ensembles. Seule la manière de
les écrire est différente. L’application h nous permet de passer d’une écriture à l’autre,
comme un dictionnaire nous permet de passer d’une langue à l’autre.

On considère maintenant l’application linéaire bijective qui a tout nombre réel x fait
correspondre le couple (x; 0) de C′ :

ϕ : R −→ C′

x 7−→ (x; 0)

a) ϕ est un isomorphisme de (R; +; ·) vers (C′; +; ·)
– ϕ(u) + ϕ(v) = (u; 0) + (v; 0) = (u+ v; 0) = ϕ(u+ v)
– λ · ϕ(u) = λ · (u; 0) = (λu; 0) = ϕ(λu)

b) ϕ est un isomorphisme de (R; ·; ·) vers (C′; ∗; ·)
– ϕ(u) ∗ ϕ(v) = (u; 0) ∗ (v; 0) = (u · v; 0) = ϕ(u · v)
– λ · ϕ(u) = λ · (u; 0) = (λu; 0) = ϕ(λu)
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Les opérations définies dans C et celles définies dans R sont donc les mêmes lorsqu’on se
restreint aux couples de la forme (a; 0). Ainsi, l’ensemble R et le sous-ensemble de C des
couples de la forme (a; 0) sont isomorphes. Nous pouvons alors identifier le nombre réel
quelconque a avec le couple (a; 0) :

a = (a; 0)

L’ensemble des nombres réels peut donc être considéré comme un sous-ensemble de l’en-
semble des nombres complexes.

6.3 Présentation des nombres complexes sous forme

cartésienne

Comme l’ensemble des nombres complexes est un espace vectoriel de dimension 2, il existe
au moins une base de cet espace formé de deux couples. La plus simple est la base formée
des couples (1; 0) et (0; 1). Tout couple (a; b) peut alors s’écrire

(a; b) = (a; 0) + (0; b) = a · (1; 0) + b · (0; 1)

Par ce qui précède, on peut remplacer le couple (1; 0) par le nombre réel 1. Si on pose en
outre (0; 1) = i, on pourra remplacer le couple (a; b) par le nombre complexe z = a+ bi.

Définition 6.7
Tout nombre complexe z = (a; b) peut s’écrire sous forme cartésienne comme

z = a + bi

où a et b sont des nombres réels.

Le nombre a est appelé partie réelle du nombre complexe z, on la note : a = Re(z).
Le nombre b est appelé partie imaginaire du nombre complexe z, on la note : b = Im(z).

En appliquant les règles de multiplication, on obtient
– i2 = (0; 1) ∗ (0; 1) = (0 · 0− 1 · 1; 0 · 1 + 0 · 1) = (−1; 0) = −1
– i3 = i2i̇ = (−1) · i = −i
– i4 = i2 · i2 = (−1) · (−1) = 1
– i5 = i4 · i = 1 · i = i
– i6 = i4 · i2 = 1 · i2 = i2 = −1
– . . .

Ainsi, pour tout nombre naturel n, on a :

i4n = 1, i4n+1 = i, i4n+2 = −1, i4n+3 = −i

6.3.1 Addition, soustraction, multiplications sous forme carté-

sienne

Pour additionner ou soustraire deux nombres complexes sous forme cartésienne, pour
multiplier un nombre complexe sous forme cartésienne par un scalaire ou pour multi-
plier deux nombres complexes sous forme cartésienne entre eux, on procède comme s’il
s’agissait d’opérations sur les binômes mais en tenant compte que i2 = −1.
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⊲ (a+ bi) + (a′ + b′i) = (a+ a′) + (b+ b′)i

⊲ (a+ bi)− (a′ + b′i) = (a− a′) + (b− b′)i
⊲ λ · (a+ bi) = λa+ λbi

⊲ (a+ bi) · (a′ + b′i) = aa′ + ab′i+ a′bi+ bb′i2 = (aa′ − bb′) + (ab′ + a′b)i

Remarque

En travaillant sous forme cartésienne, on utilise le symbole · au lieu du symbole ∗ pour
la multiplication de deux nombres complexes, car, sous cette forme, la multiplication par
un scalaire et la multiplication sont très proches au niveau de la manière de les réaliser.

6.3.2 Division

Pour diviser deux nombres complexes sous forme cartésienne, on amplifie la fraction afin
de faire disparâıtre la partie imaginaire au dénominateur :

a + bi

a′ + b′i
=

a + bi

a′ + b′i
· a

′ − b′i
a′ − b′i =

aa′ + bb′ + (a′b− ab′)i
(a′)2 + (b′)2

=
aa′ + bb′

(a′)2 + (b′)2
+

a′b− ab′
(a′)2 + (b′)2

i

Si le dominateur de la fraction est le nombre complexe z′ = a′+b′i, on amplifie la fraction
par le nombre complexe z′ = a′ − b′i.

6.3.3 Nombre complexe conjugué

Définition 6.8
On appelle nombre complexe conjugué du nombre complexe z = a + bi le nombre
complexe :

z = a− bi

Propriétés - nombre complexe conjugué

La notion de nombre complexe conjugué vérifie les propriétés suivantes :

1) La somme de deux nombres complexes conjugués est un nombre réel :

z + z = a+ bi+ a− bi = 2a ∈ R

2) Le produit de deux nombres complexes conjugués est un nombre réel :

z · z = (a + bi) · (a− bi) = a2 − abi+ bai− b2i2 = a2 + b2 ∈ R

3) z1 + z2 = z1 + z2

4) z1 · z2 = z1 · z2

5)

(
z1
z2

)
=
z1
z2

6) z = z

7) Re(z) =
z + z

2
et Im(z) =

z − z
2i

=
z − z
2

i

Ces propriété sont valables pour tout z, z1, z2 ∈ C.
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6.3.4 Résolution d’équations du deuxième degré

Pour rechercher les racines carrées d’un nombre complexe z = a+bi (il y en a deux !), par
exemple pour la résolution d’une équation du deuxième degré, on procède comme suit.

Si on appelle x+ yi les racines carrées de z, on peut poser, par définition :

(x+ yi)2 = a+ bi ou x2 − y2 + 2xyi = a + bi

Comme l’ensemble des nombres complexes est un espace vectoriel, la décomposition dans
une base quelconque est unique. On peut donc poser

{
x2 − y2 = a
2xy = b

ce qui nous donne un système de deux équations à deux inconnues qu’on résout par

substitution en remplaçant y par
b

2x
dans la première équation. L’équation à résoudre

devient

x2 −
(
b

2x

)2

= a ou 4x4 − 4ax2 − b2 = 0

On obtient alors que

x2 =
4a±

√
16a2 + 16b2

8
ou

a±
√
a2 + b2

2

Comme a2 + b2 > 0, il y aura deux solutions pour x2. De plus, comme a2 + b2 > a2, une
des solutions sera positive, l’autre négative et ne conviendra pas pour x2. Finalement, on
a :

x1,2 = ±

√
a +
√
a2 + b2

2
et y1,2 =

b

±2
√

a+
√
a2+b2

2

Exemple

Résoudre : 1
2
z2 − 4z + iz + 5− 10i = 0

On commence par calculer le discriminant associé à cette équation :

∆ = (−4 + i)2 − 4 · 1
2
· (5− 10i) = 16− 8i+ i2 − 10 + 20i = 5 + 12i

On cherche ensuite les racines carrées x+ yi de 5 + 12i. On peut poser :

(x+ yi)2 = 5 + 12i ou x2 − y2 + 2xyi = 5 + 12i

En identifiant les parties réelle et imaginaire, on obtient le système

{
x2 − y2 = 5
2xy = 12

En isolant y dans la deuxième équation et en injectant sa valeur dans la première
équation, on doit maintenant résoudre l’équation

x2 −
(
6

x

)2

= 5 ou x4 − 5x2 − 36 = 0 ou (x2 − 9) · (x2 + 4) = 0
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Ainsi x2 = 9 ou x2 = −4 ce qui est impossible. Les deux racines carrées de 5+ 12i
sont donc

x1 = 3 → y1 =
6

3
= 2

x2 = −3 → y2 =
6

−3 = −2

Ainsi, x + yi = ±(3 + 2i). En utilisant la formule de résolution des équations du
deuxième degré, on obtient comme solutions de l’équation de départ

z1,2 =
−(−4 + i)± (3 + 2i)

1
ou z1 = 7 + i et z2 = 1− 3i

6.4 Présentation des nombres complexes sous forme

trigonométriques

6.4.1 Plan de Gauss, module et argument

Nous avons vu que l’ensemble C est un espace vectoriel de dimension 2. Nous avons même
donné une base de cet espace :

(1; i) ou ((1; 0); (0; 1))

Avec cette base et le point 0 + 0 · i comme origine, nous pouvons définir un repère.

Dans ce repère, tout nombre complexe z = a + bi peut être représenté par un point
M(a; b) dont l’abscisse est la partie réelle de a et l’ordonnée la partie imaginaire b.

On introduit ainsi une bijection entre C et les points du plan.

Définition 6.9
Le plan ainsi défini est appelé plan complexe ou plan de Gauss.

L’axe des x est appelé axe des réels.
L’axe des y est appelé axe des imaginaires.

R

Ri

θ

b

ρ

(a; b) = a+ bi

O

b
=

I
m
(z
)

a = Re(z)

Définition 6.10
Tout nombre complexe z = (a; b) = a + bi peut être repéré dans le plan de Gauss par :
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a) la distance, notée ρ ou |z|, entre l’origine et le point M(a; b) représentant z :

ρ = |z| =
√
z · z =

√
a2 + b2

On appelle cette distance le module de z.

b) l’angle orienté, noté θ ou arg(z), entre l’axe des réels et le segment [OM ] :

θ = arg(z) = arctan
(
b
a

)
+ k · 2π si a > 0

et

θ = arg(z) = arctan
(
b
a

)
+ π + k · 2π si a < 0

On appelle cet angle l’argument de z.

Le nombre complexe z de module ρ et d’argument θ se note souvent :

[ρ; θ]

On appelle cette notation la forme trigonométrique de z

On peut passer aisément de la forme trigonométrique, [ρ; θ], à la forme cartésienne, a+bi,
d’un nombre complexe z en posant :

a = ρ cos(θ)

b = ρ sin(θ)

ou de manière équivalente :

z = a + bi = ρ · (cos(θ) + sin(θ) · i) = ρ cos(θ) + ρ sin(θ) · i

Remarques

1. Si z est un nombre réel, |z| =
√
zz =

√
z2 est la valeur absolue de z.

2. Deux nombres complexes z1 et z2 sont égaux sous forme cartésienne ou sous forme
trigonométrique si :

a1 + b1i = a2 + b2i ⇐⇒ a1 = a2 et b1 = b2

[ρ1; θ1] = [ρ2; θ2] ⇐⇒ ρ1 = ρ2 et θ1 = θ2 + k · 2π, k ∈ Z

Propriétés - module

Le module vérifie les propriétés suivantes :

1) |z| > 0 et |z| = 0⇔ z = 0

2) |λ · z| = |λ| · |z|, avec λ ∈ R

3) ||z1| − |z2|| 6 |z1 + z2| 6 |z1|+ |z2|︸ ︷︷ ︸
Minkowski

4) |z| = |z|
5) |z1 · z2| = |z1| · |z2|

6)

∣∣∣∣
z1
z2

∣∣∣∣ =
|z1|
|z2|

7) |Re(z)| 6 |z| et |Im(z)| 6 |z|
Ces propriétés sont valables pour tout z, z1, z2 ∈ C.
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Remarque

Les fonctions vérifiant les deux premières propriétés et la propriété de Minkowski sont
appelées des normes.

6.4.2 Addition, soustraction et multiplication par un scalaire

Cette manière de présenter les nombres complexes n’a aucun intérêt en ce qui concerne
ces opérations.

Dans le plan de Gauss, l’addition et la soustraction équivalent à des translations. La
multiplication par un scalaire équivaut à une homothétie de centre O et de rapport ce
scalaire.

6.4.3 Multiplication

Soient deux nombres complexes z1 = [ρ1; θ1] et z2 = [ρ2; θ2]. On peut multiplier ces deux
nombres complexes de la manière suivante :

z1 · z2 = ρ1(cos(θ1) + sin(θ1)i) · ρ2(cos(θ2) + sin(θ2)i)

= ρ1ρ2 · [(cos(θ1) cos(θ2)− sin(θ1) sin(θ2))︸ ︷︷ ︸
cos(θ1+θ2)

+ (cos(θ1) sin(θ2) + cos(θ2) sin(θ1))︸ ︷︷ ︸
sin(θ1+θ2)

i]

= ρ1ρ2 · (cos(θ1 + θ2) + sin(θ1 + θ2)i) = [ρ1 · ρ2; θ1 + θ2]

On remarque alors que lorsqu’on multiplie des nombres complexes, les modules se multi-
plient et les arguments s’additionnent :

z1 · z2 = [ρ1; θ1] · [ρ2; θ2] = [ρ1 · ρ2; θ1 + θ2]

Remarque

Dans le plan de Gauss, la multiplication par z = [ρ; θ] équivaut à une rotation d’angle θ,
suivie d’une homothétie de rapport ρ.

6.4.4 Inversion

Soit le nombre complexe z = [ρ; θ]. Pour déterminer l’inverse de ce nombre complexe, on
prend l’inverse de son module et l’opposé de son argument :

1

z
=

[
1

ρ
;−θ

]

En effet, on a bien que :

z · 1
z
= [ρ; θ] ·

[
1

ρ
;−θ

]
=

[
ρ · 1

ρ
; θ + (−θ)

]
= [1; 0] = 1
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6.4.5 Division

Soient deux nombres complexes z1 = [ρ1; θ1] et z2 = [ρ2; θ2]. On peut déterminer le
quotient de ces deux nombres complexes de la manière suivante :

z1
z2

= z1 ·
1

z2
= [ρ1; θ1] ·

[
1

ρ2
;−θ2

]
=

[
ρ1
ρ2

; θ1 − θ2
]

On remarque alors que lorsqu’on divise deux nombres complexes, les modules se divisent
et les arguments se soustraient :

z1
z2

=
[ρ1; θ1]

[ρ2; θ2]
=

[
ρ1
ρ2

; θ1 − θ2
]

Remarque

Dans le plan de Gauss, la division par z = [ρ; θ] équivaut à une rotation d’angle −θ,
suivie d’une homothétie de rapport 1

ρ
.

6.4.6 Elévation à une puissance

Soit le nombre complexe z = [ρ; θ]. Pour élever le nombre complexe z à la puissance n,
zn, il suffit de le multiplier n fois par lui-même. En effectuant les diverses multiplications
successives, on obtient :

zn = [ρ; θ]n = [ρn;nθ]

On remarque que pour élever un nombre complexe à la puissance n, on élève le module
à la puissance n et on multiplie l’argument par n.

6.4.7 Extraction des racines n-ièmes

Soit le nombre complexe z = [ρ; θ]. On cherche ici les nombres qui élevés à la puissance
n donnent le nombre z. D’après ce qui précède, il faut prendre un nombre complexe dont
le module est n

√
ρ et dont l’argument est θ

n
. Comme θ est défini à k ·2π près, θ

n
sera défini

à k·2π
n

près. Il y aura donc n modules différents par tour. Ainsi tout nombre complexe
possédera n racines n-ièmes distinctes.

Les racines n-ièmes de z = [ρ; θ] sont données par :

n
√
z =

[
n
√
ρ;
θ + k · 2π

n

]

avec 0 6 k < n, k ∈ N.

Remarques

1. Comme

[
1;
k · 2π
n

]n
= [1n; k · 2π] = 1, on peut en déduire que les racines n-ièmes

de z = [ρ; θ] s’obtiennent en multipliant une des racines n-ièmes de z par les racines
n-ièmes de l’unité.

2. Dans le plan de Gauss, les n racines n-ièmes de z sont situées sur un cercle de centre
O et de rayon n

√
ρ. Si on relie ces racines par des segments de droite, elles forment un

polygone régulier à n côtés.

page 111
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6.4.8 Formule de Moivre

Soit un nombre complexe z de module 1. Il peut s’écrire

z = [1; θ] = cos(θ) + sin(θ)i

Si on l’élève à la puissance n, on obtient

zn = [1; θ]n = [1n;n · θ] = cos(nθ) + sin(nθ)i

Proposition 6.1
La formule appelée formule de Moivre est l’égalité suivante :

(cos(θ) + sin(θ)i)n = cos(nθ) + sin(nθ)i

Exemple

Si on applique la formule de Moivre pour n = 2, on a

(cos(θ) + sin(θ)i)2 = cos(2θ) + sin(2θ)i

ou

cos2(θ) + 2 cos(θ) sin(θ)i− sin2(θ) = cos(2θ) + sin(2θ)i

Ainsi, par identification des parties réelles et imaginaires, on a

cos(2θ) = cos2(θ)− sin2(θ)

sin(2θ) = 2 cos(θ) sin(θ)

qui sont les formules trigonométriques de duplication.
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6.5 Exercices

1) Soient les nombres complexes z1 = (1; 4) et z2 = (5;−1). Calculer :

a) z3 = z1 + z2 b) z4 = 3z1 c) z5 = z1 · z2

d) z6 = z21 e) z7 =
1

z1
f) z8 =

z1
z2

2) Reprendre l’exercice 1) mais en écrivant les nombres complexes sous la forme a + bi
(forme cartésienne).

3) Soient les nombres complexes z1 = 7 − 5i, z2 = 2 + i, z3 = −5 + 2i, z4 = −10 − 3i,
z5 = 8 et z6 = 8i. Calculer :

a) z1 − z3 − z5 b) z1z2z3 c) z23 + z24

d) iz4 − z3z6 e) Im(z4) f) Re(z21z3)

g) Im(2z2 − 3z3) h)
z1
z6

i)
z1
z2

4) Trouver l’ensemble des nombres complexes z tels que z′ = (z − 1)(z − 2i) soit

a) un nombre réel b) un nombre imaginaire pur

5) Trouver l’ensemble des nombres complexes z tels que z′ =
z + 2i

z − 2
soit

a) un nombre réel b) un nombre imaginaire pur

6) Démontrer les formules :

Re(z) =
z + z

2
et Im(z) =

z − z
2i

=
z − z
2

i.

7) Résoudre les équations :

a) z + 2iz = 8 + 7i b) (1 + i)z + (5− 3i)z = 20 + 20i

c) (2 + 2i)z − 3Re(z) = −18 + 30i d) Im(z+1)+ i ·Re(−z+2) = −1
2
−6i

8) Résoudre les systèmes d’équations :

a)

{
3x + 2y = 7 + i
5x − 3y = −1 + 8i

b)

{
ix − 5y = 13
2x − 3iy = 13i

9) Résoudre les équations :

a) x2 + x+ 1 = 0 b) 6x2 + (7− 13i)x− 3− 7i = 0

10) Ecrire sous forme cartésienne les nombres complexes suivants donnés sous forme tri-
gonométrique :

a) z1 = [2; π] b) z2 =
[√

2;
π

6

]
c) z3 =

[
1

2
;
5π

4

]
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11) Soient z1 =
[
2; π

4

]
, z2 =

[
3; π

6

]
, z3 =

[
5; π

6

]
et z4 =

[
1; 5π

6

]
. Calculer :

a) z1 · z2 b)
z1
z2

c) z3 · z4 d)
z3
z4

12) Calculer le module et l’argument des nombres complexes :

a) z1 = 4 + 2i b) z2 = 3− i c) z3 = −4 + 2i

d) z4 = −3− i e) z5 = z1 + z2 f) z6 = z1 · z2

g) z7 = z21 h) z8 =
1

z3
i) z9 =

z3
z4

13) Calculer, en utilisant la forme trigonométrique, les produits et les quotients suivants,
puis exprimer les résultats sous forme cartésienne.

a) (1 + i)(
√
2−
√
2i) b) (1−

√
3i)(−4

√
3 + 4i) c)

1− i
1 + i

d)
4 + 4

√
3i√

3 + i
e)
−1 +

√
3i√

2 +
√
2i

f)
3 + i

2 + i

14) Calculer :

a) (1− i)37 b)

(
3

5
+

4

5
i

)1000

c) (
√
2−
√
3i)21

15) Soit z =
1 +
√
3i

1− i .

a) Représenter z5.

b) Déterminer les nombres entiers n pour lesquels zn ∈ R.

16) Calculer et construire :

a) les racines carrées de −81.
b) les racines carrées de 16i.

c) les racines cubiques de
1 + i√

2
.

d) les racines cubiques de −46 + 9i.

e) les racines sixièmes de 1 +
√
3i.

17) Résoudre les équations :

a) z2 + (5− 2i)z + 5− 5i = 0 b) z3 + z2 + z + 1 = 0

c) z4 − iz3 − z2 + iz + 1 = 0 d) z6 − (1 + 12i)z3 − 13− 9i = 0
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6.6 Solutions des exercices

1) a) z3 = (6; 3) b) z4 = (3; 12) c) z5 = (9; 19)

d) z6 = (−15; 8) e) z7 =

(
1

17
;
−4
17

)
f) z8 =

(
1

26
;
21

26

)

2) a) z3 = 6 + 3i b) z4 = 3 + 12i c) z5 = 9 + 19i

d) z6 = −15 + 8i e) z7 =
1

17
+
−4
17
i f) z8 =

1

26
+

21

26
i

3) a) 4− 7i b) −89 + 53i c) 112 + 40i

d) 19 + 30i e) −3 f) 20

g) −4 h) −5
8
− 7

8
i i)

9

5
− 17

5
i

4) a) z′ est un réel si z = a+ bi est tel que 2ab− 2a− b+ 2 = 0

b) z′ est un imaginaire pur si z = a+ bi est tel que (a− 1
2
)2 − (b− 1)2 + 3

4
= 0

5) a) z′ est un réel si z = a+ bi est tel que a− b− 2 = 0

b) z′ est un imaginaire pur si z = a+ bi est tel que (a− 1)2 + (b+ 1)2 = 2

7) a) z = 2 + 3i b) z = −5i c) z = 12 + 3i d) z = 8 +
1

2
i

8) a) x = 1 + i, y = 2− i b) x = 2i, y = −3

8) a) x1,2 =
−1 ± i

√
3

2
b) x1 = −

1

2
+

1

2
i x2 = −

2

3
+

5

3
i

10) a) z1 = −2 b) z2 =

√
2

2
+

√
6

2
i c) z3 = −

√
2

4
−
√
2

4
i

11) a)

[
6;

5π

12

]
b)

[
2

3
;
π

12

]
c) [5; π] d)

[
5;
−2π
3

]

12) Réponses :

1 2 3 4 5 6 7 8 9

mod.
√
20

√
10

√
20

√
10

√
50

√
200 20

√
20
20

√
2

arg. 0, 464 −0, 322 2, 678 3, 463 0, 142 0, 142 0, 927 3, 605 −π
4

13) a) 2
√
2 b) 16i c) −i

d) 2
√
3 + 2i e) 0, 966 + 0, 259i f) 1, 4− 0, 2i
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14) a) −262144 + 262144i b) −0, 865− 0, 501i

c) 21200629, 67 + 5231678, 51i

15) b) Les multiples de 12.

16) a) 9i −9i

b) 2
√
2(1 + i) −2

√
2(1 + i)

c) 0, 966 + 0, 259i
−
√
2

2
+

√
2

2
i −0, 259− 0, 966i

d) 2 + 3i −3, 598 + 0, 232i 1, 598− 3, 232i

e) 1, 105 + 0, 195i 0, 384 + 1, 055i −0, 722 + 0, 860i

−1, 105− 0, 195i −0, 384− 1, 055i 0, 722− 0, 860i

17) a) z1 = −2 + i z2 = −3 + i

b) z1 = 1 z2 = i z3 = −i
c) z1 = 0, 951− 0, 309i z2 = 0, 588 + 0, 809i z3 = −0, 588 + 0, 809i

z4 = −0, 951− 0, 309i

d) z1 = 2 + i z2 = −1, 87 + 1, 23i z3 = −0, 13− 2, 23i

z4 = 0, 79 + 0, 79i z5 = −1, 08 + 0, 29i z6 = 0, 29− 1, 08i

page 116



Chapitre 7

Progressions

7.1 Notion de suite

Définition 7.1
Une suite est un ensemble ordonné de nombres réels, appelés termes.

Exemples

1) 3 ; 5 ; −24 ; 53 ; 4 ; −12 ; 14 ; . . .

2) −2
+5
y
; 3

+5
y
; 8

+5
y
; 13

+5
y
; 18

+5
y
; . . .

3) 4
·2
y
; 8

·2
y
; 16

·2
y
; 32

·2
y
; 64

·2
y
; . . .

Remarques

La suite peut être munie d’une règle de formation (manière de construire la suite à
partir d’un ou de plusieurs de ses termes) ou non.

La première suite des exemples ci-dessus est une suite sans règle de formation. Les
deuxième et troisième suites sont des suites avec règle de formation.
Pour la deuxième, on obtient le terme suivant de la suite en additionnant 5 au terme
précédent.
Pour la troisième, on obtient le terme suivant de la suite en multipliant le terme précédent
par 2.

Un ensemble ordonné de nombres réels signifie qu’il existe une fonction qui associe un
sous-ensemble A de N à cet ensemble de nombres réels. Le terme de départ de la suite
est alors l’image du plus petit nombre contenu dans A. Le terme suivant est l’image du
deuxième nombre contenu dans A, si on ordonne les éléments de A en ordre croissant. Le
troisième terme est obtenu de la même manière, et ainsi de suite.

Définition 7.2
Plus précisément, une suite de nombres réels est une fonction f de A ∈ N dans R :

f : A −→ R

n 7−→ f(n)
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Le nombre réel f(n) est appelé le nème terme de la suite et on le désigne par une lettre
indexée en bas à droite par n, par exemple : xn, yn, un ou vn. La suite elle-même est alors
désignée par (xn), (yn), (un), et (vn).

Remarques

– Dans l’exemple 1, on a que u0 = 3, u1 = 5, u2 = −24, . . .
– Le plus souvent A est N lui-même, ou N∗. Ainsi, sans indication contraire, on considére-
ra que A = N.

– Si A est constitué d’un nombre fini de nombres, la suite est également constituée d’un
nombre fini de termes. Dans le cas contraire, la suite est constituée d’un nombre infini
de termes.

7.1.1 Détermination d’une suite

Une suite peut être déterminée par :
– la donnée de tous ses termes (pas de règle de formation).

Exemple : u0 = 6 ; u1 = −3 ; u2 = −1 ; u3 = 98; . . .

– une formule qui donne un par rapport à n (ce qui revient à donner f(n) = un).

Exemples :
1) f(n) = un = n2 ⇒ 1 ; 4 ; 9 ; 16 ; . . .

2) f(n) = un = 1
n
, avec A = N∗ ⇒ 1 ; 1

2
; 1

3
; 1

4
; . . .

– par récurrence : le deuxième terme de la suite est donné en fonction du premier,
le troisième en fonction du deuxième et ainsi de suite. Plus généralement, le terme
d’indice n est donné par rapport au terme d’indice n− 1.

Mathématiquement, on écrit :

{
u1
un = f(un−1)

Exemple : u1 = 1, un = 3un−1 − 1 ⇒ 1 ; 2 ; 5 ; 14 ; . . .

7.1.2 Quelques définitions sur une suite

Définition 7.3
Une suite (xn) est dite majorée s’il existe un nombre réel M tel que, pour tout entier
n ∈ A, un 6M .

Une suite (xn) est dite minorée s’il existe un nombre réel m tel que, pour tout entier
n ∈ A, un > m.

Une suite (xn) est dite bornée si elle est à la fois majorée et minorée.

Exemple

Soit la suite (un) donnée par un = 1− 1

n2
.

Elle est majorée par le nombre 3. Elle est aussi majorée par le nombre 1, qui est
le plus petit majorant.

Elle est minorée par le nombre −5. Elle est aussi minorée par le nombre 0, qui est
le plus grand minorant.

Pour les définitions suivantes, on considère que A = N.
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Définition 7.4
Une suite (xn) est dite croissante (respectivement strictement croissante), à partir de
l’indice n0, si, quel que soit l’entier naturel n > n0, on a

un+1 > un (respectivement un+1 > un).

Une suite (xn) est dite décroissante (respectivement strictement décroissante), à partir
de l’indice n0, si, quel que soit l’entier naturel n > n0, on a

un+1 6 un (respectivement un+1 < un).

Une suite est dite monotone si elle est croissante ou décroissante.

Pour montrer qu’une suite est monotone, on peut étudier le signe de la différence
un−1 − un. Si cette différence est positive, alors la suite est croissante et, si elle négative,
la suite est décroissante. Cette méthode est particulièrement adaptée aux suites définies
à l’aide d’une sommation.

On peut également comparer le quotient
un+1

un
au nombre 1 (en prenant garde aux signes

de un et un+1). Si ce quotient est supérieur à 1, alors la suite est croissante et, s’il est
inférieur à 1, la suite est décroissante.

Exemple

Soit la suite (un) donnée par un =
4n− 1

n+ 3
.

La suite (un) est strictement croissante. En effet, si on considère la différence d’un
terme de la suite et du précédent, on obtient :

un+1 − un =
4(n+ 1)− 1

(n + 1) + 3
− 4n− 1

n + 3
=

4n+ 3

n + 4
− 4n− 1

n+ 3

=
(4n+ 3)(n+ 3)− (4n− 1)(n+ 4)

(n+ 3)(n+ 4)
=

13

(n + 3)(n+ 4)
> 0

étant donné que le dénominateur du dernier quotient est un produit de deux nombres
positifs (n ∈ N).

La suite (un) est majorée par le nombre 4. En effet, on a :

un =
4n− 1

n+ 3
<

4n+ 12

n+ 3
=

4(n+ 3)

n + 3
= 4

7.2 Progression arithmétique (PA)

Définition 7.5
Une progression arithmétique (PA) est une suite déterminée par le premier terme u1
et par la formule de récurrence :

un = un−1 + r

où r ∈ R. Le nombre r est un nombre constant appelé raison de la progression arithmé-
tique.
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Exemples

1) u1 = 2, r = 6 ⇒ 2
+6
y
; 8

+6
y
; 14

+6
y
; 20

+6
y
; 26

+6
y
; . . .

2) u1 = 0, r = 1 ⇒ 0
+1
y
; 1

+1
y
; 2

+1
y
; 3

+1
y
; 4

+1
y
; . . . = {nombres naturels} = N

3) u1 = 1, r = 2 ⇒ 1
+2
y
; 3

+2
y
; 5

+2
y
; 7

+2
y
; 9

+2
y
; . . . = {nombres impairs}

Propriété

La différence de deux termes consécutifs est constante et égale à la raison : un−un−1 = r,
∀n ∈ N.

7.2.1 Terme général un

On peut mettre en évidence un lien entre le premier terme u1 et n’importe quel terme un
de rang n d’une PA.

Soit une PA déterminée par son premier terme u1 et sa raison r. Par définition, on a :

u1 (premier terme)

u2 = u1 + r (définition)

u3 = u2 + r = u1 + 2r (définition, substitution de u2)

u4 = u3 + r = u1 + 3r (définition, substitution de u3)
...

un = un−1 + r = u1 + (n− 1) · r (définition, substitution de un−1)

On obtient ainsi le lien suivant :

un = u1 + (n− 1) · r

Remarques

Il ne faut pas confondre un et n !
n est le nombre d’éléments, un l’élément de rang n.
n est un nombre entier, un ne l’est pas forcément.

Exemple

Soit la suite donnée par u1 = 5 et r = 7 ⇒ 5
+7
y
; 12

+7
y
; 19

+7
y
; 26

+7
y
; 33

+7
y
; . . .

Son 46ème terme est u46 = 5 + 45 · 7 = 320.

7.2.2 Somme des n premiers termes : Sn

Propriété

Dans une progression arithmétique finie comportant n termes, la somme de 2 termes
équidistants des extrêmes (u1 et un) est égale à la somme des extrêmes (u1 + un).
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Exemple

Soit la PA de 6 termes données par u1 = 5 et r = 4. On a alors :

5 9 13 17︸ ︷︷ ︸
13+17=30

21

︸ ︷︷ ︸
9+21=30

25

︸ ︷︷ ︸
5+25=30

La somme de deux termes équidistants des extrêmes est égale 30.

Démonstration. Soit une PA de n termes donnée par u1 et r. En reprenant le même
schéma que pour l’exemple ci-dessus, on obtient pour le cas général :

u1 u2 u3 . . . un−2︸ ︷︷ ︸
u3+un−2

un−1

︸ ︷︷ ︸
u2+un−1

un

︸ ︷︷ ︸
u1+un

Or, on a les égalités suivantes :

u1 + un = u1 + un

u2 + un−1 = (u1 + r) + (un − r) = u1 + un

u3 + un−2 = (u1 + 2r) + (un − 2r) = u1 + un
...

La somme de deux termes équidistants des extrêmes est donc bien égale à u1 + un.

Propriété

La somme des n premiers termes d’une PA, Sn = u1 + u2 + u3 + . . . + un−1 + un, est
donnée par la formule :

Sn =
n

2
· [2u1 + (n− 1) · r]

Démonstration. Soit une PA donnée par u1 et r. On peut écrire de deux manières
différentes (ordre) la somme de ses n premiers termes :

Sn = u1 + u2 + u3 + . . . + un−2 + un−1 +un

Sn = un + un−1 + un−2 + . . . + u3 + u2 +u1 +©

En additionnant ces deux expressions terme à terme, on obtient :

2Sn = (u1 + un) + (u2 + un−1) + (u3 + un−2) + . . .+ (un−1 + u2) + (un + u1)

D’après la propriété précédente, il y a n parenthèses formées de la somme de termes
valant chacun u1 + un. Ainsi 2Sn = n · (u1 + un). En remplaçant un par u1 + (n− 1) · r
et en divisant les deux membres de l’équation par 2, on obtient :

Sn =
n

2
· [2u1 + (n− 1) · r]
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Exemples

1) La somme des 100 premiers nombres entiers : S100 =
100
2
(2 · 1 + 99 · 1) = 5050

2) La somme des 29 premiers nombres impairs : S29 =
29
2
(2 · 1 + 28 · 2) = 841

7.3 Progression géométrique (PG)

Définition 7.6
Une progression géométrique (PG) est une suite déterminée par le premier terme u1
et par la formule de récurrence :

un = un−1 · q
où q ∈ R. Le nombre q est un nombre constant appelé raison de la progression géomé-
trique.

Exemples

1) u1 = 2, q = 6 ⇒ 2
·6
y
; 12

·6
y
; 72

·6
y
; 432

·6
y
; 2592

·6
y
; . . .

2) u1 = 1, r = 2 ⇒ 1
·2
y
; 2

·2
y
; 4

·2
y
; 8

·2
y
; 16

·2
y
; . . . = {puissances de 2 }

Propriété

Le quotient de deux termes consécutifs est constant et égale à la raison :
un
un−1

= q,

∀n ∈ N.

7.3.1 Terme général un

Comme pour une PA, on peut mettre en évidence un lien entre le premier terme u1 et
n’importe quel terme un de rang n d’une PG.

Soit une PG déterminée par son premier terme u1 et sa raison q. Par définition, on a :

u1 (premier terme)

u2 = u1 · q (définition)

u3 = u2 · q = u1 · q2 (définition, substitution de u2)

u4 = u3 · q = u1 · q3 (définition, substitution de u3)
...

un = un−1 · q = u1 · qn−1 (définition, substitution de un−1)

On obtient ainsi le lien suivant :

un = u1 · qn−1

Exemple

Soit la suite donnée par u1 = 3 et q = 2 ⇒ 3
·2
y
; 6

·2
y
; 12

·2
y
; 24

·2
y
; 48

·2
y
; . . .

Son 18ème terme est u18 = 3 · 217 = 393′216.
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7.3.2 Somme des n premiers termes : Sn

Propriété

Dans une progression géométrique finie comportant n termes, le produit de 2 termes
équidistants des extrêmes (u1 et un) est égale au produit des extrêmes (u1 · un).

Exemple

Soit la PG de 6 termes données par u1 = 2 et r = 3. On a alors :

2 6 18 54︸ ︷︷ ︸
18·54=972

162

︸ ︷︷ ︸
6·162=972

486

︸ ︷︷ ︸
2·486=972

Le produit de deux termes équidistants des extrêmes est égal à 972.

Démonstration. Soit une PG de n termes donnée par u1 et g. En reprenant le même
schéma que pour l’exemple ci-dessus, on obtient pour le cas général :

u1 u2 u3 . . . un−2︸ ︷︷ ︸
u3·un−2

un−1

︸ ︷︷ ︸
u2·un−1

un

︸ ︷︷ ︸
u1·un

Or, on a les égalités suivantes :

u1 · un = u1 · un
u2 · un−1 = (u1 · q) ·

(
un
q

)
= u1 · un

u3 · un−2 = (u1 · q2) ·
(
un
q2

)
= u1 · un

...

Le produit de deux termes équidistants des extrêmes est donc bien égal à u1 · un.

Propriété

La somme des n premiers termes d’une PG, Sn = u1 + u2 + u3 + . . . + un−1 + un, est
donnée par la formule :

Sn = u1 ·
1− qn
1− q (7.1)

si q 6= 1 ; et par Sn = n · u1 si q = 1.

Démonstration. Soit une PG donnée par u1 et r. On peut poser les deux égalités sui-
vantes :

Sn = u1 + u2 + u3 + . . . + un−1 + un

q · Sn = q · u1 + q · u2 + q · u3 + . . . + q · un−1 + q · un

page 123
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On peut réécrire ces relations de la manière suivante :

Sn = u1 + u2 + u3 + . . . + un−1 + un

q · Sn = u2 + u3 + u4 + . . . + un + q · un -©

En retranchant terme par terme la deuxième relation de la première, on obtient :

Sn − q · Sn = u1 − q · un

D’où :

Sn =
u1 − q · un

1− q = u1 ·
1− qn
1− q

Exemple

La somme des 15 premières puissances de 2 :

S15 = 20 + 21 + 22 + . . .+ 214 = 20︸︷︷︸
=1

·1− 215

1− 2
= 32′767.

7.3.3 Progression géométrique illimitée (PGI)

Définition 7.7
Une progression géométrique illimitée (PGI) est une progression géométrique com-
portant un nombre infini (illimité) de termes.

On note S∞ la somme de tous ses termes.

On peut utiliser la formule 7.1 pour déterminer la valeur de S∞ = u1+ u2+u3+ u4+ . . .
Cette dernière dépend de la valeur de q :

– si q est plus grand que 1 ou plus petit que −1 (on note |q| > 1), la valeur de qn devient
très positive ou très négative (selon le signe de q et la valeur de n) lorsque n devient
de plus en plus grand. La valeur de Sn fait de même. On peut dire qu’elle ”explose”,
ou, en termes mathématiques, qu’elle tend vers l’infini.

– si −1 < q < 1 (on note |q| < 1), la valeur de qn devient de plus en plus petite et
s’approche de 0 lorsque n devient de plus en plus grand. Le terme qn disparâıt alors de
la formule 7.1.

Propriété

Soit une PGI donnée par son premier terme u1 et sa raison q.
Si |q| < 1, on a la formule suivante :

S∞ = lim
n→∞

Sn =
u1

1− q
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Remarque

limn→∞ Sn : cette écriture se lit ”limite de Sn lorsque n tend vers l’infini”. Ceci signifie
que la valeur de Sn s’approche de S∞ (la valeur de la limite) lorsque n devient de plus
en plus grand.

Exemple

La somme de tous les termes de la PGI donnée par u1 = 1 et q = 1
2
,

S∞ = 1 + 1
2
+ 1

4
+ 1

8
+ . . ., peut être déterminée à l’aide de la formule ci-dessus :

S∞ =
1

1− 1
2

= 2

car q = 1
2
< 1.

7.4 Application : calculs financiers

Sur un marché économique, des acteurs peuvent prêter ou emprunter un capital (une
somme d’argent) en contrepartie de quoi ils perçoivent ou respectivement versent un
intérêt (une autre somme d’argent) périodique. Cet intérêt se justifie par la prise de
risque que prend le créditeur (celui qui prête le capital) relativement au non-rembour-
sement de la totalité ou d’une part du capital initial que doit rembourser le débiteur
(celui qui doit rembourser le capital emprunté) et au fait que le créditeur ne peut plus
utiliser à sa guise le capital immobilisé auprès du débiteur.

Ainsi, quand vous déposez de l’argent sur un compte auprès d’une banque, cette dernière
vous verse à la fin de l’année un intérêt. En quelque sorte, elle vous paie pour l’argent que
vous lui avez prêté afin qu’elle puisse réaliser certaines opérations financières : investis-
sement en bourse, investissement dans l’immobilier, prêt à d’autres personnes, . . . Dans
cette transaction, vous êtes le créditeur et la banque le débiteur.

A l’inverse, quand vous empruntez de l’argent auprès d’une banque pour, par exemple,
construire une maison, cette dernière vous demande de lui verser des intérêts en contre-
partie de ce prêt. Dans ce cas, vous êtes le débiteur et la banque le créditeur.

En lien avec la notion d’intérêt, nous utiliserons souvent le taux d’intérêt sur une unité
de temps qui est défini comme :

taux d’intérêt =
intérêt produit pendant une unité de temps

capital

L’unité, ou période, de temps peut être, par exemple, l’année, le semestre, le trimestre, le
mois, le jour, l’heure, la minute, la seconde, . . . . En général et sans indication contraire,
nous considérerons que la période de temps est l’année et donc le taux d’intérêt annuel.

Notations

Les notations suivantes seront utilisées dans ce chapitre :

C = capital (sans autres précisions),

C0 = capital initial, au temps 0,

Cn = capital après n années (ou périodes),
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n = nombre d’années (ou de périodes) pendant lesquelles le capital initial est investi,

I = intérêt produit pendant une année (ou une période),

i = taux d’intérêt annuel (constant), généralement exprimé en %.

Avec les définitions ci-dessus, on a les deux relations équivalentes suivantes :

i =
I

C
et I = C · i

Sur la base de ces notions, deux types de réflexion sont possibles :

la capitalisation : elle permet de calculer la valeur future (ou valeur acquise) d’un
capital à partir de sa valeur présente. Sous forme de schéma :

Capital initial

n années

Valeur acquise

C0 Cn

temps

Le sens de la flèche indique qu’on déplace un capital en direction du futur.

l’actualisation : elle permet de déterminer la somme d’argent, qu’on appelle valeur
actuelle, qui doit être investi pour obtenir, après un temps donné, un montant fixé
à l’avance.

Valeur actuelle

n années

Capital final (fixé)

C0 Cn

temps

Le sens de la flèche indique qu’on déplace un capital en direction du passé.

7.4.1 Capitalisation

Un capital C placé pendant une année à un taux d’intérêt annuel produit un intérêt
valant C · i. Si ce capital est placé pendant plusieurs années, l’intérêt total produit et
donc la valeur acquise dépend de la convention adoptée pour faire les calculs.

Intérêts simples

L’intérêt produit au cours d’une année n’est pas capitalisé pour l’année suivante (il n’est
pas ajouté au capital). Les intérêts sont toujours calculés par rapport au capital initial,
C0. En appliquant cette convention, on trouve la suite de capitaux :

Après 1 année : C1 = C0 + C0 · i = C0(1 + i)
Après 2 années : C2 = C1 + C0 · i = C0(1 + i) + C0 · i = C0(1 + 2i)
Après 3 années : C3 = C2 + C0 · i = C0(1 + 2i) + C0 · i = C0(1 + 3i)
Après 4 années : C4 = C3 + C0 · i = C0(1 + 3i) + C0 · i = C0(1 + 4i)
. . .

Après n années (ou périodes), le capital Cn est donné par la formule des intérêts
simples :

Cn = C0(1 + n · i)
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Mathématiques, MAP 1ère année 7. Progressions

Remarque

Pour tout n > 0, la différence Cn+1−Cn est constante et égale à C0 · i. Ainsi la suite des
capitaux Cn est une progression arithmétique de raison C0 · i et de premier terme C0.

Exemple

On place 500 CHF à intérêts simples et à 5% pendant 20 ans. La valeur acquise
(capital final) est donné par :

C20 = C0(1 + 20i) = 500 · (1 + 20 · 0.05) = 1000 CHF

Intérêts composés

L’intérêt produit au cours d’une année est capitalisé pour l’année suivante (il est ajouté
au capital). Les intérêts sont calculés année par année sur la base du capital à la fin
de l’année précédente. Ainsi, chaque année, le montant sur lequel l’intérêt est calculé
change ! En appliquant cette convention, on trouve la suite de capitaux :

Après 1 année : C1 = C0 + C0 · i = C0(1 + i)
Après 2 années : C2 = C1 + C1 · i = C1(1 + i) = C0(1 + i)2

Après 3 années : C3 = C2 + C2 · i = C2(1 + i) = C0(1 + i)3

Après 4 années : C4 = C3 + C3 · i = C3(1 + i) = C0(1 + i)4

. . .

Après n années (ou périodes), le capital Cn est donné par la formule des intérêts
composés :

Cn = C0(1 + i)n

Remarques

1) Pour tout n > 0, le quotient Cn+1

Cn
est constant et égal à 1 + i. Ainsi la suite des

capitaux Cn est une progression géométrique de raison 1 + i et de premier terme C0.

2) On appelle généralement la raison de cette progression le facteur de capitalisation,
noté r.

Exemple

On place 500 CHF à intérêts composés et à 5% pendant 20 ans. La valeur acquise
(capital final) est donnée par :

C20 = C0(1 + i)20 = 500 · (1 + 0.05)20 = 1326, 65 CHF

Taux proportionnel et taux équivalent

Selon les cas, on peut considérer d’autres unités de temps que l’année : le semestre, le
trimestre, le mois, . . . . Pour cela, on divise l’année en m périodes de longueur égale : 1

m

année (m = 2 pour le semestre, m = 12 pour le mois, . . . ). On calcule alors les intérêts en
considérant l’unité de temps choisie et non plus l’année. Les formules précédentes restent
valables en utilisant un nombre de périodes et un taux d’intérêt correspondant à l’unité
de temps considérée.
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Exemple

On place 500 CHF à intérêts composés mensuels et à un taux d’intérêt mensuel
im = 1% pendant 2 ans. La valeur acquise (capital final) est donnée par :

C24 = C0(1 + im)
24 = 500 · (1 + 0.01)24 = 634, 86 CHF

On peut se poser la question suivante : quel taux d’intérêt appliquer sur m périodes
(égales au total à une année) pour que la valeur, au bout d’une année, d’un capital initial
C0 soit la même que si on considérait un taux d’intérêt annuel i ? Celui-ci dépend de la
convention de calcul d’intérêts adoptée.

Définition 7.8
2 cas dépendant du principe de capitalisation :

Intérêts simples : le taux proportionnel, noté pm, correspondant à l’unité de temps
de longueur 1

m
année et au taux d’intérêt annuel i est défini par l’égalité :

C0(1 + i) = C0(1 +m · pm)
En simplifiant cette égalité, on trouve la définition équivalente :

pm =
i

m

Intérêts composés : le taux équivalent, noté im, correspondant à l’unité de temps de
longueur 1

m
année et au taux d’intérêt annuel i est défini par l’égalité :

C0(1 + i) = C0(1 + im)
m

En simplifiant cette égalité, on trouve la définition équivalente :

im = m
√
1 + i− 1

Exemple

Si le taux d’intérêt annuel est de 3% et que l’unité de temps considéré est le mois
(m = 12), on a :
– taux proportionnel : p12 =

0.03
12

= 0.0025 = 0, 25%

– taux équivalent : i12 =
12
√
1 + 0.03− 1 = 0, 00247 = 0, 247%

7.4.2 Actualisation

On considère le problème inverse de la capitalisation. On va déplacer un capital en direc-
tion du passé. Par exemple, on peut se demander quel investissement C0 on doit placer,
à un taux d’intérêt annuel i, pour obtenir après n années un capital Cn.

Formules

On peut conserver les mêmes formules que pour la capitalisation, si ce n’est qu’on connâıt
Cn et qu’on désire déterminer C0. On obtient les formules suivantes :

Intérêts simples : C0 = Cn ·
1

1 + n · i

Intérêts composés : C0 = Cn ·
1

(1 + i)n
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Exemple

Si on souhaite posséder 10′000 CHF dans 30 ans sur un compte en banque rap-
portant un intérêt annuel de 2% (on laisse les intérêts sur le compte), on doit
placer :

C0 = C30 ·
1

(1 + i)30
= 10′000 · 1

(1 + 0.02)30
∼= 10′000 · 0.552071 ∼= 5′520, 71 CHF
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7.5 Exercices

1) Ecrire les cinq premiers termes des suites ci-dessous :

a)

{
u0 = 1
un = 2un−1 − 3

b)





u0 = 3

un =
un−1 + 2

un−1 − 2

2) Soit la suite (un) définie par un =
1

(3n− 2)(3n+ 1)
.

a) Écrire les quatre premiers termes de cette suite.

b) Démontrer par récurrence que, ∀n ∈ N∗, u1 + u2 + . . .+ un =
n

3n + 1
.

3) Soit la suite (un) définie par un =
2n− 7

3n+ 2
.

a) Démontrer que cette suite est croissante.

b) Démontrer que cette suite admet 1 pour majorant.

4) Soit la suite (un) définie par un = 1− 4

(n + 1)(n+ 2)
, avec n ∈ N∗.

a) Écrire les 4 premiers termes de cette suite.

b) Démontrer que cette suite est croissante.

c) Démontrer que cette suite est bornée.

d) Démontrer par récurrence que les somme des n premiers termes est sn =
n2

n + 2
.

5) Soit la suite (un), avec n ∈ N∗, définie de manière récursive par :
{
u1 =

√
2

un+1 =
√
2un

a) Écrire les quatre premiers termes de cette suite.

b) Démontrer par récurrence que cette suite est croissante et majorée.

6) Soit la suite (un), avec n ∈ N∗, définie de manière récursive par :
{
u1 = 0
un+1 =

√
2un + 35

Démontrer par récurrence que cette suite est croissante et majorée par 7.

7) Soit la suite (un) définie par un =
2n2

n+ 1
.

Calculer le plus petit entier naturel p tel que

n > p ⇒ un > 1000
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8) Soit une PA avec u1 = 8 et u3 = 18. Calculer u10.

9) Soit les PA ci-dessous :

a) 2 ; 4 ; 6 ; . . .
Calculer r, u100 et S100.

b) −7 ; −4 ; −1 ; . . .
Calculer r, u48 et S48.

10) Calculer la somme de tous les multiples de cinq compris entre 101 et 1001.

11) La somme des 19 premiers termes d’une PA est nulle et le dernier terme 27. Définir
cette progression. (Définir une progression : donner la raison et le premier terme de
cette progression.)

12) La somme du 8ème et du 14ème d’une PA est 50. On sait également que u3 = 13.
Définir cette progression.

13) Dans une PA, on donne u1 = 3, Sn = 120 et r = 2.
Calculer un et n.

14) Dans une PA, on donne u3 = 3, u9 = 6 et Sn = 42.5.
Calculer u1, r et n.

15) Trouver trois nombres en PA connaissant leur somme 33 et leur produit 1287.

16) Déterminer les trois angles d’un triangle rectangle sachant qu’il sont en PA.

17) Déterminer le triangle rectangle dont les trois côtés sont en PA et dont le périmètre
vaut 84.

18) Soit une PG avec u1 = 8 et u3 = 18. Calculer u10.

19) Soit les PG ci-dessous :

a) 2 ; 4 ; 8 ; . . .
Calculer q, u7 et S7.

b) 1 ; −1
2
; 1

4
; . . .

Calculer q, u8 et S8.

20) Dans une PG, on donne Sn = 1′456, un = 972 et u1 = 4.
Calculer q et n.

21) Le 6ème terme d’une PG est 1′215 et le 10ème 98′415.
Calculer le 4ème terme.

22) Trouver 3 nombres positifs en PG connaissant leur somme 248 et la différence des
extrêmes u3 − u1 = 192.
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23) Les côtés d’un triangle rectangle sont en PG. Déterminer la raison de cette progression.

24) Soit la suite (un), avec n ∈ N∗, définie de manière récursive par :

{
u1 = 3
un+1 = 1

3
un + 4

Une seconde suite (vn) est donnée par vn = un − 6.

a) Démontrer que (vn) est une suite géométrique.

b) Donner le terme général vn en fonction de n ; en déduire le terme général de la
suite (un).

c) Déterminer le plus petit entier naturel p tel que

n > p ⇒ 6− un < 10−10

25) Déterminer les fractions irréductibles qui engendrent les nombres périodiques suivants :

a) 3, 2121212121212121 . . .

b) −11, 89090909090 . . .

26) Un nommé Sissa, l’inventeur du jeu d’échec, présenta son jeu au Sultan. Enthousiasmé,
ce dernier lui proposa de choisir sa récompense. Sissa, d’après la légende, répondit :
”Que tes serviteurs mettent un grain de blé sur la première case, deux sur la seconde,
quatre sur la troisième, huit sur la quatrième, et ainsi de suite en doublant chaque
fois le nombre de grains de blé jusqu’à la soixante-quatrième case.”

a) Combien de grains de blé aurait-il fallu pour récompenser Sissa selon ses désirs ?

b) En supposant qu’un grain de blé occupe un volume de 1 mm3, quelle serait l’épais-
seur de la couche de blé qui recouvrirait une surface équivalente à celle de la Suisse,
soit 41′288 km2. ?

27) Une balle de caoutchouc est lâchée d’une hauteur de 2 mètres. Après chaque rebond,
elle remonte au sept dixième de la hauteur atteinte après le précédent rebond.

a) Après le 7ème rebond, quelle sera sa hauteur à l’apogée de sa trajectoire ?

b) Quelle longueur de chemin aura-t-elle parcourue quand elle se sera immobilisée sur
le sol ?

28) Dans la décoration d’un palais, on peut remarquer le motif symétrique ci-dessous,
composé de plusieurs segments :

1
11

8

a b
d
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Les nombres représentent la numérotation des segments

a) Les segments sont-ils en progression arithmétique ou géométrique ?

b) Sachant que la longueur du segment no 8 est 16, 25 cm et que celle du segment no
11 est 21, 5 cm, quel est la raison de la progression et la longueur du segment no
1 ?

c) Quelle distance parcourrait une fourmi du point a au point b en suivant les segments
du dessin ?

d) Quelle est la distance ”à vol d’oiseau” entre a et b ?

e) Que vaut d ?

29) Dans un carré de côté a, on joint les milieux des côtés. On forme ainsi un nouveau
carré dont on joint les milieux des côtés et ainsi de suite (voir figure ci-dessous).
Calculer la somme des aires de tous les carrés ainsi construits.

. . . a

30) Un segment M1M2 a une longueur de 12 cm. SoitM3 le milieu de M1M2, M4 le milieu
de M2M3, M5 le milieu de M3M4, et ainsi de suite.
Calculer la longueur du segment M1Mn quand n→∞.

31) Soit Sn = 1 + 11 + 111 + 1111 + . . .+ 11111 . . . 1︸ ︷︷ ︸
n fois

. Calculer Sn.

Indication : calculer d’abord 9 · Sn puis extraire une PG.

32) Le ”flocon de neige” de von Koch est une figure fractale qui se construit de manière
itérative. En partant d’un triangle équilatéral, on remplace chaque côté par :

c
c
3

c
3

c
3

c
3

Voici les figures obtenues après 0, 1 et 2 itérations du processus :
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Quand le nombre d’itérations tend vers l’infini :

a) que vaut le périmètre du flocon si le côté du triangle équilatéral initial a une
longueur c ?

b) que vaut l’aire du flocon ?

33) Que deviendront après 14 ans, 16′000 CHF placés à intérêts composés à 4%?

34) Que deviendront 15′000 CHF placés à un taux annuel de 51
2
% pendant 10 ans à intérêts

composés, ceux-ci étant capitalisés tous les six mois sur la base du taux proportionnel
correspondant ?

35) Quelle est la somme qui placée à intérêts composés à 6% pendant 20 ans est devenue
206′455 CHF?

36) On considère un taux d’intérêt annuel de 3%.

a) Si on place 2′500 CHF le 1er janvier 2008, quel sera le capital le 1er janvier 2072 ?

b) Un 1er janvier, on constate que le capital se monte à 5′234, 45 CHF. En quelle
année est-on ?

37) On place 15′000 CHF à intérêts composés et à 41
2
% pendant 20 ans. Pendant combien

d’années aurait-il fallu placer cette somme à intérêts simples et à 5% pour qu’elle
acquière la même valeur ?

38) Pour mener à bien certains travaux, une commune a dû emprunter 1′800′000 CHF à
5% et veut amortir cette dette en 30 ans. Combien doit-elle prévoir à son budget ?

39) Une personne place à la fin de chaque année 3′000 CHF à un taux de 4%. Que lui
reviendra-t-il une année après son 25ème placement ?

40) Un fumeur dépense en moyenne 6 francs par jour et ce depuis l’âge de 16 ans. Quelle
somme aurait-il accumulée le jour de ses 65 ans s’il avait placé à la fin de chaque année
et à 4% ce que lui coûte ce vice ?
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7.6 Solutions des exercices

1) a) 1 ; −1 ; −5 ; −13 ; −29 b) 3 ; 5 ; 7
3
; 13 ; 15

11

2)
1

4
;
1

28
;
1

70
;

1

130

4)
1

3
;
2

3
;
4

5
;
13

15

5) a)
√
2;

4
√
8;

8
√
128;

16
√
32′768

7) p = 500

8) u10 = 53

9) a) r = 2, u100 = 200, S100 = 10′100 b) r = 3, u48 = 134, S48 = 3′048

10) Somme : 99′450

11) r = 3, u1 = −27

12) r = 1.5, u1 = 10

13) un = 21, n = 10

14) u1 = 2, r = 1
2
, n = 10

15) 9 ; 11 ; 13 et 13 ; 11 ; 9

16) u1 = 30◦, u2 = 60◦, u3 = 90◦

17) u1 = 21, u2 = 28, u3 = 35

18) u10 = 307.546875 ou u10 = −307.546875

19) a) q = 2, u7 = 128, S7 = 254 b) q = −1
2
, u8 = − 1

128
, S8 =

257
384

20) q = 3, n = 6

21) u4 = 135

22) 8 ; 40 ; 200

23) q =

√
1 +
√
5

2

24) a) vn+1 =
1

3
vn

b) vn = − 1

3n−2
et un = 6− 1

3n−2

c) p = 22

25) a)
106

33
b) −654

55
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Mathématiques, MAP 1ère année 7. Progressions

26) a) 1, 84 · 1019 grains de blé b) environ 45 cm

27) a) 0, 165 m b) 34
3
m

28)
a) PA b) r = 1.75, 4 cm c) 327 cm

d) 21 cm e) 7 cm

29) Aire = 2a2

30) 8 cm

30) Sn = 1010n−1
81
− n

9

32) a) ∞ b) 2
√
3

5
c2

33) 27′706.82 CHF

34) 25′806.43 CHF

35) 64′373.64 CHF

36) a) 16′577 CHF b) par tâtonnement : en 2033

37) 29 ans (léger dépassement de valeur)

38) environ 117′092 CHF

39) environ 129′935 CHF

40) environ 231′810 CHF
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Chapitre 8

Répétition de géométrie

8.1 Quelques définitions

Dans cette partie, nous allons rappeler quelques notions de géométrie vues à l’école se-
condaire. Nous allons nous baser sur quelques définitions intuitives :

”Le point est ce qui n’a aucune partie, la ligne est une longueur sans largeur, la ligne

droite est celle qui est placée entre ses points.”

Ces définitions sont tirées des écrits d’Euclide . . .

8.1.1 Notations

Dans ce cours, nous utiliserons les notations suivantes :

A, B, C . . . points

a, b, c . . . droites

α, β, γ . . . angles ou mesure d’angles

(AB) la droite passant par A et B

δ(A;B) ou AB la distance de A à B

[AB] le segment (de droite) d’extrémités A et B

[AB) la demi droite d’origine A et passant par B

ÂOB angle des demi-droites [OA) et [OB)
⌢

AB arc de cercle d’extrémité A et B

Rappel

Nous donnons ci-dessous l’ensemble des lettres de l’alphabet grec avec leur nom.
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Alphabet grec

Minuscule Majuscule Nom Minuscule Majuscule Nom

α A alpha ν N nu

β B bêta ξ Ξ ksi ou xi

γ Γ gamma o O omicron

δ ∆ delta π ou ̟ Π pi

ε ou ǫ E epsilon ρ ou ̺ P rho

ζ Z zêta σ ou ς Σ sigma

η H êta τ T tau

θ ou ϑ Θ thêta υ Υ upsilon

ι I iota ϕ ou φ Φ phi

κ K kappa χ X khi ou chi

λ Λ lambda ψ Ψ psi

µ M mu ω Ω oméga

8.1.2 Les polygones

Un polygone est une figure plane limitée par des segments de droites consécutifs. Pour
rappel, un figure plane est une partie du plan limitée par une ligne fermée.

Les extrémités des segments sont appelés les sommets du polygone. Les segments de
droites entre deux sommets sont appelés les côtés du polygone.

En général, on nomme un polygone par l’énumération des sommets, en respectant l’ordre
dans lequel les sommets se suivent sur le pourtour du polygone.

Exemple

A

B

C

D

E

l’angle B̂AE

le côté [CD]

le sommet E

En respectant l’ordre dans lequel les sommets se suivent sur le pourtour de ce po-
lygone, on pourrait l’appeler ”le polygone ABCDE”, mais aussi ”CDEAB” ou
encore ”AEDCB”,. . .Mais, par exemple, on ne peut pas l’appeler ”le polygone
”ABCED”.
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8.1.3 Les triangles

Un triangle est un polygone à trois côtés.

A B

C

ab

c
α β

γ

Définition 8.1
Nous pouvons définir quelques droites remarquables dans les triangles quelconques.

- La médiane :

Droite passant par un sommet et par le milieu du côté opposé.
Chacune des trois médianes divise le triangle en deux triangles d’aires égales.

- La médiatrice :

Droite passant perpendiculairement par le milieu d’un côté du triangle.
Plus généralement, la médiatrice d’un segment est la droite perpendiculaire à ce
segment en son milieu.
De plus, cette médiatrice est l’ensemble des points équidistants des extrémités de
ce segment.

- La hauteur :

Droite passant par un sommet du triangle et perpendiculaire au côté opposé.
L’intersection de la hauteur et du côté opposé s’appelle le pied de la hauteur.

- La bissectrice intérieure :

Droite passant par un sommet du triangle et coupant l’angle intérieur formé par
les deux côtés en deux parties égales.
Plus généralement, la bissectrice d’un secteur angulaire est la demi-droite issue du
sommet de l’angle qui partage cet angle en deux angles adjacents de même mesure.
Elle forme de ce fait l’axe de symétrie de cet angle.
De plus, la bissectrice de deux droites est l’ensemble des points à égale distance
des deux droites.

A faire : dessiner des exemples de médianes, médiatrices, hauteurs et bissectrices.
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Définition 8.2
On peut définir quelques familles de triangles particuliers.

- Triangle isocèle :

Triangle ayant deux côtés isométriques (≡ de même longueur) ou deux angles de
même mesure.
Un triangle isocèle est caractérisé par un axe de symétrie et par le fait que la
médiane, la hauteur, la bissectrice et la médiane relatives à la base et à l’angle au
sommet sont confondues.

- Triangle équilatéral :

Triangle ayant ses trois côtés isométriques ou ses trois angles de même mesure.
Un triangle équilatéral est un triangle trois fois isocèle.

- Triangle rectangle :

Triangle possédant un angle droit. Dans ce cas, le côté opposé à l’angle droit est
appelé hypoténuse et les côtés de l’angle droit les cathètes .

- Triangle scalène :

Triangle ne possédant pas de symétrie particulière.

Triangle isocèle Triangle équilatéral

b

Triangle rectangle

8.1.4 Les quadrilatères

Un quadrilatère est un polygone à quatre côtés.

Définition 8.3
On peut définir quelques familles de quadrilatères particuliers.

- Trapèze :

Quadrilatère ayant au moins une paire de côtés parallèles.

Trapèze isocèle

b

Trapèze rectangle

- Parallélogramme :

Quadrilatère ayant deux paires de côtés parallèles.

Propriétés : - les diagonales se coupent en leur milieu,
- les côtés parallèles sont isométriques,
- il possède un centre de symétrie.
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- Rectangle :

Parallélogramme ayant au moins un angle droit.

Propriétés : - les mêmes que celles du parallélogramme,
- les diagonales sont isométriques,
- il possède deux axes de symétrie.

- Rhomböıde :

Quadrilatère dont au moins une des diagonales est un axe de symétrie.

Propriétés : - les diagonales sont perpendiculaires,
- il possède au moins une paire d’angles égaux,
- il possède deux paires de côtés consécutifs isométriques,
- il possède un axe de symétrie.

Cerf-volant Fer-de-lance

- Losange :

Quadrilatère dont les deux diagonales sont des axes de symétries.

Propriétés : - les diagonales sont perpendiculaires,
- les diagonales se coupent en leur milieu,
- les quatre côtés sont isométriques,
- les angles opposés sont isométriques.

- Carré :

Losange ayant au moins un angle droit.

Propriétés : - toutes celles du losange,
- il possède quatre axes de symétries.

Théorème 8.1

1. Tout quadrilatère qui possède une paire de côtés parallèles et isométriques est un
parallélogramme.

2. Tout quadrilatère dont les diagonales se coupent en leurs milieux est un parallé-
logramme.

A B

CD
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Démonstration.

1. Admettons que [AB] et [CD] sont parallèles et isométriques. Il existe alors une trans-
lation qui déplace [AB] sur [CD].
A allant sur D et B sur C, [AD] et [BC] sont parallèles et isométriques. ABCD est
donc un parallélogramme.

2. Soit O l’intersection des diagonales. La symétrie de centre O déplace C sur A et D
sur B. Or, par symétrie centrale, tout segment est transformé en un segment parallèle
et isométrique.
[AB] et [CD] sont parallèles et isométriques. ABCD est un parallélogramme.

8.1.5 Les cercles et les disques

Un cercle est l’ensemble de tous les points situés à une distance fixée, appelé rayon et
notée r, d’un point donné, appelé centre et noté Ω.

On appelle disque la surface enfermée par un cercle.

Sur le dessin :
– [AB] est un diamètre du cercle,
– [PQ] est un corde du cercle,

–
⌢

PQ est un arc de cercle.

Ω

r

A

B

P

Q

page 146
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8.1.6 Formules de calcul du périmètre et l’aire

On donne ci-dessous les formules pour le calcul du périmètre, p, et de l’aire, A, de figures
planes présentées dans les pages précédentes.

Triangle Carré

a

b

c
h

b

c

c

c

c

b b

bb

p = a+ b+ c A =
b · h
2

p = 4 · c A = c2

Rectangle Losange

a

b

a

b

b b

bb

c c

cc

d
D

b

p = 2 · a+ 2 · b A = a · b p = 4 · c A = D·d
2

Parallélogramme Trapèze

a

b

a

b

h

b

a

B

c

b

h

b

p = 2 · a+ 2 · b A = b · h p = a+B + c + b A =
B + b

2
· h

Cercle et disque

Ω
r

p = 2π · r A = π · r2
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8.1.7 Les angles

Définition 8.4

1 2
4 3

5 6

78g

f

- Les angles 1−3 (2−4, 5−7, 6−8) sont appelés
opposées par le sommet.

- Les angles 1−5 (2−6, 3−7, 4−8) sont appelés
correspondants.

- Les angles 3− 5 et 4− 6 sont appelés alternes-
internes.

- Les angles 1− 7 et 2− 8 sont appelés alternes-
externes.

- Si la somme de deux angles fait 180◦, ces deux
angles sont dit supplémentaires. Les angles 1−2,
3− 4, 5− 6 et 7− 8 sont supplémentaires.

Proposition 8.2

1. Les angles opposés par le sommet sont égaux.

2. Si les droites f et g sont parallèles, alors les angles correspondants, alternes-internes
et alternes-externes, sont tous égaux. La réciproque est vraie.

8.2 Quelques théorèmes

8.2.1 Théorème de Thalès

Le Théorème de Thales est un théorème de géométrie, attribué selon la légende au
mathématicien et philosophe grec Thalès de Milet ; en réalité Thalès s’est davantage
intéressé aux angles opposés dans des droites sécantes, aux triangles isocèles et aux cercles
circonscrits.

Cette propriété de proportionnalité était connue des Babyloniens. Mais la première dé-
monstration de ce théorème est attribuée à Euclide qui la présente dans ses Eléments
(proposition 2 du livre IV) : il le démontre par proportionnalité d’aires de triangles de
hauteur égale.

Le Théorème de Thalès sert notamment à calculer des longueurs dans un triangle, à
condition d’avoir deux droites parallèles.

Théorème 8.3 (Théorème de Thalès)

A

B
C

B′
C ′

A

B
C ′

B′

C

Dans les situations ci-contre
((BB′) // (CC ′)), on a :

AB

AC
=
AB′

AC ′ =
BB′

CC ′
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On peut permuter certains termes de ces fractions pour obtenir d’autres égalités de

rapports, comme
AC ′

AC
=
AB′

AB
.

En réalité, le théorème de Thalès concerne une propriété plus générale :

A

B

C

A′

B′

C ′d

d′

Trois droites parallèles déterminent sur deux droites sécantes
(quelconques) des segments homologues proportionnels.

Autrement dit :

Si trois droites parallèles rencontrent deux droites d et d′,
respectivement et dans cet ordre, en A, B, C et A’, B’, C’,
alors :

A′B′

AB
=
B′C ′

BC
=
A′C ′

AC

En permutant certains termes de ces fractions, on peut faire
nâıtre d’autres égalités de rapports :

A′B′

B′C ′ =
AB

AC

B′C ′

A′C ′ =
BC

AC

A′B′

A′C ′ =
AB

AC

Remarque

Dans le cas général du théorème de Thalès (ci-dessus) avec A 6= A′, on a les inégalités
suivantes :

AB

AC
6= BB′

CC ′ et
A′B′

A′C ′ 6=
BB′

CC ′

contrairement au cas particulier du théorème avec A = A′ où ces rapport sont égaux.

Théorème 8.4 (Réciproque du théorème de Thalès)
Le théorème de Thalès, dans son sens direct, permet de déduire certaines proportions dès
que l’on connâıt un certain parallélisme. Sa réciproque permet de déduire un parallélisme
dès que l’on connâıt l’égalité de certains rapports.

A

B′
B

C ′
C Dans un triangle ABC, si les points A,B′, B sont alignés

dans cet ordre (B′ ∈ [AB]) et les points A,C ′, C sont
alignés dans cet ordre (C ′ ∈ [AC]) et si, de plus, les rap-

ports
AB′

AB
et
AC ′

AC
sont égaux

(
AB′

AB
=
AC ′

AC

)
alors :

les droites (BC) et (B′C ′) sont parallèles.

Des théorèmes analogues existent pour des points A,B,B′ alignés dans cet ordre et pour
des points B′, A, B alignés dans cet ordres.

8.2.2 Angle au centre

Définition 8.5
Un angle est dit inscrit dans un cercle quand son sommet est sur le cercle et ses côtés
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coupent le cercle.

Un angle est dit au centre quand son sommet est au centre d’un cercle.

Théorème 8.5
Tout angle inscrit est égale à la moitié de l’angle au centre qui intercepte le même arc.

Démonstration. On désire démontrer que l’angle au centre B̂OC vaut le double de l’angle

inscrit B̂AC : B̂OC = 2B̂AC. On Nous distinguons trois cas :

1.

A

O

C

B

Le triangle OAB est isocèle. Nous obtenons les
résultats suivant :

- B̂AC = B̂AO = ÂBO = α

- ÂOB = 180◦ − 2α

- B̂OC + ÂOB = 180◦

- et donc : B̂OC = 180◦−ÂOB = 180◦−(180◦−2α) =
2α

2.

A

O

C
B

M

D’après le cas particulier ci-dessus :

- B̂AC = B̂AM + M̂AC et B̂OC = B̂OM + M̂OC

- B̂OM = 2 · B̂AM et M̂OC = 2 · M̂AC

- et donc : B̂OC = 2 · B̂AM + 2 · M̂AC = 2 · B̂AC

3.

A

O

C

B

M

D’après le cas particulier du début :

- B̂AC = B̂AM − M̂AC et B̂OC = B̂OM − M̂OC

- B̂OM = 2 · B̂AM et M̂OC = 2 · M̂AC

- et donc : B̂OC = 2 · B̂AM − 2 · M̂AC = 2 · B̂AC.

Corollaire 8.6

1. Tout angle inscrit dans un demi-cercle est un angle droit.

2. Deux angles inscrits qui interceptent le même arc sont isométriques.

8.2.3 Triangles semblables

Définition 8.6
Deux triangles sont semblables si leurs côtés sont proportionnels. Les cotés proportion-
nels sont dit analogues ou correspondants.
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Proposition 8.7
Deux triangles sont semblables quand deux angles de l’un sont égaux à deux angles de
l’autre.

Proposition 8.8
Deux triangles sont semblables quand deux côtés de l’un sont proportionnels à deux côtés
de l’autre et les angles déterminés par ces côtés sont égaux.

8.2.4 Cercle circonscrit à un triangle

Théorème 8.9
Les médiatrices d’un triangle sont concourantes (≡ se coupent au même point).

A

B C

ma

mb

mc

Ω
bc

Démonstration.

Hyp. : ma est la médiatrice de BC, mb la médiatrice de AC et mc la médiatrice de AB

Concl. : ma ∩mb = {Ω} et Ω ∈ mc

Démo. : ma et mb ne sont pas parallèles, sinon [BC] et [AC] le seraient aussi. Donc ma

et mb se coupent en un point Ω.

Ω ∈ ma ⇒ BΩ = CΩ
Ω ∈ mb ⇒ CΩ = AΩ

}
⇒ AΩ = BΩ

Donc Ω ∈ mc.

Conséquence

A tout triangle, on peut associer un et un seul point équidistant des sommets du triangle.
Par suite, on peut associer un et un seul cercle passant par les 3 sommets. Ce cercle est
appelé cercle circonscrit au triangle.

Cas particulier

Supposons que le triangle ABC soit rectangle en A. Soit Ω le milieu de [BC] et A′ le
symétrique de A par rapport à Ω. ABA′C est un rectangle.

Donc Ω est équidistant de A, A′, B, C. Par suite, le cercle de centre Ω passe par ABC.
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En d’autres termes : dans un triangle rectangle, le cercle circonscrit admet l’hypothénuse
comme diamètre.

La réciproque est aussi vraie : lorsque le cercle circonscrit d’un triangle ABC admet le
côté BC comme diamètre, le triangle est rectangle en A.

Définition 8.7
Le cercle de Thalès d’un segment est le cercle admettant ce segment comme diamètre.

8.2.5 Orthocentre d’un triangle

Théorème 8.10
Les hauteurs d’un triangle sont concourantes.

A

B C

hc

hb

ha

B′

A′

C ′

H
bc

Démonstration.

Hyp. : A ∈ hA, hA ⊥ [BC], B ∈ hB, hB ⊥ [AC], C ∈ hC , hC ⊥ [AB].

Concl. : hA ∩ hB = hA ∩ hC = hB ∩ hC = H .

Démo. : Traçons [B′C ′] // [BC] par A et [A′C ′] // [AC] passant par B.

Le quadrilatère ACBC ′ est un parallélogramme. AC ′ et BC sont donc isométriques.

Pour la même raison, BC et AB′ sont isométriques. A est donc le milieu de B′C ′.

Donc hA ⊥ B′C ′ est la médiatrice de B′C ′. De même, hB est la médiatrice de A′C ′

et hC celle de A′B′.

Donc, d’après le théorème précédent, H existe et est le point d’intersection des trois
hauteurs.

Définition 8.8
L’orthocentre d’un triangle est le point d’intersection de ses hauteurs.

Remarque

L’orthocentre est donc le centre du cercle circonscrit au triangle augmenté.
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8.2.6 Centre de gravité

Théorème 8.11
Les médianes d’un triangle se coupent en un point intérieur du triangle, situé au 2

3
de

chaque médiane à partir des sommets correspondants.

C

B A
ga

gb

gc

B′

DE

A′

C ′

Gbc

Démonstration.

Hyp. : A′B = A′C, A′ ∈ [BC]
B′C = B′A, B′ ∈ [AC]
C ′A = C ′B, C ′ ∈ [AB]

Concl. : 1. gA ∩ gB ∩ gC = G
2. GA = 2GA′

GB = 2GB′

GC = 2GC ′

Démo. : [AA′] et [BB′] se coupent à l’intérieur de ABC. Soit G ce point, D le milieu
de [GA] et E le milieu de [GB].

1. Le quadrilatère A′B′DE est un parallélogramme. En effet, [A′B′] // [AB] et
A′B′ = 1

2
AB. De même que [DE] // [AB] et DE = 1

2
AB (segments de ABG).

2. Donc
GA′ = DG
AD = DG

}
⇒ AG =

2

3
AA′ et de même, on voit que BG =

2

3
BB′.

En remplaçant [BB′] par [CC ′], il existe un point G′ avec G′A = 2G′A′. On
aurait donc

GA = 2GA′ avec G ∈ AA′

et G′A = 2G′A′ avec G′ ∈ AA′.

Par suite G = G′

Définition 8.9
Le centre de gravité ou barycentre d’un triangle est le point d’intersection des
médianes de ce triangle.
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8.2.7 Cercle inscrit dans un triangle

Théorème 8.12
Les bissectrices intérieures d’un triangle sont concourantes.

A

B C

bB

bC

bA

I
bc

Démonstration.

Hyp. : bA, bB, bC sont les bissectrices intérieures.

Concl. : bA ∩ bB ⊂ bC , (bA ∩ bB ∩ bC = {I}).
Démo. : bA coupe le côté opposé au sommet d’où elle est issue. Il en est de même pour

bB.

Donc bA ∩ bB = {I}, un point intérieur de ABC.

I ∈ bA ⇒ δ(I; [AB]) = δ(I; [AC])
I ∈ bB ⇒ δ(I; [AB]) = δ(I; [BC])

}
⇒ δ(I; [AC]) = δ(I; [BC])

Donc I appartient à la bissectrice intérieure issue de C, donc appartient à bC .

Conséquence

A tout triangle, on peut associer un et un seul point équidistant des côtés du triangle.
Par suite, on peut associer un et un seul cercle tangent aux 3 côtés du triangle. Ce cercle
est appelé cercle inscrit au triangle.

8.2.8 Théorèmes relatifs au triangle rectangle

Nous allons énoncer ci-dessous trois théorèmes importants liés au triangle rectangle : les
théorèmes de la hauteur, d’Euclide et de Pythagore. Les démonstrations de ces
théorèmes seront effectuées en exercices.

On considère un triangle rectangle en A. Le point H désigne le pied de la hauteur issue
du sommet A.
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A

B C
b

H

b

Rappel

La moyenne arithmétique de deux nombres x et y est donnée par
x+ y

2
.

La moyenne géométrique de deux nombres x et y est donnée par
√
x · y.

Théorème 8.13 (Théorème de la hauteur)
La hauteur d’un triangle rectangle est la moyenne géométrique entre les 2 segments qu’elle
détermine sur l’hypothénuse. Autrement dit :

AH2 = BH · CH

Théorème 8.14 (Théorème d’Euclide)
Dans un triangle rectangle, chaque cathète est la moyenne géométrique entre sa projection
sur l’hypothénuse et l’hypothénuse entière. Autrement dit :

AB2 = BH · BC et AC2 = CH · CB

Théorème 8.15 (Théorème de Pythagore)
Dans un triangle rectangle, le carré de l’hypothénuse est égal à la somme des carrés des
deux cathètes. La réciproque est encore vraie. Autrement dit :

BC2 = AB2 + AC2
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8.3 Exercices

1) Dans un triangle ABC, tel que l’angle en A égale deux fois l’angle en B, on prend
sur [AB] un point quelconque M ; on prolonge [CA] d’une longueur AM et on place
D à l’extrémité du segment obtenu (AD = AM). Enfin, on mène la droite (DM) qui
coupe [BC] en N .

a) Comparer les angles ÂDM et ÂMD avec l’angle B̂AC.

b) Montrer que MN = NB.

c) Montrer que l’angle ĈND et que l’angle B̂AC sont isométriques.

2) Sur les côtés d’un angle de sommet O, on prend des longueurs égales OA = OB. En
A, on élève la perpendiculaire à (OA) qui coupe la droite (OB) en C. En B, on élève
la perpendiculaire à (OB) qui coupe la droite (OA) en D. Ces perpendiculaires se
coupent en I.

a) Montrer que l’on a : i) OC = OD
ii) IC = ID
iii) IA = IB

b) Montrer que [OI) est la bissectrice de l’angle de sommet O.

3) Montrer que deux angles qui ont leurs côtés respectivement perpen-
diculaires sont isométriques. α

β

b

b

4) Soit un triangle ABC inscrit dans un cercle ; la bissectrice intérieure de l’angle en A
coupe le cercle en M ; la bissectrice intérieure de l’angle en B coupe le cercle en N et
rencontre (AM) en I.

Comparer les angles B̂IM et ÎBM et montrer que IM = BM .

5) On trace les hauteurs [AA′], [BB′] d’un triangle ABC. Elles se coupent en H . La
hauteur [AA′] recoupe le cercle circonsrcit en H ′.

a) Comparer les angles ĈAA′ et ĈBB′.

b) Comparer les angles ĈBH ′ et ĈAH ′.

En déduire une propriété remarquable des symétriques de l’orthocentre d’un triangle
par rapport aux trois côtés du triangle.

6) Un lieu géométrique désigne l’ensemble des points du plan ou de l’espace possédant
une certaine propriété.

Exemple : le lieu géométrique des points M dont la distance à un point fixe A est
égale à R est le cercle de centre A et de rayon R.

Construire le lieu géométrique des points d’où l’on voit le segment [AB] sous un angle
de 90◦ et celui d’où l’on voit le segment [AB] sous un angle de 30◦.
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7) Montrer que la hauteur [AH ] d’un triangle rectangle en A détermine deux triangles
rectangles semblables au triangle donné. En déduire les théorème de la hauteur, d’Eu-
clide et de Pythagore.

8) Construire les longueurs données par les expressions suivantes dans lesquels a, b et c
sont des longueurs données.

a) x =
√
a2 + 4b2 b) x = a

√
7 c) x =

√
a2 + b2 − c2

9) Quelle est la valeur de la hauteur h d’un triangle équilatéral de côté a ? Que vaut son
aire ?

10) Partager un segment donné en n parties de même longueur ; prendre n = 4 puis n = 7.

11) Construire un triangle ABC, connaissant α, b et bA (la longueur de la bissectrice
intérieure issue de A).

12) Construire un triangle ABC, connaissant c, hB (la longueur de la hauteur issue de B)
et β.

13) Calculer les aires des domaines grisés ci-dessous :

a) a b) a c) a

d) a e)

ab

f)
a

g) a h) a

14) Entourez un ballon de football d’une ficelle rouge. Allongez la ficelle de manière à
entourer le ballon tout en restant à 1 mètre de sa surface. Entourez alors la Terre
(supposée sphérique) entière avec une ficelle bleue et allongez cette ficelle de façon à
entourer la Terre tout en restant à 1 mètre de sa surface. Quel est, selon vous, le plus
grand des deux allongements ? Celui de la ficelle rouge autour du ballon ou celui de
la ficelle bleue entourant la Terre ?
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15) Le jour du solstice d’été, le fond d’un puits situé en Haute-Egypte à Syrène (l’actuel
Assouan) est éclairé par le soleil. Au même moment, à Alexandrie, distant de 800 km
et sur le même méridien, on voit le soleil sous un angle de 7◦ par rapport à la verticale
du lieu. Déduire le rayon de la terre de cette observation.

16) Soit un cube d’arête a.

a) Calculer le volume de la sphère inscrite au cube.

b) Calculer l’aire de la sphère tangente aux douze arêtes du cube.

c) Calculer le volume de la sphère circonscrite au cube.

17) On dispose d’une corde de longueur l = π. Parmi les trois figures géométriques sui-
vantes, laquelle doit-on former avec la corde pour couvrir la plus grande surface : un
triangle équilatéral, un carré ou un cercle ?
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8.4 Solutions des exercices

9) h =

√
3

2
a, A =

√
3

4
a2

13) a)
a2

2
b) (

π

2
− 1)a2 c)

3 + 2
√
2− π

6 + 4
√
2

a2 d) a2

e)
ab

2
f)

3
√
3− π
24

a2 g)
3
√
3− π
12

a2 h)
(
1 +
√
3 +

π

3

)
a2

15) 6548 km

16) a) V =
π

6
a3 b) A = 2πa2 c) V =

√
3π

2
a3
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Chapitre 9

Trigonométrie

9.1 Mesure d’un angle

9.1.1 Angles et degrés

Inventée par les Grecs il y a plus de 2000 ans, la trigonométrie est une partie des
mathématiques qui s’occupe des relations entre les longueurs et les angles des triangles.
Le mot trigonométrie est dérivé des trois mots grecs tri (trois), gonôs (angles) et metron
(mesure).

Un angle est une grandeur permettant de décrire l’amplitude d’une rotation. On utilise
très souvent des lettres grecques α (alpha), β (bêta), γ (gamma), φ (phi) ou θ (thêta)
pour nommer les angles (voir les conventions de notation sous 8.1.1).

s1

s2

α

Afin de résoudre des problèmes ayant trait à l’astronomie, les Babyloniens ont divisé
le disque en 360 parties égales identifiant un degré[◦]. On mesure le nombre de degrés
depuis la demi-droite de référence du 0◦ dans le sens trigonométrique (sens contraire
de celui des aiguilles d’une montre).

Ce choix se justifiait par le fait que 360 a un grand nombre de diviseurs. En effet, 360 est
divisible par 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120 et 180.

0◦

30◦

45◦

60◦
90◦

120◦

135◦

150◦

180◦

+
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A une même situation peuvent correspondre plusieurs angles (une infinité !). En effet, on
peut faire autant de tours que l’on veut dans un sens comme dans l’autre. Par exemple,
voici trois façons d’amener le segment s1 sur le segment s2 par une rotation.

s1

s2

−330◦
s1

s2

30◦
s1

s2

390◦

Voici quelques-uns des angles correspondant à la situation ci-dessus.

. . . ,−1050◦,−690◦,−330◦, 30◦, 390◦, 750◦, 1100◦, . . .

Ces angles sont les mêmes à un multiple de 360◦ près, ce qui correspond à un tour.

Définition 9.1
Un angle α est dit :

- aigu si α > 0◦ et α < 90◦. - droit si α = 90◦.

- obtus si α > 90◦ et α < 180◦. - plat si α = 180◦.

9.1.2 Angles et radians

Jusqu’à présent, vous avez toujours représenté les angles en degrés. C’est la manière la
plus courante de se représenter les angles, mais ce n’est pas toujours la plus pratique en
mathématiques. Une autre façon de mesurer un angle serait de prendre la longueur de
l’arc correspondant. Toutefois cette longueur dépend du rayon du cercle.

Définition 9.2

Soit C un cercle de centre O et de rayon r. Soit encore
α un angle de sommet O.

Si la longueur de l’arc de cercle intercepté par l’angle α
est égale à r, on dit que l’angle α mesure un radian (de
radius = rayon).

Comme la circonférence du cercle vaut 2πr, il en découle
que :

1 tour = 2π radians

α

r

r

r

O

C

Or, 1 tour correspond également à 360◦. On a donc la correspondance suivante :

360◦ ←→ 2π ou 180◦ ←→ π

On prononce ”2 pi radians correspond à 360 degrés”.
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Exemple

180◦ ←→ π radians ∼= 3.14 radians

1◦ ←→ π

180
radians ∼= 0.0175 radian

Un angle de 1 radian correspond à un angle de

(
180

π

)◦
∼= 57.2958◦.

Ainsi, pour convertir des degrés en radians, il faut multiplier le nombre de degrés par
π

180
. Inversement, pour convertir des radians en degrés, il faut multiplier le nombre de

radians par
180

π
.

A vous :

degrés 0◦ 15◦ 30◦ 45◦ 60◦ 90◦ 120◦ 150◦ 180◦

radians
π

2

Par convention, quand on ne précise pas l’unité d’un angle, il est exprimé en
radians. Si vous voulez travailler en degrés, n’oubliez pas le ◦.

9.1.3 Longueur d’un arc de cercle et aire d’un secteur circulaire

Considérons un cercle de rayon r et un angle au centre de θ radians.

D’après la définition du radian, la longueur l de l’arc correspondant
à l’angle θ est donnée par

l = rθ

θ
l

r
b

b

De même, l’aire S du secteur circulaire correspondant à l’angle θ
est donnée par

S =
1

2
r2θ

r
b

b

θ

9.2 Le cercle trigonométrique

Définition 9.3
On appelle cercle trigonométrique le cercle de rayon 1 centré à l’origine O d’un repère
orthonormé.

Dans ce cas, un angle de 1 radian correspond à un arc de longueur 1 et un angle de θ
radians correspond à un arc de longueur θ.

Nous allons ”enrouler la droite réelle autour du cercle trigonométrique” de manière à
visualiser tout nombre réel comme la mesure en radians d’un angle.
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x

y

b
I(1; 0)

J(0; 1)

α

b
M

O

Plus précisément, à tout nombre réel α > 0, on fait
correspondre le pointM du cercle trigonométrique tel
que :

l’arc
⌢

IM a une longueur égale à α et est orienté posi-
tivement (sens contraire des aiguilles d’une montre).

Si α < 0, l’arc est orienté négativement.

Le nombre α est donc une mesure en radians de
l’angle ÎOM . Cette mesure en radians d’un angle est
la longueur de l’arc correspondant sur le cercle trigo-
nométrique et s’écrit sans unité.

Un angle possède plusieurs mesures en radians qui diffèrent entre elles d’un multiple
entier de 2π.

9.2.1 Les fonctions trigonométriques

Les fonctions sinus et cosinus

Définition 9.4

Soit P (1; 0) sur le cercle trigonométrique. Soit encore
M , l’image de P par une rotation de centre O et
d’angle α.

On appelle cosinus de l’angle α, noté cos(α), la
première coordonnée ou abscisse de M . Celle-ci cor-
respond à la mesure algébrique du segment OC, où
C est la projection de M sur l’axe des abscisses.

On appelle sinus de l’angle α, noté sin(α), la seconde
coordonnée ou ordonnée de M . Celle-ci correspond
à la mesure algébrique du segment OS, où S est la
projection de M sur l’axe des ordonnées.

x

y

I

J

α

b
M

C

S

O

si
n
(α

)

cos(α)
b

b

On note : M(cos(α); sin(α))

Remarques

– Si le point S est au-dessus de O, le sinus est positif ; si S est au-dessous de O, le sinus
est négatif.

– Si le point C est à droite de O, le cosinus est positif ; si C est à gauche de O, le cosinus
est négatif.

– Des valeurs approximatives de sin(α) et de cos(α), pour tout angle α, peuvent être
facilement obtenues au moyen d’une machine à calculer.

Exemple : sin(35◦) = 0, 5735 . . . ; cos(3) = −0, 9899 . . .

Propriétés

Il découle de la définition que :

−1 6 cos(α) 6 1 et −1 6 sin(α) 6 1
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Les fonctions tangente et cotangente

Définition 9.5

Soit M(cos(α); sin(α)) sur le cercle trigonométrique.
On définit le point T comme l’intersection entre la
droite passant par (0; 0) et M et la droite verticale
tangente au cercle au point I(1; 0).

On définit encore le point K comme l’intersection
entre la droite passant par (0; 0) et M (la même que
ci-dessus) et la droite horizontale tangente au cercle
au point J(0; 1).

On appelle tangente de l’angle α, noté tan(α),
l’ordonnée de T . Celle-ci correspond à la mesure
algébrique du segment IT .

x

y

I

J

α

bM

K

T

O

ta
n
(α

)

cot(α)
b

b

On appelle cotangente de l’angle α, noté cot(α), l’abscisse de C. Celle-ci correspond à
la mesure algébrique du segment JK.

On note : T (1; tan(α)) et K(cot(α); 1)).

Remarques

– Si T est au-dessus de I, la tangente est positive ; si T est au-dessous de I, la tangente
est négative.

– Si K est à droite de J , la cotangente est positive ; si K est à gauche de J , la cotangente
est négative.

Relations fondamentales entre les fonctions trigonométriques d’un même arc

Les trois relations suivantes permettent de déterminer le sinus, le cosinus, la tangente
ou la cotangente d’un angle lorsqu’une seule de ces valeurs est connue. Elles sont très
importantes. Il faut donc les connâıtre par cœur.

Proposition 9.1
Soit un angle α. On a l’égalité

cos2(α) + sin2(α) = 1

et, si toutes les expressions sont bien définies (si α 6= π

2
+ k · π, k ∈ Z pour la première et

si α 6= k · π, k ∈ Z pour la seconde), les égalités

tan(α) =
sin(α)

cos(α)
et cot(α) =

1

tan(α)
=

cos(α)

sin(α)

Ces égalités seront établies en exercices.

9.2.2 Valeurs exactes des fonctions trigonométriques

Il est bon de connâıtre par cœur les valeurs exactes des fonctions trigonométriques de
quelques angles particuliers qu’on retrouve fréquemment.
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α (degrés) 0◦ 30◦ 45◦ 60◦ 90◦ 180◦ 270◦

α (radians) 0
π

6

π

4

π

3

π

2
π

3π

2

cos(α) 1

√
3

2

√
2

2

1

2
0 −1 0

sin(α) 0
1

2

√
2

2

√
3

2
1 0 −1

tan(α) 0

√
3

3
1

√
3 − 0 −

cot(α) −
√
3 1

√
3

3
0 − 0

Au lieu de représenter ces valeurs sous forme d’un tableau, on peut également utiliser le
cercle trigonométrique.

(1; 0)
b

(0; 1)
b

(−1; 0)
b

(0;−1)
b

b

b

b

π
6

30
◦

( √ 3
2
;
1
2

)
π
4

45
◦

( √ 2
2
;
√ 2

2

)

π
3

60
◦

( 1
2
;

√ 3
2

)

b

b

b

5π
6

150 ◦

(
− √

3
2 ; 1

2

) 3π
4

135 ◦

(
− √

22 ; √
22
)

2π3

120
◦

(
−
1
2 ; √

32 )

b

b

b

7π
6

21
0
◦

( −
√ 3

2
;−

1
2

)
5π

4

22
5
◦

( −
√ 2

2
;−
√ 2

2

) 4π 3

24
0
◦

( −
1

2
;
−

√ 3
2

)

b

b

b

11π
6

330 ◦

(√
3

2 ;− 1
2

)
7π

4

315 ◦

(
√
22 ;− √

22
)

5π3

300
◦

(
1
2 ;− √

32 )

x

y

0◦

9
0
◦

180◦

2
7
0
◦

0

π 2

π

3
π 2

Démonstration. Nous allons déterminer les valeurs du sinus et du cosinus pour les angles
π

6
,
π

4
,
π

3
. Les valeurs de la tangente et de la cotangente s’obtiennent ensuite aisément en

utilisant les relations : tan(α) =
sin(α)

cos(α)
et cot(α) =

1

tan(α)
.
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– α =
π

4
(= 45◦)

x

y

I

J

π
4

b M

O

si
n
(π
4
)

cos(π4 )

S

C

On sait que cos2
(π
4

)
+ sin2

(π
4

)
= 1.

Or cos
(π
4

)
= sin

(π
4

)
. En effet le triangle OMC est

isocèle (M̂OC = ÔMC =
π

4
, voir le dessin).

Donc 2 cos2
(π
4

)
= 1 ⇒ cos2

(π
4

)
=

1

2
⇒ cos

(π
4

)
=

√
1

2
=

1√
2
=

√
2

2
.

On a donc : cos
(π
4

)
= sin

(π
4

)
=

√
2

2
.

– α =
π

6
(= 30◦)

x

y

I

J

π
6

b

b

M

M ′

CO

1

1

Dans le dessin ci-contre, on voit que comme l’angle

ĈOM vaut
π

6
, l’angle ÔMC vaut

π

3
, de même que

l’angle ÔM ′C (par symétrie). Le triangle OMM ′ est
donc équilatéral et la longueur de chacun de ses côtés
vaut 1 (rayon du cercle).

On en déduit que sin
(π
6

)
= CM =

1

2
.

De plus, le théorème de Pythagore écrit dans le triangle

OMC permet d’écrire cos2
(π
6

)
+

1

4
= 1 ⇒ cos2

(π
6

)
=

3

4
. Ainsi cos

(π
6

)
=

√
3

4
=

√
3

2
.

On a finalement : cos
(π
6

)
=

√
3

2
et sin

(π
6

)
=

1

2
.

– α =
π

3
(= 60◦)

On peut montrer que cos(α) = sin
(π
2
− α

)
et sin(α) = cos

(π
2
− α

)
(voir le chapitre

sur les fonctions trigonométriques en analyse) .

On a alors que : cos
(π
3

)
= sin

(π
6

)
=

1

2
et sin

(π
3

)
= cos

(π
6

)
=

√
3

2
.

9.3 Les triangles rectangles

Définition 9.6 (Rappel)
Un triangle rectangle est un triangle possédant un angle droit. Dans ce cas, le côté
opposé à l’angle droit est appelé hypoténuse et les côtés de l’angle droit les cathètes.
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Une particularité intéressante des triangles rec-
tangles est le fait que tous ces triangles qui ont
un angle aigu α de même mesure sont sem-
blables : leur côtés sont donc proportionnels. Le
théorème de Thalès nous permet d’écrire pour
les triangles ABC, AB′C ′ et AB′′C ′′ (angle aigu
α commun) :

BC

AC
=
B′C ′

AC ′ =
B′′C ′′

AC ′′ .

α
A

B B′ B′′

C
C ′

C ′′

b b b

Ce rapport ne dépend que de la mesure de α. On peut donc définir le rapport :

sinus défini par sin(α) =
longueur de la cathète opposée à α

longueur de l’hypoténuse
=
a

c

On utilise les notations définies par la figure ci-dessous.

On définit également les deux autres rapports :

cosinus défini par cos(α) =
longueur de la cathète adjacente à α

longueur de l’hypoténuse
=
b

c

tangente défini par tan(α) =
longueur de la cathète opposée à α

longueur de la cathète adjacente à α
=
a

b

α

β
c

b

a

b

On peut, de la même manière, définir le sinus, le cosinus et la tangente pour le second
angle aigu du triangle rectangle, l’angle β.

Proposition 9.2
Les rapports sinus, cosinus et tangente définis ci-dessus correspondent bien aux définitions
des fonctions trigonométriques pour les angles aigus.

Démonstration. A chaque angle aigu α (0 < α <
π

2
), on peut associer un triangle rec-

tangle de côtés de longueur 1 pour l’hypothénuse et cos(α), sin(α) pour les deux cathètes.

Tout triangle rectangle avec un angle α de même mesure est semblable au triangle rec-
tangle défini ci-dessus. On oriente ce triangle pour obtenir la figure représentée ci-dessous.
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α

1

si
n
(α

)

cos(α)

a

b

c

En utilisant le théorème de Thalès, on trouve :

cos(α)

1
=
b

c
et

sin(α)

1
=
a

c
.

De plus, on a bien que tan(α) =
sin(α)

cos(α)
.

9.3.1 Résolution de triangles rectangles

Définition 9.7
Résoudre un triangle consiste à calculer les éléments non donnés (côtés et angles)

On pourra s’aider de la machine pour le calcul des fonctions trigonométriques.

Exemple

Résoudre le triangle ABC rectangle en C dont on donne le côté c = 4.25 et l’angle
β = 67.2◦.

On obtient d’abord α = 90◦ − β = 22.8◦.

Comme cos(67.2◦) = a
4.25

, on obtient avec la machine :

a = 4.25 · cos(67.2◦) ∼= 1.65

Comme sin(67.2◦) = b
4.25

, on obtient avec la machine :

b = 4.25 · sin(67.2◦) ∼= 3.92

Pour résoudre un triangle rectangle (i.e. déterminer toutes ses caractéristiques), il faut
connâıtre :

– la longueur d’au moins deux côtés de ce triangle, ou

– la longueur d’un côté de ce triangle et un angle.
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9.4 Les triangles quelconques

Dans ce paragraphe, on considère un triangle quel-
conque ABC. On note ses sommets dans le sens
positif par A, B et C. Les angles associés aux som-
mets seront notés α, β et γ et les côtés opposés aux
sommets a, b et c. A B

C

ab

c
α β

γ

Cette convention doit être respectée dans le but de pouvoir appliquer les théorèmes qui
suivent.

Lorsqu’on a parlé des triangles rectangles, la connaissance de deux caractéristiques (angle
ou longueur de côté) nous permettait de trouver toutes ses caractéristiques. Dans le
cas d’un triangle quelconque, c’est au moins trois caractéristiques qu’il faut connâıtre
pour pouvoir déterminer toutes les autres. Les théorèmes ci-dessous nous permettront de
résoudre un triangle quelconque.

9.4.1 Théorème du sinus

Théorème 9.3

Considérons un triangle quelconque ABC
inscrit dans un cercle de centre O et de rayon
r.

On a les relations suivantes :

a

sin(α)
=

b

sin(β)
=

c

sin(γ)
= 2r

où r est le rayon du cercle circonscrit au tri-
angle.

B

A

C

β

α

γ

Ob

a

c b

r

Autrement dit : dans un triangle quelconque, le rapport entre le côté opposé à un angle
et le sinus de cet angle est égal au rapport entre le côté opposé à un autre angle et le sinus
de cet autre angle. Ce rapport est aussi égal au double du rayon du cercle circonscrit.

Démonstration. Considérons un triangle quelconque ABC inscrit dans un cercle de rayon
r et de centre O.

B

A

C

α

O

r

r 2α

a

c b

r

b

B C

O

r2α α

a

r

b

a
2

bH

Le triangle OBC est isocèle en O, car les côtés [OB] et [OC] sont d’égale longueur.
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On en déduit que [OH ] est en même temps bissectrice de l’angle en O et hauteur issue
de O.

Or l’angle en O vaut 2α ; et l’angle ĈOH = α. On a donc
CH

OC
= sin(α).

Or CH =
a

2
et OC = r. On peut donc réécrire l’égalité précédente sous la forme :

sin(α) =
a
2

r
.

Finalement, en transformant cette égalité, on a :

2r =
a

sin(α)

Pour achever la démonstration, il suffit de choisir les triangles OAC et OAB et appliquer
le même raisonnement.

9.4.2 Théorème du cosinus

Théorème 9.4
Considérons un triangle quelconque ABC.

On a les relations suivantes :

a2 = b2 + c2 − 2bc cos(α)

b2 = c2 + a2 − 2ca cos(β)

c2 = a2 + b2 − 2ab cos(γ) A B

C

ab

c
α β

γ

Autrement dit : le carré de la longueur d’un côté d’un triangle quelconque est égal à
la somme des carrés des longueurs des deux autres côtés moins deux fois le produit des
longueurs des deux autres côtés multiplié par le cosinus de l’angle entre eux.

Pour passer d’une relation à l’autre, on fait les permutations circulaires suivantes.

a

b

c

α

β

γ

Cela nous permet de ne mémoriser qu’une seule relation.

Démonstration. Considérons un triangle quelconque ABC. Nous allons démontrer la for-
mule a2 = b2 + c2 − 2bc cos(α).

Pour cela, nous allons examiner la hauteur partant du sommet C. On doit distinguer
trois cas suivant où se situe le pied de cet hauteur : entre A et B, à gauche de A ou à
droite de B.

1. Premier cas : la hauteur ”tombe” entre A et B : les trois angles du triangle sont
aigus.
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En appliquant des résultats de trigonométrie
sur le triangle ACH , on obtient :

– sin(α) =
CH

b
⇒ CH = b sin(α)

– cos(α) =
AH

b
⇒ AH = b cos(α)

De plus, le segment [HB] a pour longueur
HB = c−AH = c− b cos(α).

A B

C

ab

c H

α
b

Pour obtenir a2, on peut maintenant utiliser le théorème de Pythagore sur le triangle
CHB :

a2 = CH2 +HB2

= b2 sin2(α) + (c− b cos(α))2
= b2 sin2(α) + c2 + b2 cos2(α)− 2bc cos(α)

= b2 (sin2(α) + cos2(α))︸ ︷︷ ︸
1

+c2 − 2bc cos(α)

= b2 + c2 − 2bc cos(α)

2. Deuxième cas : la hauteur ”tombe” à gauche de A : l’angle α est obtus.

En appliquant des résultats de trigonométrie
sur le triangle ACH , on obtient :

– sin(π−α) = CH

b
⇒ CH = b sin(π−α) =

b sin(α)

– cos(π−α) = AH

b
⇒ AH = b cos(π−α) =

−b cos(α)
De plus, le segment [HB] a pour longueur
HB = c+ AH = c− b cos(α).

B

AH

C

b

a

c

απ−α
b

Comme pour le cas 1, on utilise le théorème de Pythagore sur le triangle CHB
pour obtenir a2. On peut reprendre ici la démonstration du cas 1, puisque HB à la
même forme qu’en 1.

3. Troisième cas : la hauteur ”tombe” à droite de B : l’angle β est obtus.

En appliquant des résultats de trigonométrie
sur le triangle ACH , on obtient :

– sin(α) =
CH

b
⇒ CH = b sin(α)

– cos(α) =
AH

b
⇒ AH = b cos(α)

De plus, le segment [HB] a pour longueur
HB = AH − c = b cos(α)− c.

A

B H

C

a

b

c

β
α

b

Comme pour le cas 1, on utilise le théorème de Pythagore sur le triangle CHB pour
obtenir a2. On peut reprendre ici la démonstration du cas 1, puisque HB pour 3 est
l’opposé de HB pour 1 et que l’on considère le carré de HB dans le développement.

On peut, de la même manière, montrer les relations pour b2 et c2.
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9.4.3 Résolution de triangles quelconques

A partir de ces deux théorèmes, les informations minimales que l’on doit connâıtre pour
résoudre un triangle quelconque (i.e. déterminer toutes ses caractéristiques) sont :
– la longueur des trois côtés de ce triangle, ou
– la longueur de deux côtés de ce triangle et un angle, ou
– la longueur d’un côté de ce triangle et deux angles.

Exemple

Résoudre le triangle ABC dont on donne le côté a = 70.24, le côté b = 82.12 et
l’angle γ = 30.69◦.

Par le théorème du cosinus, on obtient que le carré du côté c vaut

c2 = a2+b2−2ab cos(γ) = (70.24)2+(82.12)2−2 ·70.24 ·82.12 cos(30.69◦) ∼= 1756.88

Et donc que c ∼= 41.92

Avec cette information, on peut utiliser le théorème du sinus pour déterminer α.
On sait que a

sin(α)
= c

sin(γ)
. On en déduit que

sin(α) =
a sin(γ)

c
=

70.24 · sin(30.69◦)
41.92

∼= 0.8552

A l’aide de la machine à calculer, on détermine l’angle α qui a pour sinus 0.8552 :
α ∼= 58.79◦.

Finalement, on trouve que β = 180◦ − α− γ = 90.52◦.
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9.5 Exercices

1) Sur les trois cercles trigonométriques ci-dessous, représenter graphiquement le sinus,
le cosinus, la tangente et la cotangente des angles indiqués sous le cercle (π

6
, 2π

3
et 7π

4
).

Pour chaque dessin, évaluer ensuite les valeurs de ces quatre mesures et les contrôler
à l’aide d’une machine à calculer.
(Pour dessiner les angles, les convertir au préalable en degrés)

x

y

1

1

-1

-1

0

α =
π

6

x

y

1

1

-1

-1

0

α =
2π

3

x

y

1

1

-1

-1

0

α =
7π

4

2) En utilisant une machine à calculer, trouver les valeurs de :

a) sin(128◦) b) cos(315◦) c) tan(123◦)

d) sin(2) e) cos(0.7) f) tan(4)

3) En utilisant le cercle trigonométrique et des théorèmes de géométrie élémentaire, prou-
ver les relations suivantes :

a) cos2(α) + sin2(α) = 1

b) tan(α) =
sin(α)

cos(α)

c) cot(α) =
1

tan(α)
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4) Construire les angles aigus ayant

a) 0.43 pour sinus b) 2
3
pour cosinus,

puis les mesurer.

5) Est-il possible de construire un angle α tel que

a) sin(α) = 1.4 b) cos(α) = 1.2 c) tan(α) = 2.5

6) Utiliser les relations fondamentales entre cos(α), sin(α) et tan(α) (voir exercice 3)
pour résoudre (sans machine) les questions suivantes.

a) Si α est un angle du deuxième quadrant tel que sin(α) = 0.8 que vaut cos(α) ?

b) Le cosinus d’un angle du quatrième quadrant vaut

√
3

2
. Que vaut son sinus ?

c) Trouver sin(α) et cos(α) sachant que α est un angle du deuxième quadrant et que
tan(α) = −

√
8.

d) Trouver sin(α) et cos(α) sachant que α est un angle du quatrième quadrant et que

tan(α) = −
√
11

5
.

e) Montrer que : 1 + tan2(α) =
1

cos2(α)
.

7) Simplifier autant que possible les expressions suivantes :

a)
1− cos2(α)

sin3(α)
b) sin3(α) + sin(α) cos2(α)

c)
sin2(α)− sin4(α)

cos2(α)− cos4(α)
d) tan(α) cos(α)

e) cos2(α) + cos2(α) tan2(α) f) cos(α) + sin(α) tan(α)

8) Un observateur, couché sur le sol, voit un satellite sous un angle de 35◦ avec la verticale.
Sachant que le satellite gravite à 1000 km de la surface de la Terre, quelle est la distance
séparant le satellite de l’observateur ? (Rayon de la Terre : 6370 km)

9) Un bateau quitte le port à 13h00 et fait route dans la direction 55◦W à la vitesse de
38 km/h (les angles sont mesurés avec la direction N). Un deuxième bateau quitte le
même port à 13h30 et vogue dans la direction 70◦E à 28.5 km/h.
Calculer la distance séparant les bateaux à 15h00.

10) Pour déterminer l’altitude du sommet C d’une montagne, on choisit deux point A et
B au bas de la montagne d’où l’on voit le sommet. A et B ne sont pas forcément à la

même altitude mais ils sont séparés d’une distance d. On mesure les angles α = B̂AC,

β = ÂBC, ainsi que l’angle d’élévation θ sous lequel on voit C depuis A (angle entre
AC et l’horizontale).
Quelle est l’altitude de C si celle de A est hA ?

Application numérique :
d = 450 m, hA = 920 m, α = 35.4◦, β = 105.8◦, θ = 23.5◦.
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b

r

r

r
A

B

C

α
θ

β

γ

h

d

11) Une cathédrale est située au sommet d’une colline (voir schéma ci-dessous). En obser-
vant le sommet de sa flèche depuis le pied de la colline, l’angle d’élévation est de 48◦.
Si on l’observe à 60 m de la base de la colline, l’angle d’élévation de la flèche est de
41◦. La pente de la colline forme un angle de 32◦. Calculer la hauteur de la cathédrale.

12) Un triangle ABC est donné par b = 35, 2, c = 26, 2 et α = 123, 2◦.

Calculer la longueur du segment [AP ], où P est le point d’intersection entre la bissec-

trice de l’angle B̂AC et le côté [BC].

13) On doit percer un tunnel pour une nouvelle autoroute à travers une montagne de 80
m de haut. A une distance de 60 m de la base de la montagne, l’angle d’élévation est
de 36◦ (voir figure). Sur l’autre face, l’angle d’élévation à une distance de 45 m est de
47◦.

Calculer la longueur du tunnel au mètre près.
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14) Un hélicoptère est en vol stationnaire à 300 m au-dessus du sommet d’une montagne
qui culmine à 1560 m, comme le montre la figure. Du sommet de cette montagne ou de
l’hélicoptère, on peut voir un deuxième pic, plus élevé. Vu de l’hélicoptère, son angle
de dépression est de 43◦ et vu du petit sommet, son angle d’élévation est de 18◦.

Calculer l’altitude du sommet le plus élevé et la distance séparant l’hélicoptère de ce
sommet.

15) En observant le sommet d’une montagne à partir d’un point P au sud de la montagne,
l’angle d’élévation est α (voir figure). L’observation à partir d’un point Q, situé à d
km à l’est de P , donne un angle d’élévation β.

Déterminer la hauteur h de la montagne si α = 30◦, β = 20◦ et d = 16 km.

16) Si on observe le sommet d’une montagne à partir du point P représenté dans la figure,
l’angle d’élévation est de α = 15◦. A partir du point Q, plus proche de la montagne
de d = 3 km, l’angle d’élévation est de β = 20◦.

Calculer la hauteur de la montagne.
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17) La figure ci-dessous représente un panneau solaire de 3 m de large qui doit être fixé
sur un toit qui forme un angle de 25◦ avec l’horizontale.

Calculer la longueur d du support afin que le panneau fasse un angle de 45◦ avec
l’horizontale.

18) La figure ci-dessous représente un téléphérique transportant des passagers d’un point
A, qui se trouve à 2 km du point B situé au pied de la montagne, à un point P
au sommet de la montagne. Les angles d’élévation de P aux points A et B sont
respectivement de 21◦ et 65◦.

Calculer la hauteur de la montagne (par rapport au point B).

19) La figure ci-dessous représente une partie d’un plan de toboggan d’une piscine. Trouver
la longueur totale du toboggan.

5 m

5 m

30 m

25◦

35◦

20) Un géomètre, situé à une altitude de 912 m, observe une antenne de communication
située sur une colline en face de lui. Il mesure, au moyen d’un théodolite, les angles
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d’élévation du sommet et du pied de l’antenne et détermine comme valeurs pour ces
angles : respectivement 17.15◦ et 14.03◦.

Si la hauteur de l’antenne est de 35 m, à quelle altitude se trouve le pied de cette
dernière ?

21) Un ingénieur se promène sur le Champ-de-Mars en direction de la tour Eiffel, qui
culmine à une hauteur de 324 mètres. Il remarque alors que l’angle d’élévation sous
lequel il voit le sommet de la tour est de 32.8◦. 5 minutes plus tard, il constate que
cet angle est passé à 52◦.

A quelle vitesse l’ingénieur s’est-il déplacé entre ses deux observations du sommet de
la tour Eiffel ? La réponse doit être donnée en km/h.

(On suppose que le sommet de la tour et les points où sont effectués les observation
sont dans le même plan vertical. On suppose également que la vitesse, à laquelle
l’ingénieur se déplace, est constante.)
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9.6 Solutions des exercices

2) a) 0, 788 b) 0, 707 c) −1, 539
d) 0, 909 e) 0, 765 f) 1, 158

6) a) cos(α) = −0, 6 b) sin(α) = −1
2

c) cos(α) = −1
3
; sin(α) =

√
8

3
d) cos(α) =

5

6
; sin(α) = −

√
11

6

7) a)
1

sin(α)
b) sin(α) c) 1

d) sin(α) e) 1 f)
1

cos(α)

8) 1183 km

9) 106, 5 km

10) 1196 m

11) 105 m

12) 14, 28

13) 80 m

14) 1637, 5 m et 326, 21 m

15) 7, 50 km

16) 3, 05 km

17) 1, 13 m

18) 935 m

19) 32, 69 m

20) 1061 m

21) environ 3 km/h
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Chapitre 10

Vecteurs dans le plan

10.1 Introduction

Des quantités comme l’aire, le volume, la longueur, la température et le temps n’ont
qu’une intensité et peuvent être entièrement représentées par un nombre réel (accom-
pagnées de l’unité de mesure adéquate, comme cm2, m3, cm, ◦ ou s). Une grandeur de
ce type est une grandeur scalaire et le nombre réel correspondant est un scalaire.
Des concepts tels que la vitesse ou la force ont à la fois une intensité, un sens et une
direction et sont souvent représentés par un segment de droite orienté (ou, ”plus
simplement”, une flèche). On nomme aussi ce segment de droite orienté un vecteur. On
donne ci-dessous la représentation d’un vecteur ~v (on désignera un vecteur par une lettre
ou un groupe de lettres surmonté d’une flèche).

sens

direction

~vintensité (ou longueur)

On peut représenter beaucoup de concepts physiques par des vecteurs. A titre d’exemple,
on considère un avion qui descend à une vitesse constante de 100 km/h et dont la ligne de
vol rectiligne forme un angle de 20◦ avec l’horizontale. Ces deux faits sont représentés à
la figure ci-dessous par le vecteur ~v d’intensité 100. Le vecteur ~v est un vecteur vitesse.

Un vecteur qui représente une action sur un objet par une cause quelconque est un
vecteur force. La figure ci-dessous illustre la force exercée par une personne qui tient
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une masse de 5 kg ; cette force est représentée par le vecteur ~F d’intensité environ 5.
Cette force a la même intensité que la force exercée par l’attraction terrestre sur cette
masse, mais elle est de sens opposé. Le résultat est qu’il n’y a mouvement ni vers le haut,
ni vers le bas.

On utilise parfois la notation
−→
AB pour représenter le chemin de A vers B parcouru par un

point (ou une particule) le long d’un segment de droite. On se réfère alors à
−→
AB comme

étant la trajectoire de ce point (ou de cette particule). Dans la représentation ci-dessous,

une trajectoire
−→
AB suivie d’une trajectoire

−−→
BC amène au même point qu’une trajectoire−→

AC. On verra par la suite que le vecteur
−→
AC correspond à la somme du vecteur

−→
AB et

du vecteur
−−→
BC. On écrira :

−→
AC =

−→
AB +

−−→
BC.

bA

b B

bC

A l’origine, en mathématiques, un vecteur est un objet de la géométrie euclidienne. A
deux points, Euclide associe leur distance. Or, un couple de points porte une charge
d’information plus grande : ils définissent aussi une direction et un sens. Le vecteur
synthétise ces informations.

La notion de vecteur peut être définie en dimension deux (le plan) ou trois (l’espace). Elle
se généralise à des espaces de dimension quelconque. Cette notion, devenue abstraite et
introduite par un système d’axiomes, est le fondement de la branche des mathématiques
appelée algèbre linéaire.

Dans la suite de ce cours, nous allons définir précisément la notion de vecteur dans le
plan et étudier les opérations (somme et produit) que l’on peut associer à cette notion.

10.2 Définitions

On note π l’ensemble des points du plan.

Définition 10.1
On appelle bipoint du plan tout couple de points du plan.

(A;B) est un bipoint d’origine A et d’extrémité B.

On représente un bipoint (A;B) par une flèche joignant A à B. On appelle souvent flèche
(A;B) le bipoint (A;B).
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Mathématiques, MAP 1ère année 10. Vecteurs dans le plan

b
A

b
B

Remarque

Si A et B sont deux points distincts, les bipoints (A;B) et (B;A) sont distincts.

Définition 10.2
Si A et B sont deux points distincts, la droite (AB) est appelée support du bipoint (A;B).

Deux bipoints (A;B) et (C;D) ont la même direction si leurs supports sont parallèles
ou confondus.

Deux bipoints (A;B) et (C;D) de même direction peuvent être de même sens (figure
de gauche) ou de sens contraire (figure de droite).

b
A

b
B

b
C

b
D

b
A

b
B

b
C

b
D

La longueur d’un bipoint (A;B) est la distance δ(A;B) (distance qui sépare A et B).

Remarque

Si A et B sont deux points distincts, les bipoints (A;B) et (B;A) sont de même direction,
de même longueur et de sens contraire.

Définition 10.3
Deux bipoints (A;B) et (A′;B′) sont équipollents si les segments [AB′] et [A′B] ont le
même milieu.

Dans ce cas, on note : (A;B) ∼ (A′;B′)

bA

b
B

b
A′

b
B′

b
A

b
B

b
A′

b
B′

b
I

b
I

De manière équivalente, deux bipoints sont équipollents s’ils sont de :
– même direction,
– même sens,
– même longueur.
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Propriété

Dans l’ensemble des bipoints du plan (noté π × π), la relation ”est équipollent à” est
réflexive, symétrique et transitive.

La relation d’équipollence de bipoints est donc une relation d’équivalence.

Par conséquent, cette relation induit dans l’ensemble des bipoints une partition en classes
d’équivalence. Chacune de ces classes regroupe l’ensemble des bipoints qui sont équipol-
lents.

Définition 10.4
Soit (A;B) un bipoint du plan. L’ensemble des bipoints (M ;N) équipollents au bipoint

(A;B) est la classe d’équivalence du bipoint (A;B), appelée vecteur et notée
−→
AB :

−→
AB = {(M ;N) | (M ;N) ∼ (A;B)}

Le bipoint (A;B), ou tout autre bipoint (M ;N) de la classe d’équivalence du bipoint

(A;B), est un représentant du vecteur
−→
AB. En d’autres termes, le bipoint (A;B) définit

le vecteur
−→
AB

(A;B) ∼ (C;D)⇐⇒ −→AB =
−−→
CD

Un vecteur, sans référence à un représentant, se note ~u, ~v, . . .

L’ensemble des vecteurs du plan est appelé plan vectoriel et se note V2.

Remarques

1. On représente un vecteur ~u en dessinant l’une quelconque des flèches (A;B) telle que−→
AB = ~u.

Les trois bipoints de la figure ci-dessous représentent le même vecteur, car les trois
bipoints (ou flèches) ont la même direction, le même sens et la même longueur. Ainsi,
un vecteur n’est pas déterminé par sa position et peut être représenté par un bipoint
choisi dans le plan (de direction, sens et longueur adéquate).

bA

b
B

b
C

b
D

bE

b
F

2. Etant donné un vecteur ~u et un point P quelconque du plan π, il existe un unique

point Q tel que
−→
PQ = ~u.

Définition 10.5
L’ensemble des bipoints dont l’origine et l’extrémité sont confondues est appelé vecteur
nul et est noté ~0 : −→

AA = ~0

On appelle opposé du vecteur ~u de représentant (A;B) le vecteur −~u de représentant
(B;A) :

−−→AB =
−→
BA
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10.3 Opérations sur les vecteurs du plan

10.3.1 Addition de vecteurs

Définition 10.6
Soient ~u et ~v deux vecteurs du plan vectoriel V2. A partir du point A quelconque du plan

π, on construit les points B et C tels que
−→
AB = ~u et

−−→
BC = ~v.

Le bipoint (A;C) définit un vecteur appelé somme des vecteurs ~u et ~v. On note :

~u+ ~v =
−→
AB +

−−→
BC =

−→
AC

~u

~u

~v ~v
~u+ ~v

b
A

b

B

b
C

L’application
s : V2 ×V2 → V2

(~u;~v) 7→ ~u+ ~v

est une loi de composition interne dans V2, appelée addition vectorielle.

Remarque

L’égalité
−→
AB +

−−→
BC =

−→
AC est appelée relation de Chasles.

Propriétés de l’addition

Soient les vecteurs ~u, ~v et ~w de V2.

1) L’addition est commutative : ~u+ ~v = ~v + ~u

2) L’addition est associative : ~u+ (~v + ~w) = (~u+ ~v) + ~w

3) ~0 est l’élément neutre : ~0 + ~u = ~u et ~u+~0 = ~u

4) −~u est l’élément opposé à ~u : ~u+ (−~u) = ~0 et (−~u) + ~u = ~0

Remarque

Il résulte des quatre propriétés ci-dessus que (V2; +) est un groupe commutatif.

Soustraction de vecteurs

Définition 10.7
On appelle soustraction l’application qui associe aux vecteurs ~u et ~v le vecteur, noté
~u− ~v, qui est défini par :

~u− ~v = ~u+ (−~v)
Le vecteur ~u− ~v est appelé différence des vecteurs ~u et ~v.
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~u

~u

~v −~v~u− ~v

b
A

b

B

b

C

Proposition 10.1
Soient A, B et O trois points du plan π. On a l’égalité suivante :

−→
AB =

−−→
OB −−→OA

Démonstration. Soient A, B et O trois points du plan π. Par la relation de Chasles, la
commutativité de l’addition, la définition de l’opposé d’un vecteur et la définition de la
différence, la suite d’égalité suivante est vraie :

−→
AB

Chas.
=
−→
AO +

−−→
OB

com.
=
−−→
OB +

−→
AO

op.
=
−−→
OB + (−−→OA) diff.

=
−−→
OB −−→OA

10.3.2 Multiplication d’un vecteur par un nombre réel

Définition 10.8
Soit ~u un vecteur du plan vectoriel V2 et λ un nombre réel. A partir d’un point A

quelconque du plan π, on construit le point B tel que
−→
AB = ~u, puis les images A′ et B′

des points A et B par une homothétie de centre O quelconque et de rapport λ. Le bipoint
(A′;B′) définit un vecteur appelé produit du vecteur ~u par le nombre réel λ. On le
note λ · ~u.

~u

λ~u

bA

b
B

bA
′

b
B′

b
O

L’application
m : R×V2 → V2

(λ;~v) 7→ λ · ~u
est une loi de composition externe, appelée multiplication d’un vecteur par un réel.

Proposition 10.2
Si ~u 6= ~0 et λ 6= O, les vecteurs ~u et λ · ~u ont la même direction. Ils sont de même sens si
λ > 0 et de sens contraire si λ < 0. La longueur de λ · ~u est égale à |λ| fois celle de ~u.

Exemple

On donne ci-dessous quelques multiples d’un vecteur ~u.

~u

(−1
2
)~u

2~u
(−1)~u

3
2
~u
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Mathématiques, MAP 1ère année 10. Vecteurs dans le plan

Propriétés de la multiplication

Soient les nombres réels λ et µ et les vecteurs ~u et ~v. On a :

1) λ · (µ · ~u) = (λµ) · ~u
2) 1 · ~u = ~u

3) λ · (~u+ ~v) = λ · ~u+ λ · ~v
4) (λ+ µ) · ~u = λ · ~u+ µ · ~u

Conséquences

Les propriétés données ci-dessous découlent directement des propriétés de la multiplica-
tion d’un vecteur par un réel.

Soient un nombre réel λ et un vecteur ~u. On a :

1) 0 · ~u = ~0

2) λ ·~0 = ~0

3) (−1) · ~u = −~u

10.4 Combinaison linéaire et colinéarité

Dans ce qui suit, ~a, ~b, ~c, . . . sont des vecteurs du plan vectoriel V2 et λ, β, γ, . . . des
nombres réels.

Définition 10.9
On appelle combinaison linéaire des vecteurs ~a, ~b, ~c, . . . , ~m, de coefficients respectifs
α, β, γ, . . . , µ, le vecteur

~v = α · ~a+ β ·~b+ γ · ~c+ . . .+ µ · ~m

Exemple

On donne ci-dessous un représentation du vecteur ~v = 2~a+ 3
2
~b+(−1)~c, combinaison

linéaire des vecteurs ~a, ~b et ~c.

~a
~b

~c

2~a

3
2
~b

(−1)~c

~v

Définition 10.10
Des vecteurs ~a, ~b, ~c, . . . , ~m sont linéairement dépendants s’il existe des nombres α,
β, γ, . . . , µ non tous nuls tels que

α · ~a+ β ·~b+ γ · ~c+ . . .+ µ · ~m = ~0
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Ceci signifie que l’un des vecteurs au moins peut s’écrire comme une combinaison linéaire
des autres vecteurs.

Des vecteurs ~a, ~b, ~c, . . . , ~m, sont linéairement indépendants si et seulement si

α · ~a + β ·~b+ γ · ~c+ . . .+ µ · ~m = ~0 =⇒ α = β = γ = . . . = µ = 0

Ceci signifie que la seule combinaison linéaire qui donne le vecteur nul est celle dont tous
les coefficients sont nuls.

Définition 10.11
Deux vecteurs ~u ( 6= ~0) et ~v sont colinéaires s’il existe un nombre réel λ tel que

~v = λ · ~u

Exemple

Les vecteurs ~v et ~w donnés ci-dessous sont colinéaires au vecteur ~u car ~v = 2
3
~u (ici

λ = 2
3
) et ~w = −2~u (ici λ = −2).

~u

~v ~w

Remarques

1. Deux vecteurs colinéaires non nuls sont de même direction.

2. Deux vecteurs sont linéairement dépendants si et seulement s’ils sont colinéaires.

3. Le vecteur nul est colinéaire à tout vecteur.

10.5 Espace vectoriel

Définition 10.12
Un espace vectoriel réel est un triplet (E; +; ·) formé d’un ensemble E, d’une opération
interne dans E, appelée addition et notée +, et d’une loi de composition externe, appelée
multiplication par un réel et notée ·, satisfaisant aux quatre propriétés de l’addition et aux
quatre propriétés de la multiplication par un nombre réel décrites dans les paragraphes
précédents (en remplaçant les vecteurs de V2 par les éléments de E).

Proposition 10.3
(V2; +; ·) est un espace vectoriel réel.

Il existe beaucoup d’autres espaces vectoriels, comme par exemple l’ensemble des po-
lynômes de degré 2 muni de l’addition usuelle des polynômes et de la multiplication
usuelle d’un polynôme par un nombre réel. Nous étudierons quelques-uns de ces espaces
vectoriels notamment dans le cours ”Algèbre linéaire”.

Cette structure d’espace vectoriel possède quelques caractéristiques intéressantes qui per-
mettent de travailler efficacement, comme la notion de base et l’écriture des éléments de
l’espace vectoriel comme combinaisons linéaires des éléments de la base.
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Définition 10.13
On appelle base d’un espace vectoriel réel V tout sous-ensemble B de V tel que chaque
élément v de V peut s’écrire de manière unique comme combinaison linéaire des vec-
teurs de B.
Les coefficients de cette combinaison linéaire sont appelés composantes scalaires de
l’élément v dans la base B.

Remarque

Pour un espace vectoriel donné, toutes les bases ont le même nombre d’éléments. Le
nombre d’éléments d’une base d’un espace vectoriel V est appelé dimension de V .

Proposition 10.4
Une base de V2 est constituée d’un couple de vecteurs linéairement indépendants ou,
de manière équivalente, d’un couple de vecteurs non colinéaires. V2 est donc un espace
vectoriel réel de dimension 2.

Une base de V2 se note généralement (~i,~j) ou (~e1, ~e2).

Propriétés

Si (~e1, ~e2) est une base de V2, alors tout vecteur ~u de V2 peut s’écrire comme une
combinaison linéaire unique de ~e1 et ~e2. Il existe un couple (α; β) de nombres réels, et un
seul, tel que

~u = α · ~e1 + β · ~e2

~e1 α · ~e1

~e2

β · ~e2
~u

α et β sont les composantes scalaires de ~u dans la base (~e1, ~e2). On note alors

~u =

(
α
β

)

Opérations sur les composantes

Soient une base B = (~e1, ~e2) de V2, un nombre réel λ et deux vecteurs ~u =

(
u1
u2

)
et

~v =

(
v1
v2

)
donnés par leurs composantes scalaires relativement à la base B. On a :

~u+ ~v =

(
u1
u2

)
+

(
v1
v2

)
=

(
u1 + v1
u2 + v2

)

λ · ~u = λ ·
(
u1
u2

)
=

(
λu1
λu2

)

page 191
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Exemple

On donne les vecteurs ~u =

(
1
2

)
, ~v =

(
5
−3

)
et ~w =

(
−2
−1

)
dans une base

B = (~e1, ~e2) de V2. On peut réaliser les opérations suivantes sur ces vecteurs.

~u+ ~v =

(
1
2

)
+

(
5
−3

)
=

(
1 + 5

2 + (−3)

)
=

(
6
−1

)

2 · ~w = 2 ·
(
−2
−1

)
=

(
2 · (−2)
2 · (−1)

)
=

(
−4
−2

)

Cette situation est représentée ci-dessous.

~u
~v

~u+ ~v

~w

2 · ~w
~e1

~e2

Test du déterminant

Dans une base B = (~e1, ~e2) de V2, soient les vecteurs ~u =

(
u1
u2

)
et ~v =

(
v1
v2

)
donnés

par leurs composantes scalaires.

~u et ~v sont linéairement indépendants ⇐⇒ Det(~u,~v) =
u1 v1
u2 v2

= u1v2 − u2v1 6= 0

Remarque

Le déterminant de deux vecteurs ~a et ~b de V3, Det(~a,~b), est égal à l’aire du parallélo-
gramme construit sur ces deux vecteurs.
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10.6 Exercices

1) Utiliser les vecteurs de la figure ci-dessous pour dessiner, sur une feuille quadrillée, les
vecteurs suivants :

~u

~v

~w

a) ~v + ~w b) ~u+ ~v c) 3 · ~v d) (−4) · ~w
e) ~v − ~w f) ~u− ~v g) 3(~v + ~u)− ~w h) 2~u− 3~v + ~w

i) 3~u− 1

2
~v j)

7

3
~u− 3

4
~w k) −2~u+3~v− 3

2
~w l)

3

7
~u− 4

5
~u

2) On donne trois points A, B et C non alignés.

Construire un représentant de chacun des vecteurs suivants :

a) ~a =
−→
AB +

−→
AC b) ~b =

−→
AB +

−→
AC +

−−→
BC

c) ~c =
−→
AB −−−→BC d) ~d =

−→
AC −−→AB + 2

−−→
CB

e) ~e = 2(
−→
AB −−→CA) + 3

−→
CA−−→BA

3) Soient cinq points quelconques A, B, C,D et E. Exprimer plus simplement les vecteurs
suivants :

a) ~a =
−−→
BD +

−→
AB +

−−→
DC b) ~b =

−−→
DA+

−−→
CD +

−→
AE

c) ~c =
−−→
BC +

−−→
DE +

−−→
DC +

−−→
AD +

−−→
EB d) ~d =

−→
AC −−−→BD −−→AB

e) ~e =
−−→
DA−−−→DB −−−→CD −−−→BC f) ~f =

−−→
EC −−−→ED +

−−→
CB −−−→DB

4) On donne trois points A, B et C non alignés.

Construire les points D, E, F et G tels que :

a)
−−→
AD = −4

3

−→
AB b)

−−→
EC = 2

−→
AB −−−→BC

c) 3
−→
FA = 2

−→
FC d)

−−→
BG =

−→
AB + 2

−→
CG− 3

−→
GA

5) On donne trois points A, B et C non alignés.

Soit le point G défini par la relation
−→
GA+

−−→
GB +

−→
GC =

−→
0 .

a) Construire le point G.

b) Démontrer que pour tout point O :
−→
OG =

1

3

(−→
OA+

−−→
OB +

−→
OC
)

6) On donne trois points A, B et C non alignés.

Construire les ensembles de points suivants :

a) E = {M | −−→AM = k · −→AB, k ∈ R}
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b) F = {M | −−→MB =
−→
BA + k · −→AC, k ∈ [−2; 3[}

c) G = {M | 2−−→CM = k · −→AB +m · −→CA, k ∈ R+, m ∈ {−1; 4}}
d) H = {M | −−→AM = 2 · −−→BC + k · −→CA− t · −→BA, k ∈ [−2; 1], t ∈ [−1; 4]}

7) Utiliser les vecteurs de la figure ci-dessous pour répondre aux questions.

~a

~b

~c~k~f

~g ~h

~e ~d

a) Que vaut ~x, sachant que ~x+~b = ~f ?

b) Que vaut ~x, sachant que ~x+ ~d = ~e ?

c) Exprimer ~c comme combinaison linéaire de ~d, ~e et ~f .

d) Exprimer ~g comme combinaison linéaire de ~c, ~d, ~e et ~k.

e) Exprimer ~e comme combinaison linéaire de ~d, ~g et ~h.

f) Exprimer ~e comme combinaison linéaire de ~a, ~b, ~c et ~d.

g) Que vaut ~x, sachant que ~x = ~a +~b+ ~k + ~g ?

h) Que vaut ~x, sachant que ~x = ~a +~b+ ~c + ~h ?

8) Montrer que l’ensemble des nombres réels R muni de l’addition et de la multiplication
habituelles est un espace vectoriel réel.

9) Montrer que l’ensemble des polynômes à une variable de degré inférieur ou égal à 2
muni de l’addition et de la multiplication par un réel usuelles est un espace vectoriel
réel.

10) Montrer que l’ensemble des fonctions muni de l’addition et de la multiplication par
un scalaire habituelles est un espace vectoriel réel.

11) On considère trois vecteurs ~u, ~v et ~w d’un espace vectoriel V et un nombre réel λ.
Montrer que :

a) Si ~u+ ~v = ~u+ ~w, alors ~v = ~w.

b) 0 · ~u = ~0

c) λ ·~0 = ~0

d) (−1) · ~u = −~u
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Mathématiques, MAP 1ère année 10. Vecteurs dans le plan

12) Dans le plan, on donne quatre vecteurs ~a, ~b, ~c et ~d.

~a

~b

~c

~d

a) Est-il possible d’exprimer ~b, ~c, ~d comme combinaison linéaire de ~a ?

b) Est-il possible d’exprimer ~c, ~d comme combinaison linéaire de ~a et ~b ?

c) Est-il possible d’exprimer ~d comme combinaison linéaire de ~a, ~b et ~c ?

d) Donner les conditions permettant d’exprimer tous les vecteurs du plan comme
combinaison linéaire d’un ensemble de vecteurs du plan.

e) À quelle(s) condition(s) la combinaison linéaire est-elle unique ? Comme appelle-t-
on dans ce cas l’ensemble de vecteurs permettant d’exprimer tous les vecteurs du
plan sous forme d’une combinaison linéaire unique ?

13) Dans le plan, on donne six vecteurs ~a, ~b, ~c, ~d, ~e et ~f .

Dans la base (~a,~c), déterminer, par constructions et mesures, les composantes scalaires
(valeurs approchées) des vecteurs suivants :

a) ~a b) ~b c) ~c d) ~d

e) ~e f) ~f g) ~b+ ~e h) ~a− 2~b+ 3~c

~a

~b

~c~d

~e

~f
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14) Soit le quadrilatère ABCD suivant.

bA b
B

bD

b
C

Par constructions et mesures, déterminer une valeur approximative des composantes
des vecteurs

a)
−→
CA dans la base (

−−→
AD,

−→
AC) b)

−−→
BD dans la base (

−→
AB,
−−→
AD)

c)
−→
AB dans la base (

−→
AC,
−−→
AD) d)

−→
AC dans la base (

−−→
BC,

−−→
CD)

e)
−−→
CD dans la base (

−−→
AD,

−−→
BD) f)

−−→
AD dans la base (

−−→
BD,

−→
AC)

15) On considère la figure suivante :

~e1 ~e2

a) Représenter, dans la base B = (~e1, ~e2), les vecteurs suivants :

~a =

(
2
0

)
, ~b =

(
1
3

)
, ~c =

(
−2
−1

)
, ~d =

(
0
−3

)
, ~f =

(
3
2
9
4

)

b) Représenter les vecteurs ~b+~c et 3~b+2~c et donner leurs composantes scalaires dans
la base B.

16) Relativement à une base B de V2, on considère les vecteurs :

~a =

(
1
3

)
, ~b =

(
0
−1

)
, ~c =

(
−2
3

)
, ~d =

(
2
6

)
, ~e =

(
0
0

)
,

~f =

(
6
−4

)
, ~g =

(
1
−3

2

)
, ~h =

(
−1

9

−1
3

)
, ~i =

(
0
2
3

)
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Déterminer, parmi ces vecteurs, ceux qui sont colinéaires.

17) Relativement à une base B de V2, on donne les vecteurs :

~a =

(
5
−3

)
, ~b =

(
4
−4

)
, ~c =

(
1
2

0

)

Calculer les composantes scalaires des vecteurs suivants :

a) 3~a− 4~b+ ~c b) ~a− 2~b+
1

2
~c c) −5~a− 3~b− 8~c

18) Relativement à une base B de V2, on donne les vecteurs :

~a =

(
2
4

)
, ~b =

(
3
−9

)
, ~c =

(
12
−6

)

Déterminer deux nombres α et β tels que α~a+ β~b = ~c.

19) Relativement à une base B de V2, on donne les vecteurs :

~a =

(
2
5

)
, ~b =

(
−4
3

)
, ~c =

(
1
−2

)
, ~d =

(
−8
4

)

a) Montrer que (~a,~b) est une base du plan.

b) Calculer les composantes scalaires des vecteurs ~c et ~d dans la base (~a,~b).

20) Relativement à une base B = (~i,~j) de V2, on donne les vecteurs :

~a =

(
3
7

)
, ~b =

(
1
−5

)
, ~c =

(
−2
3

)

a) Calculer les composantes scalaires du vecteur ~b dans la base (~a,~c).

b) Calculer les composantes scalaires du vecteur ~c dans la base (~j,~a).

21) Vu du sol, un avion se déplace vers le nord-ouest à une vitesse constante de 250 miles
par heure, poussé par un vent d’est de 50 miles par heure. Quelle serait la vitesse de
l’avion s’il n’y avait pas de vent ?

22) La figure ci-dessous montre deux remorqueurs qui amènent un navire dans un port.

Le remorqueur le plus puissant génère une force de 20’000 N sur un câble, le plus petit
une force de 16’000 N. Si le navire suit une ligne droite l, calculer l’angle que forme
le plus puissant des remorqueurs avec la droite l.
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23) La figure ci-dessous représente un appareillage servant à simuler les conditions de
gravité sur d’autres planètes. Une corde est attachée à un astronaute manoeuvrant
sur un plan incliné qui forme un angle de θ degrés avec l’horizontale.

a) Si l’astronaute pèse 80 kg, calculer les composantes selon les directions x et y de
la force de pesanteur (voir figure).

b) La composante de la partie a) selon y ”est la force de pesanteur” de l’astronaute
par rapport au plan incliné. La force de pesanteur de l’astronaute serait de 140 N
sur la lune et de 300 N sur mars. Calculer les angles (à 0, 01◦ près) que devrait
faire le plan incliné avec l’horizontale pour simuler une marche sur ces surfaces.
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10.7 Solutions des exercices

3) a) ~a =
−→
AC b) ~b =

−−→
CE c) ~c =

−→
AC +

−−→
DC

d) ~d =
−−→
DC e) ~e =

−−→
DA f) ~f = ~0

7) a) ~a b) −~g −~h ; ~a+~b+ ~c ; . . .

c) ~c = −~f + ~e− ~d d) ~g = −~k + ~c + ~d− ~e
e) ~e = −~g −~h+ ~d f) ~e = ~a +~b+ ~c+ ~d

g) ~0 h) −~g

13) a) ~a =

(
1
0

)
b) ~b =

(
3, 6
1, 2

)
c) ~c =

(
0
1

)

d) ~d =

(
−1, 0
1, 0

)
e) −→e ∼=

(
−1, 0
−1, 0

)
f)
−→
f ∼=

(
1, 2
−0, 6

)

g)

(
2, 6
0, 2

)
h)

(
−6, 2
0, 6

)

14) a)
−→
CA =

(
0
−1

)
b)
−−→
BD =

(
−1
1

)

c)
−→
AB ∼=

(
1, 64
−1, 09

)
d)
−→
AC =

(
2, 2
3, 6

)

e)
−−→
CD ∼=

(
−0, 28
0, 61

)
f)
−−→
AD ∼=

(
0, 48
0, 78

)

15) b) ~b+ ~c =

(
−1
2

)
3~b+ 2~c =

(
−1
7

)

16) ~e est colinéaire à tous ; ~a, ~d et ~h ; ~b et ~i ; ~c et ~g

17) a)

(
−1

2

7

)
b)

(
−11

4

5

)
c)

(
−41
27

)

18) α = 3, β = 2

19) b) ~c =

(
− 5

26

− 9
26

)
, ~d =

(
− 4

13
24
13

)

20) a) ~b =

(
− 7

23

−22
23

)

b) ~c =

(
23
3

−2
3

)

21) 217.54 mph

22) 23, 6◦
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23) a) ~P =

(
80g · sin(θ)
80g · cos(θ)

)

b) Lune : 79, 72◦ ; Mars : 67, 53◦
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Chapitre 11

Plan affine

11.1 Repère du plan π

Soit π l’ensemble des points du plan.

Dans cet ensemble, nous n’avons pas défini d’opérations. Pour résoudre un problème fai-
sant intervenir des points du plan, on se ramène à un problème équivalent dans l’ensemble
des vecteurs V2 dans lequel on dispose d’opérations. Dans cette optique on choisit un
point O de π et on définit la bijection :

f : O × π −→ V2

(O,M) 7−→ −−→
OM

On dit alors que π est le plan affine associé au plan vectoriel V2.

Définition 11.1
On appelle repère du plan affine π tout triplet (O;E1;E2) de points non alignés.

Si R = (O;E1;E2) est un repère de π, les vecteurs ~e1 =
−−→
OE1 et ~e2 =

−−→
OE2 déterminent

une base B = (~e1, ~e2) du plan vectoriel V2, appelée base associée au repère R.
Le point O est appelé origine, les vecteurs ~e1 et ~e2 vecteurs de base du repère R.
On note également ce repère (O;~e1;~e2).

Coordonnées d’un point relativement à un repère

Soit R = (O;E1;E2) un repère du plan π.

Les coordonnées x et y relativement à R d’un point M de π sont les composantes du

vecteur
−−→
OM relativement à la base associée (

−−→
OE1,

−−→
OE2). On note M(x; y).

M(x; y)⇐⇒ −−→OM = x · −−→OE1 + y · −−→OE2 =

(
x
y

)

~e1

~e2

x · ~e1

y · ~e2 −−→
OM

b

O
b
E1

b
E2

b
M

b

b

201
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x, la première coordonnée du point M , est appelée abscisse de M .

y, la deuxième coordonnée du point M , est appelée ordonnée de M .

Remarque

On peut associer un système d’axes de coordonnées à un repère du plan affine π.

Le premier vecteur de la base associée, ~e1, donne la direction et le sens du premier axe
de coordonnées ou axe des x. L’échelle sur cet axe est définie par la longueur de ~e1.

Le deuxième vecteur de la base associée, ~e2, donne la direction et le sens du deuxième
axe de coordonnées ou axe des y. L’échelle sur cet axe est définie par la longueur de ~e2.

Exemple

On donne ci-dessous un repère (O;~e1;~e2) du plan affine π, ainsi que les axes de
coordonnées associés. Dans ce repère, les coordonnées des points représentés ci-
dessous sont les suivantes :

A(6; 3), B(10; 1), C(−2; 2), D(−2;−1), E(8,−1), F (0; 2)

x

y

~e2

~e1

1

2

3

−1

1 2 3 4 5 6 7 8 9 10−1−2−3
b

O

b
C

b A

b E

b
B

b
D

b F

11.2 Calculs avec les coordonnées

Dans un repère (O;E1;E2) du plan affine π, on donne les points A(xA; yA), B(xB; yB) et
C(xC ; yC).

11.2.1 Composantes d’un vecteur

Comme on a vu au chapitre précédent que
−→
AB =

−−→
OB −−→OA (proposition 10.1), on peut

écrire :
−→
AB =

(
xB
yB

)
−
(
xA
yA

)
=

(
xB − xA
yB − yA

)
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11.2.2 Milieu d’un segment

Les coordonnées du milieu du segment [AB], noté M[AB], sont :

M[AB]

(
xA + xB

2
;
yA + yB

2

)

Les coordonnées du milieu du segment sont les moyennes arithmétiques des coor-
données correspondantes des extrémités du segment.

Démonstration. Soit M[AB], ou plus simplement M pour cette démonstration, le milieu
du segment [AB]. Dans ce cas, les deux égalités suivantes sont vraies :

−−→
AM =

−−→
MB ou

−−→
AM =

1

2

−→
AB

On peut donc écrire :

−−→
OM =

−→
OA+

−−→
AM =

−→
OA+

1

2

−→
AB =

−→
OA+

1

2
(
−−→
OB −−→OA)

=
1

2
(
−→
OA+

−−→
OB) =

1

2

((
xA
yA

)
+

(
xB
yB

))
=

(
xA+xB

2
yA+yB

2

)

médiatrice

~e1

~e2

b
A

b
B

b

O

b M

11.2.3 Centre de gravité d’un triangle

Les coordonnées du centre de gravité du triangle ABC, noté G, sont :

G

(
xA + xB + xC

3
;
yA + yB + yC

3

)

Les coordonnées du centre de gravité d’un triangle sont les moyennes arithmétiques
des coordonnées correspondantes des sommets du triangle.

Démonstration. Soit G le centre de gravité du triangle ABC. Dans ce cas, l’égalité sui-
vante est vraie : −→

AG =
2

3

−−→
AA′

où A′ est le milieu du segment [BC]. On peut donc écrire :
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−→
OG =

−→
OA+

−→
AG =

−→
OA+

2

3

−−→
AA′ =

−→
OA+

2

3
(
−−→
OA′ −−→OA) = 1

3

−→
OA+

2

3
· 1
2
(
−−→
OB +

−→
OC)

=
1

3
(
−→
OA+

−−→
OB +

−→
OC) =

1

3

((
xA
yA

)
+

(
xB
yB

)
+

(
xC
yC

))
=

(
xA+xB+xC

3
yA+yB+yC

3

)

~e1

~e2

médiane

b

O

b
A

b
B

b
C

b
B′

b A′

b

C ′

b
G
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11.3 Exercices

1) Soit ABCDEF un hexagone régulier de centre O.

Donner les coordonnées des points A,B,
C, D, E, F , G, H , I, J , K, L, M , N ,
O, P , Q, R et S

a) relativement au repère du plan :
R1 = (O;E;F ).

b) relativement au repère du plan :
R2 = (O;A;C).

bA

b
O

b
D

bFbB

bC bE

b G

bH

b
I

bJ

b
K

bL

bMbN

bP

bQ bR

b S

2) On considère la figure suivante :

~e2

~e1
b

O
b
E1

bE2

b A

b B

a) Représenter les points dont les coordonnées sont données relativement au repère
R1 = (O;E1;E2) :

M(4; 2) N(−3; 3) P (−4;−4) Q(2; 3) R(1;−3)
S(0;−3) T (5; 0) U(−1;−4) V (−2; 3) W (1;−1)

b) Trouver les coordonnées de ces points relativement au repère R2 = (O;A;B)

c) Calculer les composantes scalaires, relativement à la base (~e1, ~e2), des vecteurs :

−−→
MN,

−−→
MP,

−−→
NP,

−−→
PM,

−→
ST ,

−→
UP ,

−→
PS

d) Calculer, dans le repère R1 = (O;E1;E2), les coordonnées des points C et D tels
que : −−→

MC =
−−→
NP

−−→
DN + 2

−→
AT = 3

−→
DS − 2

−→
US

3) Dans un repère du plan, soit le triangle de sommets A(−4; 2), B(1; 3) et C(2; 5).

a) Calculer les coordonnées des milieux des côtés du triangle ABC.

b) Calculer les coordonnées du centre de gravité du triangle ABC.
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4) Dans un repère du plan, on donne un triangle ABC par deux sommets A(6;−1),
B(−2; 6) et le centre de gravité G(3; 4).

Calculer les coordonnées du troisième sommet C.

5) Dans un repère du plan, on donne les points A(2; 3), B(−3; 1) et C(8;−1).
a) Calculer les coordonnées du point D tel que ABCD soit un parallélogramme.

b) Calculer les coordonnées du centre de ce parallélogramme.

6) Dans un repère du plan, dessiner les ensembles de points suivants :

A = {M(x; y) | x = 5} B = {M(x; y) | |y| = 2}

C = {M(x; y) | x = 2y} D = {M(x; y) | 2x+ y = 6}
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11.4 Solutions des exercices

1) a) A(−1; 1) B(−1; 0) C(0;−1) D(1;−1) E(1; 0)

F (0; 1) G(−1
2
; 1
2
) H(−1

2
; 0) I(0;−1

2
) J(1

2
;−1

2
)

K(1
2
; 0) L(0; 1

2
) M(−1

3
; 2
3
) N(−2

3
; 1
3
) O(0; 0)

P (−1
3
;−1

3
) Q(1

3
;−2

3
) R(2

3
;−1

3
) S(1

3
; 1
3
)

b) A(1; 0) B(1; 1) C(0; 1) D(−1; 0) E(−1;−1)
F (0;−1) G(1

2
; 0) H(1

2
; 1
2
) I(0; 1

2
) J(−1

2
; 0)

K(−1
2
;−1

2
) L(0;−1

2
) M(1

3
;−1

3
) N(2

3
; 1
3
) O(0; 0)

P (1
3
; 2
3
) Q(−1

3
; 1
3
) R(−2

3
;−1

3
) S(−1

3
;−2

3
)

2) b) M(1; 3) N(−3; 0) P (0;−4) Q(−1
2
; 5
2
) R(2;−1)

S(3
2
;−3

2
) T (5

2
; 5
2
) U(3

2
;−5

2
) V (−5

2
; 1
2
) W (1; 0)

c)
−−→
MN =

(
−7
1

) −−→
MP =

(
−8
−6

) −−→
NP =

(
−1
−7

) −−→
PM =

(
8
6

)

−→
ST =

(
5
3

) −→
UP =

(
−3
0

) −→
PS =

(
4
1

)

d) C(3;−5), D(−7
2
;−8)

3) a) M[AB] = (−3
2
; 5
2
), M[AC] = (−1; 7

2
), M[BC] = (3

2
; 4)

b) G(−1
3
; 10

3
)

4) C(5; 7)

5) a) D(13; 1)

b) centre : (5; 1)
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Chapitre 12

La droite

12.1 Définitions

Définition 12.1
Trois points A, B et C sont alignés si et seulement si les vecteurs

−→
AB et

−→
AC sont

colinéaires :
−→
AC = k · −→AB, où k ∈ R.

Droite déterminée par deux points

Soient deux points distincts A et B.

Définition 12.2
La droite (AB) est l’ensemble des points M du plan π alignés avec A et B :

(AB) = {M | −−→AM = k · −→AB, k ∈ R}
Le vecteur

−→
AB est appelé vecteur directeur de la droite (AB).

Droite déterminée par un point et une direction

Soient un point A et un vecteur ~d non nul.

Définition 12.3
La droite passant par A (appelé point d’ancrage) et de direction ~d, notée d(A; ~d), est

l’ensemble des points M du plan π tels que les vecteurs
−−→
AM et ~d sont colinéaires :

d(A, ~d) = {M | −−→AM = k · ~d, k ∈ R}

Le vecteur ~d est un vecteur directeur de la droite d(A, ~d).

~db
A

b
k = 1

b
k = 2

b

k = 3
2

b

k = 1
2

b
k = −1 b

k = − 2
3

Remarque

A chaque valeur du nombre réel k correspond un unique point de la droite.

A chaque point de la droite correspond un unique nombre réel k.

208
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12.2 Equations paramétriques d’une droite

Le plan π est muni d’un repère (O;~e1;~e2).

Soit la droite d passant par le point A(xA; yA) et le vecteur directeur ~d =

(
d1
d2

)
.

Un point M(x; y) appartient à la droite d si et seulement s’il existe un nombre k ∈ R tel

que
−−→
AM = k · ~d. Ainsi, pour tout point M de la droite d, on a :

−−→
OM =

−→
OA+ k · ~d ou

(
x
y

)
=

(
xA
yA

)
+ k ·

(
d1
d2

)

où k ∈ R. Cette équation est une représentation paramétrique de la droite d. Elle
s’écrit aussi sous forme d’un système d’équations, appelées équations paramétriques
de d :

d :

{
x = xA + k · d1
y = yA + k · d2

où k ∈ R.

~d

~e1

~e2

−−→
AM = k · ~d

−−→
OM

−→
OA

d(A; ~d)

bO

b
M

b
A

Exemple

Soient les points A(−3; 2) et B(−1; 3). Nous allons déterminer les équations pa-
ramétriques de la droite (AB).

1. Un vecteur directeur de la droite (AB) :

~d =
−→
AB =

−−→
OB −−→OA =

(
−1
3

)
−
(
−3
2

)
=

(
2
1

)

2. Les équations paramétriques de (AB) sont (une représentation possible parmi
l’infinité des représentations possibles de la droite (AB)) :

(AB) :

{
x = −3 + k · 2
y = 2 + k · 1

On peut maintenant donner des points appartenant à la droite (AB) en choisissant
une valeur de k. Par exemple, pour k = 5, on obtient le point

C :

{
x = −3 + 5 · 2 = 7
y = 2 + 5 · 1 = 7

⇒ C(7; 7)
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De plus, on peut déterminer si un point appartient ou non à la droite (AB) en
déterminant s’il existe une valeur unique de k telle que les équations paramétriques
sont vérifiées pour les coordonnées du point. Par exemple, pour le point D(−9; 8),
on a

D :

{
−9 = −3 + k · 2 ⇒ k = −3
8 = 2 + k · 1 ⇒ k = 6

Ainsi, D /∈ (AB).

12.3 Equation cartésienne d’une droite

Soit la droite d passant par le point d’ancrage A(xA; yA) et admettant comme vecteur

directeur ~d =

(
d1
d2

)
.

Un point M(x; y) appartient à la droite d si et seulement si les vecteurs
−−→
AM et ~d sont

colinéaires. Or, ces deux vecteurs sont colinéaires si et seulement si Det(
−−→
AM ; ~d) = 0 ou :

Det(
−−→
AM, ~d) =

x− xA d1
y − yA d2

= 0

En effectuant ce déterminant et en regroupant les termes, on obtient successivement les
équations :

(x− xA) · d2 − (y − yA) · d1 = 0

d2 · x− d1 · y + (d1 · yA − d2 · xA) = 0

En posant d2 = a, −d1 = b et (d1 · yA − d2 · xA) = c, la relation ci-dessus s’écrit

ax+ by + c = 0

où a, b et c sont trois nombres réels. Cette équation est appelée équation cartésienne
de d.

Proposition 12.1
Soit la droite d d’équation cartésienne ax+ by + c = 0.

Comme d2 = a et −d1 = b,

le vecteur

(
−b
a

)
est un vecteur directeur de d

Exemple

Soient les points A(5; 2) et B(1;−3). Nous allons déterminer l’équation cartésienne
de la droite (AB).

1. Un vecteur directeur de la droite (AB) :

~d =
−→
AB =

(
1
−3

)
−
(

5
2

)
=

(
−4
−5

)
=

(
−b
a

)

Ainsi, on obtient a = −5 et −b = −4. L’équation cartésienne partielle de (AB)
est : −5x+ 4y + c = 0.
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2. Comme A ∈ (AB), on peut déterminer c en résolvant l’équation

(−5) · 5 + 4 · 2 + c = 0 → c = 17

L’équation cartésienne de (AB) est : −5x+ 4y + 17 = 0

12.3.1 Equation cartésienne résolue et pente

Soit la droite d d’équation cartésienne ax+ by + c = 0 avec b 6= 0.

Dans ce cas, on peut expliciter y en transformant cette équation :

ax+ by + c = 0 → by = −ax− c → y =
−a
b
x+
−c
b

En posant −a
b
= m et −c

b
= h, cette équation s’écrit

y = mx+ h

Sous cette forme, l’équation cartésienne de d est dite résolue.

Définition 12.4
Soit la droite d d’équation cartésienne ax + by + c = 0 et de vecteur directeur

~d =

(
d1
d2

)
=

(
−b
a

)
.

Si la première composante scalaire de ~d est différente de zéro, d1 = −b 6= 0, le rapport

m =
d2
d1

=
−a
b

est appelé pente (ou coefficient directeur) de la droite d.

Si la droite d est donnée par deux points distincts A(xA; yA) et B(xB; yB), tels que
xA 6= xB, la pente de d est

m =
yB − yA
xB − xA

Remarques

Soit la droite d d’équation cartésienne résolue y = mx+ h.

1. La droite d passe par le point A(0; h) (en effet : h = m · 0 + h). Elle coupe l’axe des y
en h. On dit que h est l’ordonnée à l’origine de la droite d.

2. L’équation cartésienne de la droite d peut s’écrire mx− y+ h = 0. La droite d a donc

pour vecteur directeur le vecteur ~d =

(
1
m

)
.

Exemple

Soient les points A(5; 2) et B(1;−3). L’équation cartésienne de la droite (AB) est
−5x+ 4y + 17 = 0, selon l’exemple précédent.

L’équation cartésienne de (AB) peut s’écrire sous forme résolue :

−5x+ 4y + 17 = 0 → 4y = 5x− 17 → y =
5

4
· x− 17

4
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La pente de cette droite vaut donc :

m =
5

4
=
−(−5)

4
=
−3− 2

1− 5

(AB) admet comme vecteur directeur ~d =

(
1
5
4

)
et comme ordonnée à l’origine le

nombre h = −17
4

12.4 Position relative de deux droites dans le plan

On donne dans le tableau ci-dessous les positions relatives possibles de deux droites d1,
de vecteur directeur ~d1 et d2, de vecteur directeur ~d2.

Sécantes Parallèles
distinctes confondues

b d1

d2

I
d1

d2 d1 = d2

Un unique point I
d’intersection

Aucun point d’intersection
Infinité de points

d’intersection (droites)

~d1 et ~d2 ne sont pas
colinéaires

~d1 et ~d2 sont colinéaires

Equations cartésiennes de deux droites parallèles

Théorème 12.2
Soient les droites, données par leurs équations cartésiennes, d1 : a1x+ b1y + c1 = 0 (avec
a1, b1 6= 0) et d2 : a2x+ b2y + c2 = 0 (avec a2, b2, c2 6= 0).

Les droites d1 et d2 sont parallèles si et seulement si les coefficients a et b sont propor-
tionnels :

a1
a2

=
b1
b2





6= c1
c2

pour d1 et d2 parallèles distinctes

=
c1
c2

pour d1 et d2 parallèles confondues

Remarque

Les droites d1 et d2 sont parallèles si et seulement si −a1
b1

= −a2
b2

(en transformant l’égalité
donnée ci-dessus) ou si m1 = m2. Ainsi, deux droites parallèles ont la même pente.

12.4.1 Calcul du point d’intersection de deux droites sécantes

On donne ici des méthodes pour déterminer le point d’intersection de deux droites sécan-
tes.
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Droites sous formes paramétriques

On écrit les équations paramétriques des deux droites en désignant leurs paramètres par
des lettres différentes.

En posant l’égalité des coordonnées de même rang, on obtient un système de deux
équations à deux inconnues (les paramètres).

On résout ce système.

Si celui-ci admet une solution unique, les droites sont sécantes et on obtient le point
d’intersection en injectant la valeur obtenue d’un des paramètres dans les équations de
la droite correspondante.

Droites sous formes cartésiennes

Un point I(x; y) appartient à deux droites d1 et d2 si et seulement si ses coordonnées x
et y vérifient les équations cartésiennes de d1 et d2.

On obtient donc les coordonnées du point d’intersection des droites d1 et d2 en résolvant
le système de deux équations à deux inconnues formé par les équations de d1 et d2.

Exemple

Nous allons déterminer les coordonnées de l’éventuel point d’intersection des droites
d1 et d2, données tout d’abord sous forme paramétrique puis données sous forme
cartésienne.

d1 :

{
x = −3 + k · 2
y = 2 + k · 1 et d2 :

{
x = 6 + s · 1
y = −1 + s · (−1)

ou
d1 : x− 2y + 7 = 0 d2 : x+ y − 5 = 0

Sous forme paramétrique

On pose le système suivant d’équations

{
−3 + 2k = 6 + s

2 + k = −1− s

Pour résoudre ce système, on peut isoler s dans la première équation et trouver
s = −9 + 2k. En injectant ceci dans la deuxième équation, on trouve

2 + k = −1− (−9 + 2k) → 2 + k = 8− 2k → 3k = 6 → k = 2

On obtient alors s = −9 + 2 · 2 = −5.
Maintenant, pour trouver le point I d’intersection, on utilise les équations pa-
ramétriques d’une des deux droites et la valeur du paramètre associé.

I :

{
x = −3 + 2 · 2 = 1
y = 2 + 2 · 1 = 4

⇒ I(1; 4)
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Sous forme cartésienne

On pose le système suivant d’équations

{
x− 2y + 7 = 0
x+ y − 5 = 0

Pour résoudre ce système, on peut soustraire ces deux équations et trouver la nou-
velle équation −3y + 12 = 0. On en tire immédiatement que y = 4. En injectant
cette valeur dans la première équation, on trouve

x− 2 · 4 + 7 = 0 → x = 1

Le point d’intersection des droites d1 et d2 est I(1; 4).
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Mathématiques, MAP 1ère année 12. La droite

12.5 Exercices

Dans les exercices suivants, les coordonnées des points sont relatives à un repère (O; I; J)

de π et les composantes des vecteurs relatives à la base (~i,~j) = (
−→
OI,
−→
OJ) de V2 associée.

1) Les points A, B et C donnés ci-dessous sont-ils alignés ?

a) A(2; 3) , B(1; 6) , C(4;−3)
b) A(1;−1) , B(3; 1) , C(−2; 3)
c) A(−56; 84) , B(16;−24) , C(−8; 12)

2) On donne une droite d par ses équations paramétriques :

d :

{
x = 1 + k · 3
y = 3 + k · (−2)

Représenter les points de d correspondant aux valeurs suivantes du paramètre k : −3,
−2, −1, 0, 1, 2, 3.

3) Représenter graphiquement les quatre droites suivantes, données par leurs équations
paramétriques :

a) a :

{
x = −4 + 4k
y = 5 − 3k

b) b :

{
x = −4 − 8k
y = 5 + 6k

c) c :

{
x = 8 + 4k
y = −4 − 3k

d) d :

{
x = 2k
y = 2 − 3

2
k

4) Soit la droite d passant par le point A(5; 4) et de vecteur directeur ~d =

(
3
2

)
.

a) Calculer les coordonnées de trois autres points B, C et D de la droite d.

b) Par calcul, déterminer si les points E(101; 70) et F (−40;−26) appartiennent à d.
c) Construire la droite d.

5) Soit la droite d d’équations paramétriques :

{
x = 2 − 3k
y = −4 + k

.

a) Déterminer deux points A et B situés sur la droite d.

b) Les points C(1;−1), D(0; 0), E(5;−5) et F (−139; 43) sont-ils sur la droite d ?

c) Déterminer sur la droite d le point K d’abscisse -3.

d) Déterminer sur la droite d le point L d’ordonnée 4.

e) Déterminer sur la droite d le point N dont l’abscisse vaut le double de l’ordonnée.

6) Trouver une représentation paramétrique de la droite :

a) qui passe par A(3; 5) et a pour vecteur directeur ~d =

(
−4
1

)
;

b) qui passe par A(−3;−2) et B(4;−5) ;
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c) qui passe par A(2;−4) et a pour pente m = −3
4
;

d) qui passe par A(5; 2) et est parallèle au segment [BC], où B(1; 1) et C(−3; 2) ;
e) qui passe par A(0;−2) et est parallèle à (OI) ;

f) qui passe par A(8; 12) et est parallèle à (OJ).

7) On donne le triangle ABC de sommets A(−4; 1), B(2;−3) et C(5; 4).
a) Déterminer les équations paramétriques de la médiane passant par le sommet A.

b) Déterminer les équations paramétriques de la droite d passant par A et parallèle à
(OJ).

c) Déterminer les équations paramétriques de la droite g passant par B et parallèle
à (AC).

8) Soit la droite d donnée par la représentation

(
x
y

)
=

(
4
−1

)
+ k ·

(
−3
1

)
.

a) Représenter la droite d.

b) Colorer en rouge les points pour lesquels k ∈ [−1; 2[.
c) Colorer en bleu les points pour lesquels k > 3.

9) Trouver quelques points situés sur chacune des droites suivantes, données par leurs
équations cartésiennes. Représenter ces droites.

a) x+ 2y − 12 = 0 b) 3x− 15y + 15 = 0

c) 4x− 3y = 0 d) y − 4 = 0

e) 2x+ 7 = 0 f)
x− 4

2
=
y + 1

3

10) Représenter graphiquement les quatre droites suivantes, données par leurs équations
cartésiennes :

a) a : 3x+ 4y − 8 = 0 b) b : −6x− 8y = −16
c) c : 12y = −9x+ 24 d) d : y = −3

4
x+ 2

11) Quelle particularité possède la droite d d’équation ax+ by + c = 0, lorsque :

a) a = 0 b) b = 0 c) c = 0

12) Soit la droite d donnée par la représentation paramétrique

{
x = 7 − 2k
y = −3 + 5k

.

Écrire une représentation cartésienne de cette droite.

13) Déterminer l’équation cartésienne de chacune des droites données à l’exercice 6.

14) Soit la droite passant par les points A(1; 4) et B(3;−2).
a) Donner une représentation cartésienne de la droite (AB).
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b) Donner une autre équation cartésienne de la droite (AB).

c) Existe-t-il une équation cartésienne de la droite (AB) qui contienne le terme 7x ?

d) Déterminer deux points C et D situés sur cette droite.

e) Les points E(0; 0), F (2; 1), G(5; 8) et H(5
7
; 34

7
) appartiennent-ils à la droite (AB) ?

f) Déterminer sur la droite (AB) le point J d’abscisse −12.
g) Déterminer sur la droite (AB) le point K d’ordonnée 555.

h) Déterminer sur la droite (AB) le point L dont l’ordonnée vaut quatre de plus que
l’abscisse.

15) Soit la droite d : 3x+ 2y − 5 = 0.

a) Donner un vecteur directeur de la droite d.

b) Déterminer le vecteur directeur de la droite d ayant pour première composante 7.

16) Soit la droite d : 2x− 3y + 6 = 0.

a) Écrire l’équation cartésienne de la droite d′ parallèle à d et passant par l’origine.

b) Écrire l’équation cartésienne de la droite d′′ parallèle à d et passant par le point
A(−4; 1).

17) Soit le point A(5;−2).
a) Écrire l’équation de la droite d parallèle à l’axe des x et passant par le point A.

b) Écrire l’équation de la droite d parallèle à l’axe des y et passant par le point A.

18) Représenter dans un même repère les droites :

a) y = 2x− 5 y = 2x y = 2x+ 4

b) y = −x+ 2 y = 3
5
x+ 2 y = 4x+ 2

19) Représenter, dans un même repère, les droites passant par A(2; 5) et de pente :

a) m = −2 b) m = −8
3

c) m = 0 d) m =
9

5
e) m = 2

20) Écrire l’équation cartésienne de la droite passant par A(−1; 6) et de pente m = 4.

21) Soit la droite passant par les points A(3;−5) et B(−1;−2).
Calculer sa pente et son ordonnée à l’origine.

22) Soit la droite d : y = −3x+ 7.

Écrire un vecteur directeur de la droite d.

23) Déterminer, lorsque cela est possible, l’équation cartésienne résolue de chacune des
droites données à l’exercice 6.
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24) Soit la droite d : y = −5x+ 2.

Écrire l’équation cartésienne résolue de la droite d′ parallèle à d et passant par
A(3;−4).

25) On donne les points A(1;−2), B(−5; 2), C(−4;−1), D(1;−1) et E(61;−40).
a) Les droites (AB) et (CD) sont-elles parallèles ?

b) Les droites (BD) et (CE) sont-elles parallèles ?

26) a) Représenter graphiquement les quatre droites suivantes, données par leurs équa-
tions cartésiennes :

a : x+ 2y + 1 = 0 b : −3x+ 4y + 7 = 0

c : −2x− 4y − 5 = 0 d : 6x+ 12y + 6 = 0

b) Déterminer graphiquement les points d’intersections entre la droite a et les trois
autres droites b, c et d.

27) Indiquer les positions relatives des droites d et e (sécantes avec le point d’intersection,
strictement parallèles ou confondues) dans les cas suivants :

a) d : 4x− 2y − 1 = 0 e : −2x+ y − 5 = 0

b) d : 3x+ y − 8 = 0 e : 6x− 2y − 3 = 0

c) d : 8x− 4y − 2 = 0 e : −4x+ 2y + 1 = 0

d) d : −x+ 2y − 3 = 0 e :

{
x = −1 + 2k
y = 1 + k

e) d : 3x+ 2y − 7 = 0 e :

{
x = 4 + 2k
y = 3 − 3k

f) d : 6x+ y − 9 = 0 e :

{
x = 1 − k
y = 3 + 2k

g) d :

{
x = 7 + k
y = 8 − k

e :

{
x = 5 − 3t
y = 10 + 3t

h) d :

{
x = 4 + 2k
y = k

e :

{
x = 6 − 2t
y = 3 − t

i) d :

{
x = 2k
y = 3 + 5k

e :

{
x = 4 + 3t
y = 1 − 2t

28) On donne les droites d : 2x+ 7y + 13 = 0 et g : 5x+ by + c = 0.

a) Calculer b et c tels que les droites d et g soient confondues.

b) Calculer b et c tels que les droites d et g soient strictement parallèles.
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29) Soit la droite d passant par les points A(45;−206) et B(712; 4).

Déterminer les coordonnées des points d’intersection de la droite d avec les axes de
coordonnées. Travailler sous forme paramétrique.

30) Soit la droite d : 9x− 7y − 4 = 0.

Déterminer les coordonnées des points d’intersection de la droite d avec les axes de
coordonnées.

31) On donne les quatre points A(1; 5), B(13;−1), C(8; 4) et D(−2;−4).
Calculer les coordonnées du point d’intersection des droites (AB) et (CD). Travailler
sous forme paramétrique.

32) On donne la quadrilatère ABCD par ses sommets : A(−5;−3), B(12;−1), C(9; 4) et
D(−2; 6).
Calculer les coordonnées du point E tel que E soit sur la diagonale (BD) et le qua-
drilatère ABCE soit un trapèze. Travailler sous forme paramétrique.

33) On donne le quadrilatère ABCD de sommets A(−2; 3), B(8;−1), C(10; 3) et D(1; 9).

a) Ce quadrilatère est-il un trapèze ?

b) Déterminer les coordonnées du point d’intersection des diagonales de ce quadri-
latère. Travailler sous forme cartésienne.

34) Un parallélogramme ABCD est donné par un de ses sommets, A(3;−1), et les droites
support de deux de ses côtés : 2x+ 3y − 5 = 0 et x− 4y + 14 = 0.

Calculer les coordonnées des sommets B, C et D, ainsi que celles du point d’intersec-
tion I des diagonales.

35) On donne les milieux des côtés d’un triangle : M(2;−1), N(−1; 4) et P (−2; 2).
Déterminer les coordonnées des sommets du triangle. Travailler sous forme carté-
sienne.

36) Soit le triangle ABC de sommets A(3; 1), B(−2; 5) et C(5;−3).
a) Établir une équation cartésienne de chaque médiane.

b) Vérifier que les trois médianes sont concourantes.

37) Soit la droite d : 2x− 3y + 4 = 0.

Déterminer une équation cartésienne de la droite image de d par :

a) la translation t de vecteur ~t =

(
1
−6

)
.

b) la symétrie s de centre A(−2; 4).
c) l’homothétie h de centre A et de rapport k = −1

3
.

38) Représenter l’ensemble E des points M(x; y) tels que 3x− 4y + 2 > 0.
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39) Représenter graphiquement l’ensemble E des points M(x; y) tels que

{
x− y + 4 < 0
2x+ y − 1 > 0

40) Écrire un système d’inéquations à deux variables tel que l’ensemble des solutions soit
l’intérieur strict du triangle de sommet A(3; 1), B(7; 0) et C(1;−3).
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12.6 Solutions des exercices

1) a) oui b) non c) oui

4) b) E : non, F : oui

5) a) A(2;−4), B(−1;−3) par exemple

b) C : non, D : non, E : oui, F : oui

c) K(−3;−7
3
)

d) L(−22; 4)
e) N(−4;−2)

6) a)

{
x = 3 − 4k
y = 5 + k

b)

{
x = −3 + 7k
y = −2 − 3k

c)

{
x = 2 − 4k
y = −4 + 3k

d)

{
x = 5 − 4k
y = 2 + k

e)

{
x = k
y = −2 f)

{
x = 8
y = 12 + k

7) a) m :

{
x = −4 + 15t
y = 1 − t

b) d :

{
x = −4
y = 1 + s

c) g :

{
x = 2 + 3u
y = −3 + u

11) a) La droite est parallèle à (OI).

b) La droite est parallèle à (OJ).

c) La droite passe par l’origine.

12) d : 5x+ 2y − 29 = 0 par exemple

13) a) x+ 4y − 23 = 0. b) 3x+ 7y + 23 = 0

c) 3x+ 4y + 10 = 0 d) x+ 4y − 13 = 0

e) y + 2 = 0 f) x− 8 = 0

14) a) 3x+ y − 7 = 0 par exemple

b) 21x+ 7y − 49 = 0 par exemple

c) Oui : 7x+ 7
3
y − 49

3
= 0

d) C(0; 7), D(7
3
; 0) par exemple

e) E : non, F : oui, G : non, H : oui

f) J(−12; 43)
g) K(−548

3
; 555)

h) L(3
4
; 19

4
)
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15) a) ~d =

(
−2
3

)
par exemple

b) ~d′ =

(
7
−21

2

)

16) a) d′ : 2x− 3y = 0

b) d′′ : 2x− 3y + 11 = 0

17) a) y + 2 = 0

b) x− 5 = 0

20) y = 4x+ 10

21) Pente : −3
4
, ordonnée à l’origine : −11

4

22) ~d =

(
1
−3

)
par exemple

23) a) y = −1
4
x+

23

4
b) y = −3

7
x− 23

7

c) y = −3
4
x− 5

2
d) y = −1

4
x+

13

4

e) y = −2 f) impossible

24) d′ : y = −5x+ 11

25) a) Oui

b) Non

26) b) Avec b : I1(1;−1), avec c : I2(0, 4;−1, 45), avec d : infinité de points d’inter-
section

27) a) strictement parallèles b) sécantes : I(19
12
; 13

4
)

c) confondues d) confondues

e) strictement parallèles f) sécantes : I(1; 3)

g) confondues h) strictement parallèles

i) sécantes : I( 4
19
; 67
19
)

28) a) b = 35
2
et c = 65

2

b) b = 35
2
et c 6= 65

2

29) Axe des x : (699, 3; 0), axe des y :(0;−220, 2)

30) Axe des x : (4
9
; 0), axe des y : (0;−4

7
)

31) I(79
13
; 32
13
)

32) E(10
3
; 10

3
)

33) a) Oui

page 222



Mathématiques, MAP 1ère année 12. La droite

b) I(26
5
; 3)

34) B(41
11
;− 9

11
), C(−2; 3), D(−30

11
; 31
11
), I(1

2
; 1)

35) Sommets : (−5; 7), (3; 1), (1;−3)

36) a) x+ y − 3 = 0, 12x+ 9y − 33 = 0, y − 1 = 0

b) I(2; 1)

37) 1) 2x− 3y − 16 = 0

2) 2x− 3y + 28 = 0

3) 2x− 3y + 20 = 0

40)





2x− y − 5 > 0
x+ 4y − 7 < 0
x− 2y − 7 < 0
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Chapitre 13

Ensembles

13.1 Ensembles et sous-ensembles

13.1.1 Ensembles, définitions

Définition 13.1
Une collection d’objets est un ensemble lorsqu’on peut dire avec certitude si un objet
donné appartient ou non à la collection. Ces objets sont les éléments de l’ensemble.

N’importe quel objet (mathématique ou non) peut être considéré comme un élément d’un
ensemble (y compris un ensemble !).

Notation

1. On représente généralement un ensemble par une lettre latine majuscule : E.

2. Les éléments d’un ensemble sont notés entre accolades et séparés par des points-
virgules.

3. Si l’élément x appartient à l’ensemble E, on écrit x ∈ E.

4. Si l’élément x n’appartient pas à l’ensemble E, on écrit x /∈ E.

Exemples

– L’ensemble des nombre de 0 à 6 y compris : E = {0; 1; 2; 3; 4; 5; 6}.
Ici, on a :

0 ∈ E, 4 ∈ E, 10 /∈ E.

– L’ensemble des élèves d’une classe : F = {Aline; Bernard; . . .}.
On peut définir un ensemble de deux manières différentes :

1. en énumérant ses éléments, G = {5; 10; 15; 20; 25; . . .}.
2. en donnant une condition d’appartenance. La notation est alors légèrement plus

sophistiquée. Par exemple, on traduit la phrase

”H est︸ ︷︷ ︸
H=

l’ensemble︸ ︷︷ ︸
{...}

des éléments de E︸ ︷︷ ︸
n∈E

on donne un nom
général aux éléments

de l’ensemble

tels que︸ ︷︷ ︸
|

leur carré est plus grand ou égal à 15︸ ︷︷ ︸
n2>15

on écrit la condition à l’aide d’une formule
grâce au fait qu’on a donné un nom aux éléments

”

par
H = {n ∈ E | n2 > 15}
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Cas particulier

Si un ensemble E ne contient aucun élément, on l’appelle ensemble vide et on le note
{} ou ∅.

Définition 13.2
On appelle cardinal d’un ensemble E, noté Card(E), le nombre d’éléments que contient
E.

Exemple

– Le cardinal de l’ensemble B = {1; 2; 3; 4; 5; 6} est 6 : Card(B) = 6.
– Le cardinal de l’ensemble constitué des élèves de la classe est : .

13.1.2 Sous-ensembles et appartenance

Définition 13.3
Si tous les éléments de l’ensemble A appartiennent à l’ensemble B, on dit que A est un
sous-ensemble de B.

Exemple

A = {1; 2; 3; 4}, B = {1; 2; 3; 4; 5; 6} et C = {3; 4; 5; 6}
L’ensemble A est un sous-ensemble de B, mais A n’est pas un sous-ensemble de C.

Définition 13.4
Soit A et B des sous-ensembles d’un ensemble E. On dit que

1. A est inclus dans B si tout élément de A appartient à B. On note A ⊂ B . Dans
ce cas, A est un sous-ensemble de B.

2. A contient B, lorsque tout élément de B appartient à A. On note A ⊃ B . Dans
ce cas, B est un sous-ensemble de A.

3. A est égal à B, lorsque tout élément de A appartient à B et que tout élément de B
appartient à A. On note A = B.

Syntaxe

Nous venons de rencontrer deux signes mathématiques qu’il s’agit de ne pas confondre :

Nom Terme de gauche Symbole Terme de droite

Appartenir à Elément ∈ Ensemble

Etre inclus dans Ensemble ⊂ Ensemble

Etre égal à Elément = Elément

Etre égal à Ensemble = Ensemble

Contenir Ensemble ∋ Elément

Contenir Ensemble ⊃ Ensemble
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On a l’équivalence suivante lorsque A est un ensemble.

x ∈ A⇔ {x} ⊂ A

Remarques

1. A 6⊂ B signifie qu’il existe au moins un élément de A qui n’appartient pas à B.

2. Soit un ensemble E = {a; b; c}.
a ∈ E et {a} ⊂ E sont des notations correctes, a ⊂ E ne l’est pas.

3. L’ensemble vide est contenu dans tous les ensembles. En termes mathématiques,
cela revient à écrire ∅ ⊂ A pour tout ensemble A.

13.2 Opérations sur les ensembles

Définition 13.5
Soit A et B deux sous-ensembles d’un ensemble E.

L’intersection de A et B est l’ensemble des éléments
qui appartiennent à la fois à l’ensemble A et à l’ensemble
B. On note cet ensemble A ∩ B et on lit ”A inter B”.
Symboliquement :

A ∩B = {e ∈ E|e ∈ A et e ∈ B}

A ∩ B

A B

E

La réunion de A et B est l’ensemble des éléments qui
appartiennent à l’ensemble A ou à l’ensemble B (ou au
deux). On note cet ensemble A ∪ B et on lit ”A union
B”. Symboliquement :

A ∪ B = {e ∈ E|e ∈ A ou e ∈ B}

A ∪ B

A B

E

La différence de deux ensembles A et B est l’ensemble
des éléments qui appartiennent à l’ensemble A mais non
à l’ensemble B. On note cet ensemble A\B et on lit ”A
moins B”. Symboliquement :

A \B = {e ∈ E|e ∈ A et e /∈ B}

A \B

A B

E

La différence symétrique de deux ensembles A et B
est l’ensemble des éléments qui appartiennent à l’en-
semble A mais non à l’ensemble B ou qui appartiennent
à l’ensemble B mais non à l’ensemble A. On note cet
ensemble A△B. Symboliquement :

A△B = (A \B) ∪ (B \ A)

A△B

A B

E
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Le complémentaire de A dans E est l’ensemble des
éléments de E qui n’appartiennent pas à A. On note cet
ensemble ∁EA ou, lorsqu’il n’y a pas d’ambigüıté quant
au référentiel, A. Symboliquement :

∁EA = {e ∈ E|e /∈ A}

∁EA

A

E

Exemple

Soit l’ensemble E = {1; 2; 3; 4; 5; 6; 7; 8} et les sous-ensembles de E : A = {2; 4; 6; 8}
et B = {1; 2; 3; 4}.
A ∩ B = {2; 4}, A ∪ B = {1; 2; 3; 4; 6; 8}, A \ B = {6; 8}, A△B = {1; 3; 6; 8},
A = {1; 3; 5; 7}.

Définition 13.6
Soit A et B deux sous-ensembles d’un ensemble E. On dit que A et B sont disjoints si
A ∩ B = ∅.

13.3 Partition, ensemble des parties

Définition 13.7
Soit P = {E1;E2; . . . ;En} (n ∈ N∗) un ensemble de sous-ensembles d’un ensemble E.
L’ensemble P est une partition finie de l’ensemble E si :



E1 ∪ E2 ∪ . . . ∪ En = E,

Ei 6= ∅ pour tout i de 1 à n,

Ei ∩ Ej = ∅ pour tous les i et j de 1 à n, avec i 6= j

Exemple

1. On peut illustrer la partition d’un ensemble de manière graphique :

E

E1

E2

E3

E4
E5

E6

2. Soit l’ensemble F des élèves du lycée.
– Partition 1 :

a) F1 : ensemble des élèves de première année,

b) F2 : ensemble des élèves de deuxième année,

c) F3 : ensemble des élèves de troisième année.

– Partition 2 :

a) F1 : ensemble des garçons,

b) F2 : ensemble des filles.

– . . .
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Définition 13.8
Soit un ensemble E. L’ensemble des parties de E, noté P(E), est l’ensemble constitué
de tous les sous-ensembles possibles de E. Symboliquement, on définit cet ensemble par :
P(E) = {A|A ⊂ E}.

Exemple

On considère l’ensemble E = {1, 2, 3}. L’ensemble de ces parties est :

P(E) = {∅; {1}; {2}; {3}; {1; 2}; {1; 3}; {2; 3};E}

Remarque

Pour un ensemble E quelconque, l’ensemble vide, ∅, et l’ensemble E lui-même sont tou-
jours des sous-ensembles de E. Ils font donc partie de P(E).

13.4 Propriétés des opérations dans P(E)
Soit un ensemble E et trois ensembles A,B et C appartenant à P(E) (trois sous-ensembles
de E). Les opérations réunion, ∪, et intersection, ∩, ont ls propriétés suivantes :

Associativité (A ∩ B) ∩ C = A ∩ (B ∩ C) (A ∪ B) ∪ C = A ∪ (B ∪ C)

Commutativité A ∩ B = B ∩ A A ∪ B = B ∪A
Distributivité A ∩ (B ∪ C) = A ∪ (B ∩ C) =

(A ∩ B) ∪ (A ∩ C) (A ∪ B) ∩ (A ∪ C)

Elément neutre A ∩ E = A A ∪ ∅ = A

Complémentaire A ∩ A = ∅ A ∪ A = E

On peut encore énoncer deux relations entre les trois opérations de base consistant à
former des unions, des intersections ou des complémentations, qui sont connues sous le
nom de lois de De Morgan et sont très utilisées, surtout en probabilités.

Proposition 13.1
Soit un ensemble E et deux ensembles A et B de P(E). On a alors les propriétés suivantes
sur les complémentaires :

A ∩B = A ∪B

A ∪B = A ∩B
Lois de De Morgan

Ces formules seront démontrées en exercice.

Note

Pour tout ensemble E, l’ensemble des parties P(E) muni des opérations de réunion,
d’intersection, ainsi que la notion de complémentaire, a une structure d’algèbre de
Boole.
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13.5 Intervalles réels

Les intervalles sont des notations simples et efficaces pour décrire certains sous-ensem-
bles de R. Ils sont notamment utilisés lors de la résolution d’inéquations.

Définition 13.9
Soit a et b deux nombres réels tels que a < b. On a les définitions suivantes :

1. On appelle intervalle fermé, noté [a; b], l’ensemble de tous les réels x tels que
a 6 x 6 b.

2. On appelle intervalle ouvert, noté ]a; b[ ou (a; b), l’ensemble de tous les réels x
tels que a < x < b.

3. On appelle intervalle semi-ouvert à gauche, noté ]a; b] ou (a; b], (respectivement
à droite, noté [a; b[ ou [a; b)) l’ensemble de tous les réels x tels que a < x 6 b (resp.
a 6 x < b).

Exemple

1) [2; 5] est l’ensemble de tous les nombres réels situés entre 2 et 5 ; 2 et 5 compris.

2) ]2; 5[ est l’ensemble de tous les nombres réels situés entre 2 et 5 ; 2 et 5 non
compris.

3) [2; 5[ est l’ensemble de tous les nombres réels situés entre 2 et 5 ; 2 compris et
5 non compris.

On peut représenter les intervalles sur la droite réelle, ce qui est fait dans le tableau
ci-dessous. On y considère deux nombre réels a et b tels que a < b. Chacune des lignes
décrit le même sous-ensemble de trois façons équivalentes.

Les huit types d’intervalles

Sous-ensemble Intervalle Représentation graphique

{x ∈ R|a 6 x 6 b} [a; b]
a b

R

{x ∈ R|a 6 x < b} [a; b[ ou [a; b)
a b

R

{x ∈ R|a < x 6 b} ]a; b] ou (a; b]
a b

R

{x ∈ R|a < x < b} ]a; b[ ou (a; b)
a b

R

{x ∈ R|x > a} ]a; +∞[ ou (a; +∞)
a

R
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Mathématiques, MAP 1ère année 13. Ensembles

Sous-ensemble Intervalle Représentation graphique

{x ∈ R|x > a} [a; +∞[ ou [a; +∞)
a

R

{x ∈ R|x < b} ]−∞; b[ ou (−∞; b)
b

R

{x ∈ R|x 6 b} ]−∞; b] ou (−∞; b]
b

R

13.6 Produit cartésien

Définition 13.10
Soit deux ensembles A et B.

Un élément a de A et un élément b de B, pris dans cette ordre, forment un couple noté
(a; b).

On peut considérer le couple comme une ”paire ordonnée”.

Soit encore un élément c de A et un élément d de B. L’axiome suivant définit l’égalité de
couples :

(a; b) = (c; d)⇐⇒ (a = c et b = d)

a est l’abscisse ou la première coordonnée (composante) du couple (a; b).

b est l’ordonnée ou la deuxième coordonnée (composante) du couple (a; b).

Le produit cartésien de A et B, pris dans cet ordre, est l’ensemble des couples ayant
leur première coordonnée dans A et leur deuxième coordonnée dans B. On note :

A× B = {(x; y) | x ∈ A et y ∈ B}
On lit ”A cross B” (ou ”A croix B”).

Cas particulier : Si A = B, on pose : A× A = A2.

Remarques

1) Attention ! A× B 6= B × A : l’ordre joue un rôle important.

2) Ne pas confondre
– (a; b), élément du produit cartésien,
– {a; b}, ensemble comprenant a et b comme éléments,
– [a; b], intervalle fermé de a à b.

3) On peut généraliser la notion de produit cartésien et l’appliquer à un nombre quel-
conque d’ensembles. Par exemple, un produit cartésien de trois ensembles est un en-
semble de triplets.

Exemple

Soit A = {0; 1} et B = {a; b; c; d}
alors A× B = {(0; a); (0; b); (0; c); (0; d); (1; a); (1; b); (1; c); (1; d)}
(1; b) est un couple de A × B où 1 est la première coordonnée ou abscisse et b la
deuxième coordonnée ou ordonnée.
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13.6.1 Le plan R2

Dans le chapitre ”Notions fondamentales” en algèbre, nous avons défini l’ensemble des
nombres réels R et avons montré qu’on peut le représenter par la droite réelle. Nous allons
maintenant montrer comment associer l’ensemble des couples (a; b) de nombres réels

R2 = R× R = {(a; b) | a ∈ R et b ∈ R}

à chaque point d’un plan.

Un système de coordonnées orthogonale ou système cartésien dans un plan est
formé de deux droites de coordonnées perpendiculaires appelées axes de coordonnées,
qui se coupent à l’origine O, comme le montre la figure ci-dessous. On appelle la droite
horizontale laxe des x et la droite verticale l’axe des y, et on les note respectivement Ox
et Oy. Le plan est alors un plan de coordonnées ou plan Oxy. Les axes de coordonnées
divisent le plan en quatre secteurs appelés le premier, le deuxième, le troisième et le
quatrième quadrant, et notés respectivement I, II, III et IV. Les points sur les axes
n’appartiennent à aucun quadrant.

Chaque point P d’un plan Oxy peut être associé à un couple (a; b) comme le montre la
figure ci-dessous. On appelle a la coordonnée en x (ou abscisse) et b la coordonnée en y
(ou ordonnée). On dit que P a les coordonnées (a; b) et on parle du point (a; b) ou du
point P (a; b). Réciproquement, chaque couple (a; b) détermine un point P de coordonnées
a et b. On repère un point en mettant un point rond. Quelques exemples de points sont
données dans la figure de droite.

y

III

III IV

b
(a; b)

b

a1

1

O
x

y

b

b

b

bb

b b b

(−4; 3)

(0; 5)

(5; 2)

(0; 0)

(−4; 0)

(−4;−3)
(0;−3)

(5;−3)

1

1

O
x

Dans la suite de ce cours, nous allons largement utiliser le plan Oxy pour représenter des
ensembles de couples de nombres réels sous forme de points. Nous présentons ci-dessous
deux exemples de cette utilisation.

On peut représenter dans le plan l’ensemble des solutions d’une équation à deux inconnues
x et y. En effet, une solution particulière d’une telle équation est un couple (a; b) qui vérifie
l’énoncé si x = a et y = b.

Exemple

(2, 3) est une solution de y2 = 5x− 1 puisque si x = 2 et y = 3 on a :
– MG : 32 = 9
– MD : 5 · 2− 1 = 9
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Définition 13.11
A chaque solution (a; b) d’une équation en x et y correspond un point P (a; b). L’ensemble
de tous ces points est appelé la représentation graphique de l’équation.

Dans les cas simples, la représentation graphique peut être obtenue en reportant quelques
points. Pour une équation compliquée, reporter des points ne donne que peu d’informa-
tions au sujet de la représenation graphique. Dans un tel cas, on devra employer des
techniques que nous étudierons dans la suite du cours.

Exemple

Représentation graphique de l’équation y = 2x− 1.

On donne ci-dessous quelques points (x; y) du plan qui satisfont cette équation.

x −3 −2 −1 0 1 2 3

y −7 −5 −3 −1 1 3 5

On observe que les points qui ont ces coordonnées sont sur une droite (représentée
ci-dessous). En général, aussi peu de points ne suffisent pas pour représenter gra-
phiquement une équation ; cependant, dans ce cas élémentaire, on peut raisonna-
blement être sûr que la représentation graphique est une droite.

y

b

b

b

b

b

b

b

(−3;−7)

(−2;−5)

(−1;−3)

(0;−1)

(1; 1)

(2; 3)

(3; 5)

1

1

y = 2x− 1

x

On peut également représenter graphiquement le produit cartésien de deux sous-ensem-
bles de R en utilisant certaines conventions qui seront illustrées par l’exemple ci-dessous.

Exemple

Soit les ensembles A = [2; 4[ et B = {1} ∪ [2; 5].

La représentation graphique du produit cartésien de A et B

A×B = [2; 4[× ({1} ∪ [2; 5])

est donnée ci-dessous.

On utilise les conventions suivantes pour la représentation graphique :

disque : le point appartient à l’ensemble,

cercle : le point n’appartient à l’ensemble,
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segment continu : tous les point du segment appartiennent à l’ensemble,

segment discontinu : aucun point du segment n’appartient à l’ ensemble,

surface colorée : tous les points de la surface appartiennent à l’ensemble.

y

1

2

3

4

5

−1

1 2 3 4 5−1

b

b

b

bc

bc

bc

x

13.7 Relations binaires

13.7.1 Graphe - relation binaire

Définition 13.12
Soit G une partie de A× B.

Une relation binaire de A vers B est déterminée par la donnée de

– son ensemble de départ A (source)
– son ensemble d’arrivée B (but)
– son graphe G

La relation est désignée par le symbole R.

L’élément a de A est dans la relation R avec l’élément b de B, si (a; b) ∈ G, et dans ce
cas seulement. On écrit aR b et on lit a est en relation avec b.

a est alors une préimage de b par la relation R et b est une image de a par la relation
R.

De plus, si (a; b) /∈ G, on écrit aR/ b.

Enfin, deux relations R et S sont égales et on note R = S , dans le seul cas où R et
S ont la même source, le même but et le même graphe.

Remarque

La représentation graphique d’un graphe dans un diagramme cartésien porte parfois, par
abus de langage, le nom ”graphe”.

13.7.2 Relation réciproque

Définition 13.13
Le couple (b; a) de B×A est le transposé ou le symétrique du couple (a; b) de A×B.
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Le graphe transposé ou symétrique du graphe G est l’ensemble de tous les couples trans-
posé des couples de G. On note

rG = {(y; x) | (x; y) ∈ G}

La relation réciproque d’une relation R de A vers B ayant G comme graphe est la
relation de B vers A admettant rG comme graphe. Elle est désignée par le symbole rR.

Par définition, la condition suivante se vérifie pour tout x de A et tout y de B :

y r
R x⇐⇒ xR y

13.7.3 Propriétés d’une relation dans un ensemble A

Définition 13.14
Une relation binaire R dans un ensemble A est une relation de A vers A.

Une relation R dans A est :

- réflexive si xR x

- symétrique si xR y ⇒ yR x

- antisymétrique si (xR y et yR x) ⇒ x = y

- transitive si (xR y et yR z) ⇒ xR z

- connexe si (x ∈ A et y ∈ A) ⇒ (xR y ou yR x)

pour tous les éléments x, y, z de A.

13.7.4 Relations particulières dans un ensemble A

Définition 13.15
On peut définir les relations particulières dans un ensemble A suivantes :

Une relation d’ordre est une relation





réflexive
antisymétrique
transitive

Une relation d’ordre total est une relation





réflexive
antisymétrique
transitive
connexe

Une relation d’équivalence est une relation





réflexive
symétrique
transitive
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13.7.5 Classes d’équivalence - ensemble-quotient

Définition 13.16
Soit R une relation d’équivalence dans un ensemble A.

On introduit souvent la notion suivante :

x ∼ y (mod R)

en lieu et place de xR y et on lit ”x est équivalent à y, modulo R”.

La classe d’équivalence d’un élément a de A, modulo R, est l’ensemble des éléments
de A équivalents à a, modulo R.

On note :
Cl(a) = ȧ = {x | x ∈ A et x ∼ a (mod R)}

L’ensemble-quotient de A par R est l’ensemble de toutes les classes d’équivalence de
A, modulo R. On le note : A/R

Proposition 13.2
L’ensemble-quotient A/R est une partition de A.

Réciproquement, toute partition de A permet de définir une relation d’équivalence dans
A.

13.7.6 Exemples

Exemple 1

Soit R la relation de A = {0; 1; 2} vers B = {−1; 0; 2; 4} donnée par

xR y ⇔ x+ y est un nombre pair

Le graphe de cette relation est :

G = {(0; 0); (0; 2); (0; 4); (1;−1); (2; 0); (2; 2); (2; 4)}
On donne ci-dessous une représentation fléchée et un diagramme cartésien de R.

B

b

b

b

b

b

b

b

−1
0

2

4

1 2
A

Exemple 2

On considère l’ensemble E formé des 6 boules a, b, c, d, e et f . Les trois boules a, b, c
sont rouges, les deux boules d, e sont vertes et la boule f est blanche.

Dans E, on envisage la relation R donnée par

xR y ⇔ x et y sont de même couleur
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R est une relation :

réflexive : car une boule est évidemment en relation avec elle-même ;

symétrique : car si une première boule est de la même couleur qu’une deuxième boule,
alors la deuxième boule est de la même couleur que la première ;

transitive : car si une première boule est de même couleur qu’une deuxième boule et
que cette deuxième boule est de même couleur qu’une troisième boule, alors la
première et la troisième boules sont de même couleur.

Il s’agit donc d’une relation d’équivalence.

La classe d’équivalence de a est : ȧ = {a; b; c} (qui est aussi la classe d’équivalence de b
et de c) .
La classe d’équivalence de d est : ḋ = {d; e} (qui est aussi la classe d’équivalence de e).
La classe d’équivalence de f est : ḟ = {f}.
L’ensemble quotient est donné par : E/R = {{a; b : c}︸ ︷︷ ︸

ȧ

; {d; e}︸ ︷︷ ︸
ḋ

; {f}︸︷︷︸
ḟ

}.

On donne ci-dessous une représentation fléchée et un diagramme cartésien de cette rela-
tion.

Exemple 3

On donne les ensembles A = {1; 2; 3}, B = {3; 4}, C = {1; 2; 3; 4} et D = {2; 3; 4}.
Soit alors l’ensemble E = {A;B;C;D}.
Dans E, on définit la relation R :

XR Y ⇔ X ⊂ Y

On peut démontrer que R est une relation réflexive, antisymétrique, transitive. Il s’agit
donc d’une relation d’ordre.

Par contre, R n’est pas une relation connexe, car, par exemple, on n’a ni AR B, ni
BR A.

On donne ci-dessous une représentation fléchée et un diagramme cartésien de cette rela-
tion.
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Exemple 4

Dans Z, on envisage la relation :

xR y ⇔ x− y est un multiple de 4

⇔ x− y = 4k k ∈ Z

Cette relation est une relation d’équivalence car :

R est réflexive : xR x
car x− x = 0 = 4 · 0

R est symétrique : xR y ⇒ yR x
car x− y = 4k ⇒ y − x = 4 · (−k) = 4k′

R est transitive :
xR y
yR z

}
⇒ xR z

car
x− y = 4k
y − z = 4k′

}
⇒ x− z = x− y + y − z = 4k + 4k′ = 4k′′

Les 4 classes d’équivalence sont les suivantes :

C0 = {. . . ;−8;−4; 0; 4; 8; . . .}
C1 = {. . . ;−7;−3; 1; 5; 9; . . .}
C2 = {. . . ;−6;−2; 2; 6; 10; . . .}
C3 = {. . . ;−5;−1; 3; 7; 11; . . .}

Finalement, l’ensemble-quotient est donné par : Z/R = {C0;C1;C2;C3}.
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13.8 Exercices

1) Enumérer les éléments des ensembles suivants :

a) A = {x ∈ R|x = 2n− 1, n ∈ N, n 6 5}
b) B = {x ∈ R|x2 + x = 0}
c) C = {x ∈ Q|x2 − 2 = 0}

2) Décrire les ensembles suivants en donnant une condition d’appartenance :

a) A = {1; 2; 3; 4; 5; 6; 7; 8}
b) B = {1; 4; 7; 10; 13; 16; 19}
c) C = {1

2
; 1
5
; 1
10
; 1
17
; 1
26
}

3) Les écritures suivantes sont-elles correctes ? Dans l’affirmative, les propositions sont-
elles vraies ?

a) a ∈ {a} b) {a} ⊂ {a; b} c) a ⊂ {a; b; c}
d) a ∈ {b; c} e) {a} ∈ P({a; b}) f) {a} ∈ {{a}; {a; b}; {b}}

4) Trouver les ensembles A et B sachant que l’on a :

a) A ∪ B = {a; b; c; d; e}, A ∩ B = {b; c; d}, a /∈ B \ A et e /∈ A \B,

b) A ∪ B = {1; 2; 3; 4; 5; 6; 7; 8; 9}, A ∩ B = {4; 6; 9}, A ∪ {3; 4; 5} = {1; 3; 4; 5; 6; 8; 9}
et B ∪ {2; 4; 8} = {2; 4; 5; 6; 7; 8; 9}.

5) Simplifier les expressions suivantes dans lesquelles A, B et C sont des ensembles non
vides.

a) A ∪ (B ∪ A) b) A ∩ (B ∪ A) c) (A ∪B) ∪ (C ∪ A)
d) (A \B) ∪ A e) (A \B) \B f) (A \B) ∩ (B \ A)

6) On donne les diagrammes de Venn des sous-ensembles d’un référentiel E. Griser les
parties correspondantes aux opérations indiquées.

a) (A ∩B) \ C b) (A ∩ B) \ (B ∪ C) c) (A△B) \ C
d) (A△B) ∪ (B△C) e) (A \B)△C f) (A ∪ B) ∪ C
g) (A ∪B)△(B ∪ C) h) (A△C) ∩B

a) b) c)

A

EC

B A

EC

B A

EC

B
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Mathématiques, MAP 1ère année 13. Ensembles

d) e) f)

A

EC

B
A

E

C

B

A

EC

B

g) h)

A

E
C

B

A

E

C

B

7) On considère les diagrammes de Venn ci-dessous. En utilisant uniquement les symboles
∪, ∩, \ et △, définir le plus simplement possible les ensembles grisés.

a) b) c)

A

E

C

B A

EC

B A

EC

B

d) e) f)

A

EC

B A

EC

B A

E
C

B

g) h) i)

A

EC

B

A

E

C

B A

E

C

B

D

8) Quels sont les ensembles P({1}), P({1; 2}), P({1; 2; 3; 4}) ?

9) Soit A un ensemble contenant k éléments.
Combien P(A) en contient-il ?
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10) Soit un ensemble E et deux ensembles A et B de P(E). Montrer que :

a) A ∩ B = A ∪ B
b) A ∪ B = A ∩ B

11) Décrire les ensembles suivants à l’aide d’intervalles.

a) A = {x ∈ R| − 3 6 x 6 5}
b) B = {x ∈ R|4 6 x < 5}
c) C = {x ∈ R|x < 1}
d) D = {x ∈ R|x > 10}
e) E = {x ∈ R|x > −2 et x 6 2}
f) F = R

g) G = {2}

12) On donne trois intervalles I, J et K de R. Déterminer I ∩ J , I ∩ K, I \ (J ∪ K),
(I \ J) ∪ (I \K) dans les cas suivants.

a) I = [−3; 4[ J = [−2; 0[ K = ]−5; 3]
b) I = ]−4; 2] J = [−2, 3] K = ]−3; 1[
c) I = ]−5; 3[ J = ]−1; 5] K = [−3; 4]

13) Dans une classe, on a recensé les élèves quant à leurs loisirs : musique, sport, ciné-club.
On a obtenu les résultats suivants :

a) 9 élèves font seulement du sport.

b) 20 élèves font de la musique ou vont au ciné-club, éventuellement les deux.

c) 6 élèves font du sport et vont au ciné-club.

d) 18 élèves font du sport.

e) 2 élèves participent aux trois activités.

f) 7 élèves participent à deux activités exactement.

g) 12 élèves ne font pas de sport.

h) 19 élèves font soit de la musique, soit du sport, mais pas les deux.

Trouver l’effectif de la classe, le nombre d’élèves qui font de la musique et le nombre
d’élèves qui vont au ciné-club.

14) Représenter graphiquement les ensembles-produits suivants :

a) ]−2; 1[ × [0; 1] b) {−1; 0; 1} × ]−2; 2]
c) ]−1; 2[ × {0; 1; 2} d) ([−2; 0] ∪ {1}) × ]0; 3[

e) [−3; 3[ × ]−3; 3] f) R+ × R−

g) R × R∗
+ h) R∗ × R∗

i) {0} × R− j) R × {0; 1}
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15) On donne les représentations graphiques de sous-ensembles de R × R. Indiquer les
ensembles-produits ainsi représentés :

a)

y

1

2

−1

−2

1 2−1−2

b x
b)

y

1

2

−1

−2

1 2−1−2
x

c)

y

1

2

−1

−2

1 2−1−2
x

d)

y

1

2

−1

−2

1 2−1−2
x

e)

y

1

2

−1

−2

1 2−1−2
x

f)

y

1

2

−1

−2

1 2−1−2
bbc

bc bc

x

g)

y

1

2

−1

−2

1 2−1−2
x

h)

y

1

2

−1

−2

1 2−1−2
bc bc

bcbc

x
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i)

y

1

2

−1

−2

1 2−1−2
b

b

b

b

bc

bc

x
j)

y

1

2

−1

−2

1 2−1−2
b b b b

b b b b

b b b b

b b b b

x

k)

y

1

2

−1

−2

1 2−1−2

bc

bc

bc

bc

bc

bc

bc

bc

x
l)

y

1

2

−1

−2

1 2−1−2

bc

bc

bc

b

b

b

x

16) On lance trois fois de suite un dé dont les faces sont numérotées 1, 2, 3, 4, 5, 6 et on
note le résultat sous la forme d’un triplet (x; y; z).

a) A quel ensemble-produit ce résultat appartient-il ?

b) Combien cet ensemble-produit a-t-il d’éléments ?

c) Parmi ces éléments, combien y en a-t-il pour lesquels x, y et z sont distincts ?

17) Les relations suivantes sont-elles réflexives, symétriques, transitives, antisymétriques,
connexe ?

a) l’inclusion dans P(E)
b) xy > 0 dans R

c) |x| 6 |y| dans R
d) x2 + x = y2 + y dans Z

18) On considère l’ensemble D des points d’une droite horizontale. On définit dans D la
relation g suivante :

x g y ⇔ (x est à gauche de y ou x = y)

Montrer que g définit un ordre total dans D.

19) Soit E = {−3;−2;−1; 0; 1; 2; 3}. On définit dans E une relation R par

xR y ⇔ (x = y ou x+ y = 0)

a) Montrer que R est une relation d’équivalence.

b) Faire une représentation fléchée de R ; représenter le graphe de R.
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c) Déterminer les classes d’équivalence de R.

20) Dans Z, on envisage la relation R :

aR b⇔ a− b est un multiple de n

avec n ∈ {2; 3; 4; . . .}, dite relation de congruence modulo n, notée également a ∼=
b mod (n).

Étudier cette relation pour n = 5 et n = 6.

21) Soit E = {−6;−3; 1; 5} et la relation R définie dans E par

xR y ⇔ x est un multiple de y

a) Quels sont les couples de cette relation ?

b) Même question pour la réciproque.

22) Dans l’ensemble des points du plan, on envisage la relation

AR B ⇔ A et B sont à égale distance d’un point fixe M du plan

a) Montrer qu’il s’agit d’une relation d’équivalence.

b) Quelles sont les classes d’équivalence ?

23) Soit E = {1; 2; 3; 4}. Dans E × E, on définit la relation

(a; b)R (c; d)⇔ b− a = d− c

Étudier R.

24) Étudier la relation R définie dans R par

aR b⇔ a− b = k · 2π

avec k ∈ Z.

25) Étudier la relation R définie dans Z× Z∗ par

(a; b)R (c; d)⇔ ad = bc
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13.9 Solutions des exercices

1) a) A = {−1; 1; 3; 5; 7; 9}
b) B = {−1; 0}
c) C = ∅

2) a) A = {x ∈ N∗|x < 9}
b) B = {x ∈ R|x = 3n+ 1, n ∈ N et n < 7}
c) C = {x ∈ R|x = 1

n2+1
, n ∈ N∗ et n < 6}

3) a) oui, oui b) oui, oui c) non, non
d) oui, non e) oui, oui f) oui, oui

4) a) A = {a; b; c; d} et B = {b; c; d; e}
b) A = {1, 3; 4; 6; 8; 9} et B = {2; 4; 5; 6; 7; 9}

5) a) A ∪B b) A c) A ∪B ∪ C
d) A e) A \B f) ∅

6) a) b) c)

A

EC

B A

EC

B A

EC

B

d) e) f)

A

EC

B
A

E

C

B

A

EC

B

g) h)

A

E
C

B

A

E

C

B

7) a) (A \B) ∪ (C \ A) b) ((A ∩ B) \ C) ∪ (C \ (A ∪B))

c) (A ∩ B ∩ C) ∪ ((A△B) \ C) d) (A ∪B)△C
e) (A△(B∩C))∩(B∪C) f) (C \ A)△B g) (A∩C)∪(B \(A∪C))
h) C \ (A△B) i) (A ∪ C) ∩ (B ∪D)
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8) – P({1}) = {∅, {1}}
– P({1; 2}) = {∅; {1}; {2}; {1; 2}}
– P({1; 2; 3; 4}) = {∅; {1}; {2}; {3}; {4}; {1; 2}; {1, 3}; {1; 4}; {2; 3}; {2; 4}; {3; 4};
{1; 2; 3}; {1; 3; 4}; {2; 3; 4}; {1; 2; 4}; {1; 2; 3; 4}}

9) 2k

11) a) A = [−3; 5] b) B = [4; 5[ c) C =]−∞; 1[ d) D = [10;+∞[

e) E = [−2; 2] f) F =]−∞; +∞[ g) G = [2; 2]

12) a) [−2; 0[ [−3; 3] ]3; 4[ [−3;−2[⋃[0; 4[

b) [−2; 2] ]− 3; 1[ ]− 4;−3] ]− 4;−2[⋃[1; 2]

c) ]− 1; 3[ [−3; 3[ ]− 5;−3[ ]− 5;−1]

13) 30 ; 11 ; 11

14) a)

y

1

2

−1

−2

−3

1 2−1−2−3

bc

bc

bc

bc

x
b)

y

1

2

−1

−2

−3

1 2−1−2−3

b b b

bc bc bc

x

c)

y

1

2

−1

−2

−3

1 2−1−2−3

bc bc

bc bc

bc bc

x
d)

y

1

2

−1

−2

−3

1 2−1−2−3

bc

bc

bc

bc

bc

bc

x

e)

y

1

2

−1

−2

−3

1 2−1−2−3

bc bc

bcb

x
f)

y

1

2

−1

−2

−3

1 2−1−2−3

b x
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g)

y

1

2

−1

−2

−3

1 2−1−2−3
x

h)

y

1

2

−1

−2

−3

1 2−1−2−3
x

i)

y

1

2

−1

−2

−3

1 2−1−2−3

b x
j)

y

1

2

−1

−2

−3

1 2−1−2−3
x

15) a) R+ × R+ b) R × R−

c) R × [0; 1] d) R∗
− × R

e) R × R∗
+ f) ]−2; 2] × [−1; 2[

g) [−1; 1] × R h) ]−2; 2[ × ]−1; 1]
i) ({−2} ∪ ]−1; 1]) × [−1; 1] j) {−1; 0; 1; 2} × {−1; 0; 1; 2}
k) {−1; 0; 1; 2} × ]0; 2[ l) ]−2; 1] × {0; 1; 2}

16) a) E × E × E avec E = {1; 2; 3, 4; 5; 6}
b) 63 = 216

c) 6 · 5 · 4 = 120

17) a) oui, non, oui, oui, non

b) oui, oui, non, non, non

c) oui, non, oui, non, oui

d) oui, oui, oui, non, non

19) c) {−3; 3} {−2; 2} {−1; 1} {0}

20) Il s’agit d’une relation d’équivalence.

21) a) (−6;−6), (−3;−3), (1; 1), (5; 5), (−6;−3), (−6; 1), (−3; 1), (5, 1)
b) (−6;−6), (−3;−3), (1; 1), (5; 5), (−3;−6), (1;−6), (1;−3), (1, 5)
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22) b) Des cercles de centre M .

23) R est une relation d’équivalence.

24) R est une relation d’équivalence.

25) R est une relation d’équivalence.
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Chapitre 14

Fonctions

14.1 Introduction

Le terme mathématique fonction apparâıt à la fin du XVIIe siècle, quand le calcul
différentiel et intégral en était aux premiers stades de son développement. Cet important
concept est maintenant l’épine dorsale des cours de mathématiques et il est indispensable
dans tous les domaines scientifiques.

Il y a fonction dès qu’une quantité dépend d’une autre. Voici quatre situations.

A. L’aire A d’un cercle dépend du rayon r de ce cercle. C’est l’équation A = πr2 qui
exprime la règle qui lie r et A. A chaque valeur positive de r est associée une valeur
de A, on dit que A est une fonction de r.

B. La population mondiale P dépend du temps t. La table ci-dessous donne une estima-
tion de cette population P (t) au temps t, pour quelques années.

Population
Année (en millions)

1900 1’650
1910 1’750
1920 1’860
1930 2’070
1940 2’300
1950 2’560
1960 3’040
1970 3’710
1980 4’450
1990 5’280
2000 6’080

A l’aide de ce tableau, on peut, par exemple, dire que :

P (1950) ≈ 2′560′000′000

Mais à chaque valeur de la variable t correspond une valeur de P et on dit que P est
une fonction de t.

C. Le coût C d’affranchissement d’une lettre dépend de son poids p. Bien qu’il n’existe
pas de formule simple qui lie C et p, le bureau postal dispose d’un tarif qui lui permet
de déterminer C dès que p est connu.
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D. A une station-essence, le prix f , en francs, que sera payé à la caisse par un automo-
biliste dépendra du nombre de litres x d’essence qu’il aura déversé dans le réservoir
de sa voiture. Si le prix par litre est de 1,60 francs, le montant payé à la caisse sera
simplement f(x) = 1, 6 ·x. Cette relation donne le prix à payer en fonction du nombre
de litres.

Chacun de ces exemples décrit une règle selon laquelle, à un nombre (r, t, p ou x) est
associé un autre nombre (A, P , C ou f). Dans chaque cas, on dit que le deuxième nombre
est une fonction du premier.

14.2 Définitions

Définition 14.1
Une fonction ou application d’un ensemble D dans un ensemble A est une correspon-
dance qui associe à chaque élément de D un et un seul élément de A.

La fonction, qu’on nomme ici f , se note souvent :

f : D −→ A

x 7−→ f(x)

où D est appelé l’ensemble de départ de f et A l’ensemble d’arrivée de f .

L’élément f(x) est la valeur de f en x et se lit ”f de x”. Cet élément f(x) est appelé
l’image de x par f .

Une formule permettant de calculer les images f(x) est appelée expression fonction-
nelle de f .

L’ensemble image par f est l’ensemble des images des éléments de l’ensemble de départ.
On le note f(D) ou Im(f).

Remarques

1. On utilise souvent la lettre x pour représenter une valeur quelconque de l’ensemble de
départ de la fonction f . On appelle celle-ci la variable (ou variable indépendante) de
la fonction.

Pour désigner l’image, on utilise souvent la lettre y. On dit alors que y est fonction de
x et on note plus généralement y = f(x). Cela signifie qu’à droite du signe =, il n’y a
qu’une variable appelée x.

2. Il faut bien comprendre que x et y ne sont que des symboles et rien ne nous empêche
d’en utiliser d’autres. Par exemple, quand la variable est le temps, on utilise volontiers
t au lieu de x.

Il est instructif de comparer une fonction à une espèce de machine. Lorsque x est une
valeur de l’ensemble de départ de la fonction f , alors la machine l’accepte comme entrée
et produit à la sortie f(x), selon la règle qui définit la fonction. Dès lors, l’ensemble de
départ peut être vu comme l’ensemble de toutes les entrées possibles de la machine et
l’ensemble image, comme l’ensemble des sorties possibles.

Les fonctions préprogrammées des calculatrices illustrent fort bien la notion de fonction
regardée comme une machine. Prenons l’exemple de la fonction activée par la touche
racine carrée de votre calculatrice. Vous enfoncez la touche

√
x, puis vous entrez la valeur
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de x. Si x < 0, il n’appartient pas à l’ensemble de départ de la fonction (ou au domaine
de définition de la fonction, voir paragraphe 3 ) et, de ce fait, ne sera pas accepté par
la calculatrice, qui du reste vous enverra un message d’erreur. Par contre, si x > 0, la
calculatrice affichera une valeur approximative de

√
x. La touche

√
x de votre calculatrice

n’est donc pas tout à fait la même chose que la fonction mathématique définie par f(x) =√
x.

Exemples

1. Considérons la fonction de R dans R donnée par l’expression fonctionnelle
f(x) = x2 + 5.

L’image de 3 est f(3) = 32 + 5 = 14.

L’image de −2 est f(−2) = (−2)2 + 5 = 9.

L’ensemble image de f est l’intervalle [5; +∞[.

2. Si l’on note P l’ensemble des polygones convexes et p un tel polygone, on peut
considérer la fonction

f : P −→ N

p 7−→ somme des angles intérieurs exprimés en degrés

On a ainsi : f(triangle) = 180, f(quadrilatère) = 360, f(pentagone) = 540.

Im(f) = multiples de 180 = {x ∈ N|x = 180k, k ∈ N∗}.

3. Un diagramme sagittal, comme celui ci-dessous, est une bonne manière de
représenter une fonction. Chaque flèche relie un élément de D à un élément de
A.

1

2

3

2

4

9

1

3

5

D Af

L’image de 1 est 1, celle de 2 est 4, 9 est l’image de 3.

Ensemble de départ : D = {1; 2; 3}.
Ensemble d’arrivée : A = {1; 2; 3; 4; 5; 9}.
Ensemble image : Im(f) = {1; 4; 9}.
Expression fonctionnelle : par exemple f(x) = x2.

Définition 14.2
L’ensemble des couples (x; f(x)), où x ∈ D, est appelé le graphe de la fonction f .

Exemple

Pour la fonction de l’exemple 3 ci-dessus, le graphe est formé des couples (1; 1),
(2; 4) et (3; 9).
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14.3 Fonctions réelles

Définition 14.3
Une fonction réelle (fonction d’une variable réelle et à valeurs réelles) est une fonction
de D vers R, avec D ⊂ R. Autrement dit :

f : D −→ R

Exemple

Un exemple de fonction réelle :

f : [0; 5] −→ R

x 7−→ x2 − 3x+ 2

L’image de 3 est f(3) = 32 − 3 · 3 + 2 = 2.

L’image de −2 n’est pas définie car −2 n’est pas un élément de l’ensemble de départ.

Si, pour une fonction, les ensembles de départ et d’arrivée ne sont pas précisés, on choisit R
comme ensemble d’arrivée et le plus grand sous-ensemble de R possible comme ensemble
de départ. Ce dernier est appelé ensemble de définition ou domaine de définition
de la fonction. On le note Df ou D(f).

Exemple

L’ensemble de définition de la fonction f(x) =
√
x− 1 est Df = [1;+∞[.

L’ensemble de définition Df est, dans ce cas, l’ensemble des nombres réels tels que
x − 1 > 0, puisque la fonction racine carrée n’est définie que pour des nombres
positifs ou nuls.

Définition 14.4
On appelle zéros d’une fonction f les valeurs de x telles que f(x) = 0.

Exemple

Le zéro de la fonction donnée par f(x) = 2x − 5 est la solution de l’équation
2x− 5 = 0. On trouve x = 5

2
.

14.3.1 Représentation de fonctions réelles

Il existe trois façons principales de représenter une fonction réelle f . Nous allons les
décrire succinctement.

1. Le tableau de valeurs

Le tableau de valeurs permet de donner quelques valeurs possibles de la variable x sur une
ligne et les images, f(x), correspondantes sur une deuxième ligne. Chacune des colonnes
donne un des points du graphe (ensemble des couples (x; f(x)) où x ∈ D). Voici un
tableau de valeurs représentant la fonction f .

x −2 −1.5 −1 0 1 2 2.5 3 3.5 5

f(x) −4 −1.75 0 2 2 0 −1.75 −4 −6.75 −18
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Malheureusement, il ne permet pas de savoir quelles sont les valeurs de f en dehors de
celles qui y sont inscrites.

2. La représentation graphique

On peut également représenter le graphe d’une fonction dans le plan muni dun système
d’axes.

Définition 14.5
La représentation graphique d’une fonction f est l’ensemble des points (x; f(x)) du
plan Oxy avec x ∈ Df .

La représentation graphique d’une fonction est aussi appelé graphe de la fonction.

De manière équivalente, la représentation graphique d’une fonction f est l’ensemble des
points du plan (x; y) qui vérifie l’équation y = f(x) avec x ∈ Df . On ajoute souvent
l’indication y = f(x) qui donne l’équation de la courbe associée au graphe de la fonction.

Si P (a; b) est un point de la représentation graphique, l’ordonnée b est donc la valeur
f(a) de f en a, comme le montre la figure ci-dessous. Cette dernière montre également le
domaine de définition de f (l’ensemble des valeurs possibles de x) et l’ensemble image de f
(les valeurs correspondantes de y). Bien que nous ayons dessiné le domaine de definition
et l’ensemble image comme des intervalles fermés, ceux-ci peuvent être des intervalles
infinis ou d’autres ensembles de nombres réels.

y

b

b b

b

b

P (a; b)

a

f(a)

1

1

E
n
se
m
b
le

im
a
g
e
d
e
f

Domaine de définition de f

y = f(x)

x

Exemple

Pour la fonction de l’exemple 3 de la page 253, le graphe est formé des trois points
(1; 1), (2; 4) et (3; 9).

y

2

4

6

8

1 2 3

b

b

b

x
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Voici une représentation graphique de la fonction f . On décrira en détails, au point 4 de
ce paragraphe, la manière de la dessiner.

f(x)

1

2

3

−1

−2

−3

−4

−5

−6

1 2 3 4−1−2−3

y = f(x)

b

b

b

b b

b

b

b

b

b

(−2;−4)

(−1;−1.75)

(−1; 0)

(0; 2) (1; 2)

(2; 0)

(2, 5;−1, 75)

(3;−4)

(3, 5;−6, 75)

x

Très pratique et relativement précise, la représentation graphique reste néanmoins res-
treinte à une région. Ici, par exemple, le graphe ne montre pas comment la fonction se
comporte pour x < −3 et x > 4.

Lorsqu’on dessine le graphe d’une fonction, on s’arrange généralement pour montrer tout
ce qui est intéressant (points de coupe avec les axes, points particuliers, . . . ).

Proposition 14.1
Les zéros d’une fonction f (x telles que f(x) = 0) sont les abscisses des points d’inter-
section du graphe de f avec l’axe Ox.

Le test de la droite verticale

Un courbe dans le plan Oxy est la représentation graphique d’une fonction si et seulement
si toute droite verticale la coupe en au plus un point.

La justification de ce test de la droite verticale se lit dans la figure ci-dessous. Si une
droite verticale quelconque x = a ne coupe une courbe qu’une fois, en (a; b), alors une
seule image b est associée à a par f . Si au contraire, une droite x = a coupe une courbe
deux fois, en (a; b) et en (a; c), alors cette courbe ne peut être la représentation d’une
fonction car une fonction ne peut attribuer deux valeurs différentes à a.

y

b(a; b)

x = a

O a
x

y

b

b
(a; b)

(a; c)

x = a

0 a
x

page 256
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3. L’expression mathématique

Voici l’expression mathématique de la fonction f :

f : R −→ R

x 7−→ f(x) = −x2 + x+ 2

L’expression mathématique est la meilleure façon de décrire une fonction, car en la
connaissant on peut construire un tableau de valeurs et une représentation graphique.
Alors que le contraire n’est pas possible (en tout cas pas de manière unique). L’expression
mathématique contient toute l’information à propos de la fonction.

4. Dessin de la représentation graphique d’une fonction

Soit f une fonction donnée par :

f : D −→ A

x 7−→ f(x)

Marche à suivre pour dessiner la représentation graphique de la fonction f :

1. résoudre l’équation f(x) = 0 −→ On obtient les n zéros de f : x1, x2,. . . ,xn
(abscisses des points d’intersection du graphe de f et de Ox),

2. calculer l’ordonnée y1 = f(0) −→ ordonnée du point d’intersection du graphe
de f et de Oy,

3. calculer quelques couples (x; f(x)) du graphe de f en choisissant des x dans
D −→ tableau de valeurs,

4. dessiner un repère Oxy dans le plan en indiquant sur chacun des axes l’échelle
utilisée,

5. représenter dans le plan Oxy les points (x1; 0), (x2; 0), . . . , (xn; 0) ; le point
(0; y1) et les autres points (x; y) (avec y = f(x)) associés aux couples du
graphe de f calculés en 3,

6. relier ”intelligemment” et ”proprement” à main levé les points dessiner dans le
plan Oxy (sauf si les points sont alignés −→ utiliser la règle) de sorte à obtenir
une courbe d’équation y = f(x) qui représente la fonction f ,

7. ajouter l’indication y = f(x) au graphique.

Remarques

1) Il n’y a pas de règle au niveau du nombre de points du graphe de f à calculer pour
pouvoir dessiner la représentation graphique de f . Il faut trouver un juste milieu entre
trop peu (précision insuffisante) et trop (temps de calcul et de dessin trop important).

2) Si on n’a pas assez d’indication dans une région du plan pour dessiner la représentation
graphique de f , on peut à tout moment calculer de nouveaux couples du graphe et
dessiner les points correspondants de manière à affiner notre dessin.
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Exemple

Nous allons considérer à nouveau la fonction :

f : R −→ R

x 7−→ f(x) = −x2 + x+ 2

et décrire la démarche qui permet de dessiner son graphe donné à la page 256.

On commence par résoudre l’équation f(x) = 0 :

−x2 + x+ 2 = 0 ·(−1)
x2 − x− 2 = 0 factorisation

(x+ 1)(x− 2) = 0

Les deux solutions de cette équation sont x1 = −1 et x2 = 2.

On calcule y1 = f(0) = −02 + 0 + 2 = 2

On calcule quelques couples du graphe. Ceci à déjà été réalisé avec le tableau de
valeur de la page 255.

On suit ensuite les points 4 à 6 de la démarche pour obtenir la représentation
graphique donnée à la page 256.

14.3.2 Opérations sur les fonctions

Tout comme on associe deux nombres réels dans l’addition, la soustraction, la multipli-
cation ou la division, on peut assembler deux fonctions f et g pour former de nouvelles
fonctions, f + g, f − g, f · g et f/g.

La fonction somme f + g est définie par

(f + g)(x) = f(x) + g(x)

Le membre de droite n’a du sens que si f(x) et g(x) sont définies, autrement dit, si x
appartient à la fois au domaine de f et de g.

Le signe + du membre de gauche désigne une addition de fonctions tandis que le signe
+ du membre de droite désigne une simple addition entre les nombres réels f(x) et g(x).

Définition 14.6
Soit f et g deux fonctions définies sur D(f) et D(g) (deux ensembles de nombres réels).
Alors les fonctions f + g, f − g, f · g et f/g sont définies comme suit :

(f + g)(x) = f(x) + g(x) domaine de définition : D(f + g) = D(f) ∩D(g)

(f − g)(x) = f(x)− g(x) domaine de définition : D(f − g) = D(f) ∩D(g)

(f · g)(x) = f(x) · g(x) domaine de définition : D(f · g) = D(f) ∩D(g)

(
f

g

)
(x) =

f(x)

g(x)
domaine de déf. : D

(
f

g

)
= {x ∈ D(f) ∩D(g)|g(x) 6= 0}
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14.4 Fonctions surjectives, injectives et bijectives

14.4.1 Fonctions surjectives

Définition 14.7
Une fonction f de D vers A est surjective si chaque élément de A est l’image d’au
moins un élément de D.

f est surjective ⇐⇒ f(D) = A

Autrement dit, pour tout y ∈ A, il existe (au moins) un x ∈ D tel que f(x) = y.

A l’inverse, f n’est pas surjective s’il existe un y ∈ A qui n’est l’image d’aucun élément
x ∈ D.

Exemples

1. La fonction f donnée par le diagramme sagittal ci-dessous est surjective car
chaque élément de A ”reçoit” au moins une flèche.

1

2

3

4

3

2

5

D Af

2. On considère les deux fonctions de R dans R g(x) = 1
2
x3 − 3

2
x et h(x) = 1

2
x2.

On donne leur représentation graphique ci-dessous. La fonction g est surjective,
tandis que la fonction h n’est pas surjective car certaines valeurs de A (les
nombres négatifs) ne sont pas l’image d’au moins un élément de D.

y

0

y = g(x)

x

surjective

y

0

y = h(x)
x

non surjective

Test de la droite horizontale

Une fonction réelle est surjective si et seulement si toute droite horizontale (dont la
hauteur est un nombre du domaine d’arrivée A) coupe son graphe au moins une fois.
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14.4.2 Fonctions injectives

Définition 14.8
Une fonction f de D vers A est injective (est une injection) si chaque élément de A est
l’image d’au plus une élément de D.

Autrement dit, la fonction f est injective si les images de deux éléments distincts sont
distinctes, quel que soit le choix de ces deux éléments. Mathématiquement, la condition
suivante est vérifiée pour tout x1, x2 de D :

x1 6= x2 =⇒ f(x1) 6= f(x2)

ou, ce qui revient au même :

f(x1) = f(x2) =⇒ x1 = x2

A l’inverse, f n’est pas injective s’il existe x1 et x2 dans D tels que f(x1) = f(x2) et
x1 6= x2.

Exemples

1. La fonction f donnée par le diagramme sagittal ci-dessous est injective car
chaque élément de A ”reçoit” au plus une flèche.

1

2

3

4

3

2

5

D Ag

2. On considère les deux fonctions de R dans R g(x) = 2x − 2 et h(x) = 1
2
x2. On

donne leur représentation graphique ci-dessous. La fonction g est injective, tan-
dis que la fonction h n’est pas injective car certaines valeurs de A (les nombres
positifs) sont l’image de plus d’un élément de D.

y

0
y = g(x)

x

injective

y

0

y = h(x)
x

non injective

Test de la droite horizontale

Une fonction réelle est injective si et seulement si toute droite horizontale (dont la hauteur
est un nombre du domaine d’arrivée A) coupe son graphe au plus une fois.
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14.4.3 Fonctions bijectives

Définition 14.9
Une fonction de D vers A est bijective (est une bijection) si elle est à la fois surjective
et injective.

Une bijection de D vers A vérifie donc la condition suivante :

Chaque élément de A est l’image
d’un élément de D exactement.

Exemples

1. La fonction f donnée par le diagramme sagittal ci-dessous est bijective car
chaque élément de A ”reçoit” exactement une flèche.

1

2

3

4

3

2

5

4

D Af

2. On considère les deux fonctions de R dans R g(x) = 1
4
x3 et h(x) = 1

2
x2. On

donne leur représentation graphique ci-dessous. La fonction g est bijective, tan-
dis que la fonction h n’est pas bijective car elle n’est ni injective, ni surjective
(voir exemples précédents).

y

0
y = g(x)

x

bijective
(surjective et injective)

y

0

y = h(x)
x

non bijective
(non surjective et non injective)

Test de la droite horizontale

Une fonction réelle est bijective si et seulement si toute droite horizontale (dont la hauteur
est un nombre du domaine d’arrivée A) coupe son graphe exactement une fois.

14.4.4 Prouver l’injectivité et la surjectivité

On donne ci-dessous la manière la plus simple de montrer l’injectivité et la surjectivité
d’une fonction.
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1. Pour montrer qu’une fonction f : D → A est injective, on prend x1 et x2 quel-

conques dans D tels que f(x1) = f(x2) et on montre que x1 = x2.

2. Pour montrer qu’une fonction f : D → A est surjective, on prend y quelconque

dans A et on cherche x dans D tel que f(x) = y.

Exemple

Montrons que la fonction f : R→ R; x 7→ 2x+ 1 est injective et surjective.

1. Preuve de l’injectivité.

Soit x1 et x2 dans D = R tels que f(x1) = f(x2). A montrer x1 = x2.

f(x1) = f(x2)
définition de f

=⇒ 2x1 + 1 = 2x2 + 1
−1
=⇒ 2x1 = 2x2

:2
=⇒ x1 = x2

Remarquons qu’ici, on n’a pas besoin du sens “⇐=”.

2. Preuve de la surjectivité.

Soit y dans A = R. Il faut trouver x dans D = R tel que f(x) = y.

f(x) = y
définition de f⇐⇒ 2x+ 1 = y

−1⇐⇒ 2x = y − 1
:2⇐⇒ x =

y − 1

2

Remarquons qu’ici, on a vraiment besoin du sens “⇐=”.

14.5 Composition de fonctions

Le composition de fonctions est un façon de ”mettre ensemble” deux fonctions pour en
obtenir une nouvelle. Supposons, par exemple, que y = g(u) =

√
u et u = f(x) =

x2 + 1. Comme y est une fonction de u et comme u est, à son tour, une fonction de x, il
s’ensuit que y est finalement une fonction de x. Cette relation entre x et y se calcule par
composition

y = g(u) = g(f(x)) = g(x2 + 1) =
√
x2 + 1

Cette opération s’appelle composition parce que la nouvelle fonction est composée des
deux fonctions initiales f et g.

Définition 14.10
Si f est une fonction de D dans A et g une fonction de A dans B, on note g ◦ f la
fonction composée de f et de g. La fonction g ◦ f fait correspondre à tout élément de
D l’élément y = g(f(x)) de B.

On note g(f(x)) = (g ◦ f)(x) et on lit ”g rond f de x”.

x
f7→ f(x)

g7→ g(f(x)) = (g ◦ f)(x)
x

g◦f7−→ g(f(x)) = (g ◦ f)(x)

On peut visualiser la fonction composée à l’aide d’un diagramme sagittal :
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f g
x f(x) g(f(x))

g ◦ f

D A B

On peut interpréter ce diagramme de la manière suivante. Etant données deux fonction
f et g, on part d’une valeur x dans l’ensemble de départ de f et on calcule son image
f(x). Puis, si le nombre f(x) appartient à l’ensemble de départ de g, on peut calculer
la valeur g(f(x)). Le résultat est une nouvelle fonction (g ◦ f)(x) = g(f(x)) obtenue en
introduisant f dans g.

Attention à l’ordre des fonctions. Dans la fonction g ◦ f , on effectue f en premier mais
on note f en deuxième place car :
– on note les lettres f et g dans le même ordre que dans l’écriture g(f(x)),
– selon les règles de l’algèbre, pour calculer g(f(x)) on calcule d’abord la partie interne
f(x), donc on considère d’abord la fonction f .

Exemples

1. On considère un ensemble : D = A = B = ensemble de personnes, et deux
fonctions f(x) = père de x et g(x) = frère de x. On a alors :
– (g ◦ f)(x) = g(f(x)) = g(père de x) = frère du père de x = oncle de x
– (f ◦ g)(x) = f(g(x)) = f(frère de x) = père du frère de x = père de x
– (f ◦ f)(x) = f(f(x)) = f(père de x) = père du père de x = grand-père de x

2. On considère les fonctions f(x) = x2 et g(x) = x− 3. Alors :
– (g ◦ f)(x) = g(f(x)) = g(x2) = x2 − 3.
– (f ◦ g)(x) = f(g(x)) = f(x− 3) = (x− 3)2.

Remarque

L’exemple ci-dessus montre clairement que, en général, f ◦ g 6= g ◦ f .

Proposition 14.2
Soit trois fonctions :
– f une fonction de D vers A,
– g une fonction de A vers B,
– h une fonction de B vers C.
On a :

h ◦ (g ◦ f) = (h ◦ g) ◦ f
En particulier, la composition des fonctions d’un ensemble vers lui-même est associative.

14.6 Fonctions réciproques

Les fonctions bijectives sont particulièrement importantes car ce sont justement celles qui
possèdent une fonction réciproque, comme nous allons le voir.
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Considérons une fonction bijective de D vers A. Alors, pour tout nombre y ∈ A, il y a
exactement un nombre x ∈ D tel que f(x) = y. Nous pouvons, par conséquent, définir
une fonction g de A vers D qui fait correspondre x au nombre y.

En fait, pour représenter la fonction g dans un diagramme sagittal, il suffit d’inverser le
sens des flèches.

b

b
x

y = f(x)

D

Af

f : D −→ A

x 7−→ f(x)

b

b
x = g(y)

y

D

Ag

g : A −→ D

y 7−→ g(y)

On appellera cette fonction g la fonction réciproque de f et on la notera rf . Plus préci-
sément :

Définition 14.11
Soit une fonction f bijective de D vers A. Alors, sa fonction réciproque a A comme
ensemble de départ et D comme ensemble d’arrivée et est définie par

rf(y) = x⇐⇒ f(x) = y

quel que soit y dans A.

On peut visualiser la fonction réciproque à l’aide d’un diagramme sagittal :

x y

f

rf

D A

Remarque

Il est à noter que :

ensemble de départ de rf = ensemble d’arrivée de f

ensemble d’arrivée de rf = ensemble de départ de f

Proposition 14.3
Soit f : D → A une fonction bijective et rf : A→ D sa fonction réciproque. Les propriétés
suivantes sont vérifiées.

1. On a rf(f(x)) = x pour tout x ∈ D.

2. On a f(rf(y)) = y pour tout y ∈ A.
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Mathématiques, MAP 1ère année 14. Fonctions

3. rf est bijective.

La première propriété (appelée équation d’annulation) dit que si on part de x et on lui
applique f , puis rf au résultat, on revient au x d’où on était parti. En quelque sorte, rf
défait ce qu’a fait f .

Exemple

Si f(x) = x3, alors rf(x) = 3
√
x est les équations d’annulation deviennent :

rf(f(x)) =
3
√
x3 = x

f(rf(y)) = ( 3
√
y)3 = y

14.6.1 Calcul de la fonction réciproque

Si on a une fonction y = f(x) et qu’on peut résoudre cette équation par rapport à x,
alors, en accord avec la définition, on doit avoir x = rf(y). Si, maintenant, on désire
désigner la variable indépendante par la lettre x (pour conserver la notation classique des
fonctions), on échange x et y et on aboutit à l’équation y = rf(x).

En résumé, marche à suivre pour obtenir la réciproque d’une fonction bijective f :

1. Ecrire y = f(x).

2. Résoudre (si possible) l’équation en x.

3. Echanger x et y afin d’exprimer rf comme une fonction de x.

L’équation finale est y = rf(x).

Exemple

On cherche à déterminer la réciproque de f(x) = x3 + 2. On écrit d’abord :

y = x3 + 2

Ensuite, on résout cette équation par rapport à x :

x3 = y − 2

x = 3
√
y − 2

Enfin, on échange x et y :

y = 3
√
x− 2

La fonction réciproque cherchée est rf(x) = 3
√
x− 2.

14.6.2 Fonction réciproque et représentation graphique

Le fait qu’on doive échanger x et y pour obtenir la fonction réciproque intervient aussi
quand il s’agit d’obtenir le graphique de rf à partir de celui de f . Puisque f(a) = b si
et seulement si rf(b) = a, le point (a; b) appartient au graphe de f si et seulement si le
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point (b; a) appartient au graphe de rf . Or les points (a; b) et (b; a) sont symétriques par
rapport à la bissectrice y = x du premier quadrant.

Ainsi le graphe d’ne bijection f et de sa réciproque rf sont symétriques par rapport à la
bissectrice du premier quadrant.

Proposition 14.4
Le graphe de rf s’obtient en prenant l’image symétrique par rapport à la droite y = x du
graphe de f .

Exemple

On considère la fonction bijective :

f : R+ −→ R+

x 7−→ x2

En utilisant ce qui a été montré à l’exemple précédent, on peut déterminer que sa
fonction réciproque est :

rf : R+ −→ R+

x 7−→ √
x

Les représentations graphiques de ces deux fonctions sont données ci-dessous. On
remarque bien la symétrie décrite précédemment.

y

1

2

3

4

5

6

7

1 2 3 4 5 6 7

y = x

y = x2

y =
√
x

x

14.7 Fonctions paires et fonctions impaires

Pour les deux définitions suivantes, on considère que les fonctions sont des fonctions
réelles.

Définition 14.12
Soit une fonction réelle f de D (⊂ R) vers A (⊂ R). La fonction f est paire si deux
nombres opposés ont toujours la même image par f .

f est paire ⇐⇒ f(−x) = f(x) pour tout x ∈ D
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Mathématiques, MAP 1ère année 14. Fonctions

Remarque

Il est évident qu’une fonction f ne peut être paire que si son ensemble de départ D est
centré à l’origine !

Exemple

La fonction f(x) = 3x2 − 1, définie sur R, est paire.

En effet, on a bien que f(−x) = 3(−x)2 − 1 = 3x2 − 1 = f(x) quel que soit le
nombre réel x.

Graphique d’une fonction paire

y

0

b b

f(−x) f(x)

x−x
x

Graphiquement, la parité se traduit par une
symétrie du graphique par rapport à l’axe Oy.
En effet, si le point (x; y) fait partie du graphe,
alors le point (−x; y) en fait également partie.
Ce qui signifie qu’ayant déjà dessiné le graphe
de f pour x > 0, on l’obtient tout entier en
lui ajoutant simplement l’image symétrique par
rapport à l’axe Oy.

Définition 14.13
Soit une fonction réelle f de D vers A. La fonction f est impaire si deux nombres opposés
ont toujours des images opposées par f .

f est impaire ⇐⇒ f(−x) = −f(x) pour tout x ∈ D

Remarque

Il est évident qu’une fonction f ne peut être impaire que si son ensemble de départ D est
centré à l’origine !

Exemple

La fonction f(x) = 2x3 − 5x, définie sur R, est impaire.

En effet, on a que :
– f(−x) = 2(−x)3 − 5(−x) = −2x3 + 5x
– −f(x) = −(2x3 − 5x) = −2x3 + 5x
et donc que f(−x) = −f(x) quel que soit le nombre réel x.
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Graphique d’une fonction impaire

y

0

b

b

f(−x)

f(x)

x
−x

x

Le graphique d’une fonction impaire est symé-
trique par rapport à l’origine O des axes. En
effet, si le point (x; y) fait partie du graphe,
alors le point (−x;−y) en fait également par-
tie. Ainsi, si on a déjà dessiné le graphe de f
pour x > 0, on l’obtient tout entier en lui ad-
joignant simplement l’image obtenue après une
rotation de 180◦ autour de l’origine.

Attention !

”Impair” n’est pas le contraire de ”pair”. La plupart du temps, une fonction n’est ni
paire, ni impaire.

14.8 Fonction croissante et décroissante

Définition 14.14
Une fonction réelle f est croissante sur un intervalle
I (I ⊂ Df) si l’implication

x1 < x2 ⇒ f(x1) 6 f(x2)

est vraie pour tout x1, x2 dans I.

Une fonction réelle f est strictement croissante sur
un intervalle I (I ⊂ Df) si l’implication

x1 < x2 ⇒ f(x1) < f(x2)

est vraie pour tout x1, x2 dans I.

Illustration

y

x1 x2

f(x1)

f(x2)

x

Parcouru de gauche à droite, le graphe d’une fonction strictement croissante ”monte”.

Définition 14.15
Une fonction réelle f est décroissante sur un inter-
valle I (I ⊂ Df) si l’implication

x1 < x2 ⇒ f(x1) > f(x2)

est vraie pour tout x1, x2 dans I.

Une fonction réelle f est strictement décroissante
sur un intervalle I (I ⊂ Df) si l’implication

x1 < x2 ⇒ f(x1) > f(x2)

est vraie pour tout x1, x2 dans I.

Illustration

y

x1 x2

f(x1)

f(x2)

x

Parcouru de gauche à droite, le graphe d’une fonction strictement décroissante ”descend”.
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Définition 14.16
Une fonction réelle f est constante sur un intervalle
I (I ⊂ Df) si l’égalité

f(x1) = f(x2)

est vraie pour tout x1, x2 dans I.

Illustration

y

x1 x2

f
(x

1
)
=

f
(x

2
)

x

Parcouru de gauche à droite, le graphe d’une fonction constante est ”plat”.

Remarque

Les fonctions croissantes conservent l’ordre et les fonctions décroissantes inversent l’ordre.

Exemple

La fonction f(x) = sin(x) est strictement croissante sur l’intervalle
[
−π
2
;
π

2

]
(par-

tie verte de la représentation graphique) et strictement décroissante sur l’intervalle[
π

2
;
3π

2

]
(partie bleue de la représentation graphique).

π
2 π 3π

2 2π 5π
2 3π−π

2−π−3π
2−2π−5π

2−3π
1

−1

x

y

y = sin(x)
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14.9 Exercices

1) Soit la fonction f(x) = 1
x−3

. Donner :

a) f(4) b) f(3) c) 4f(x) d) f(4x)

e) f(x+ 4) f) f(4) + f(3) g) f(−x) h) −f(x)

2) Représenter graphiquement chacune des fonctions suivantes.

a)
f1 : R −→ R

x 7−→ −2x+ 4

b)
f2 : R −→ R

x 7−→ x2 + 3

c)
f3 : R \ {0} −→ R

x 7−→ 1
x

d)
f4 : R+ −→ R

x 7−→ x3

3) On considère les fonctions f1, f2, f3 et f4 de l’exercice précédent.

a) Déterminer, à l’aide des représentations graphiques, si ces fonctions sont injectives
ou surjectives.

b) Pour chacune de ces fonctions, vérifier ou infirmer algébriquement (sans le graphe)
si elles sont injectives ou surjectives.

c) Indiquer quelles sont les fonctions qui sont bijectives.

4) Soit les fonctions de R dans R données par leur expression fonctionnelle :

f(x) =
x

4
, g(x) =

1

x2 + 1
, h(x) = 1− x

Donner l’expression fonctionnelle de :

a) g ◦ f b) h ◦ g c) h ◦ (g ◦ f) d) (h ◦ g) ◦ f

5) Donner le domaine de définition ainsi que l’expression fonctionnelle de f ◦ g et g ◦ f
pour les fonctions suivantes :

a) f(x) = x2 + 4 g(x) = x− 1

b) f(x) = 1− 1

x
g(x) =

1

1− x

c) f(x) =
1

x− 1
g(x) =

1

x− 2

6) Soit la fonction f de R dans R donnée par l’expression fonctionnelle f(x) = (x+ 1)2.

Trouver deux fonctions g et h de R dans R, différentes de l’identité, telles que f = g◦h.
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7) Soit la fonction f de R dans R donnée par l’expression fonctionnelle f(x) = (x3+1)2.

Trouver trois fonctions g1, g2 et g3, différentes de l’identité, telles que f = g1 ◦ g2 ◦ g3.

8) Soit les fonctions affines :

f : R −→ R
x 7−→ 2x

g : R −→ R
x 7−→ −x+ 3

Représenter, dans un même système de coordonnée et sur papier millimétré (en utili-
sant des couleurs différentes), les graphes de :

a) f b) g c) f + g d) f − g

e) f · g f)
f

g
g) f ◦ g h) rf

9) Soient les fonctions f et g données par leur représentation graphique :

y

1

2

3

4

−1

−2

−3

−4

1 2 3 4 5 6−1−2−3−4

y = g(x)y = f(x)

x

Associer dix des fonctions suivantes aux dix représentations graphiques qui suivent.

1. h(x) = f(−x) 2. i(x) = −f(x) 3. j(x) = g(x+ 2)

4. k(x) = g(x) + 2 5. l(x) = f 2(x) 6. m(x) = g2(x)

7. n(x) = (f ◦ g)(x) 8. o(x) = (g ◦ f)(x) 9. p(x) = (f + g)(x)

10. q(x) = (f − g)(x) 11. r(x) = (g − f)(x) 12. s(x) = (f · g)(x)

13. t(x) =

(
f

g

)
(x) 14. u(x) =

(
g

f

)
(x) 15. u(x) = rf(x)
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a)
y

1

2

3

−1

−2

−3

1 2 3 4 5−1−2−3
x

b)
y

1

2

3

−1

−2

−3

1 2 3 4 5 6−1−2
x

c)
y

1

2

3

−1

−2

−3

1 2 3 4 5−1−2−3
x

d)
y

1

2

3

−1

−2

−3

1 2 3 4 5−1−2−3
x

e)
y

1

2

3

4

5

−1

1 2 3 4 5−1−2−3
x

f)
y

1

2

3

−1

−2

−3

1 2 3 4−1−2−3−4
x

g)
y

1

2

3

−1

−2

−3

1 2 3 4 5−1−2−3
x

h)
y

1

2

3

4

−1

−2

1 2 3 4 5−1−2−3
x
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i)
y

1

2

3

−1

−2

−3

1 2 3 4−1−2−3−4

bc x

j)
y

1

2

3

−1

−2

−3

1 2 3 4−1−2−3−4
x
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14.10 Solutions des exercices

1) a) 1 b) Non définie c)
4

x− 3
d)

1

4x− 3

e)
1

x+ 1
f) Non définie g) − 1

x+ 3
h)

1

3− x

2) a)

y

2

4

6

−2

−4

−6

1 2 3−1−2−3

y = −2x+ 4

x
b)

y

2

4

6

8

10

12

1 2 3−1−2−3

y = x2 + 3

x

c)

y

1

2

3

−1

−2

−3

1 2 3−1−2−3

y =
1

x

x
d)

y

2

4

6

8

10

12

1 2 3−1−2−3

y = x3

x

3) – f1 : injective, surjective, bijective.
– f2 : non injective, non surjective, non bijective.
– f3 : injective, non surjective, non bijective.
– f4 : injective, non surjective, non bijective.

4) a) (g ◦ f)(x) = 16

x2 + 16
b) (h ◦ g)(x) = x2

x2 + 1

c) (h ◦ (g ◦ f))(x) = x2

x2 + 16
d) ((h ◦ g) ◦ f)(x) = x2

x2 + 16

5) a) D(f ◦ g) = R, D(g ◦ f) = R, (f ◦ g)(x) = x2 − 2x+ 5, (g ◦ f)(x) = x2 + 3.

b) D(f ◦ g) = R \ {1}, D(g ◦ f) = R \ {0}, (f ◦ g)(x) = x, (g ◦ f)(x) = x.

c) D(f ◦g) = R\{2; 3}, D(g◦f) = R\{1; 3
2
}, (f ◦g)(x) = x− 2

3− x , (g◦f)(x) =
x− 1

3− 2x
.

6) g(x) = x2, h(x) = x+ 1.

7) g3(x) = x3, g2(x) = x+ 1, g1(x) = x2.
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9) a) q(x) b) i(x) c) p(x) d) u(x)

e) k(x) f) h(x) g) s(x) h) n(x)

i) t(x) j) j(x)
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Chapitre 15

Fonctions affines

15.1 Définition

Définition 15.1
La fonction définie par

f : R −→ R

x 7−→ y = mx+ h

où m et h sont des nombres réels, est appelée fonction affine.

Exemple

La fonction C(x) qui permet de convertir des degrés Fahrenheit, exprimés à l’aide
de la variable x, en degré Celsius :

C(x) =
5

9
· x− 160

9

est une fonction affine où m = 5
9
et h = −160

9
.

15.2 Représentations graphiques

La représentation graphique, dans un repère cartésien, de la fonction affine définie par
f(x) = mx+ h est une droite passant par le point (0; h) et dont l’inclinaison dépend du
paramètre m.

Définition 15.2
Le coefficient
– m est appelé la pente de la droite.
– h est appelé l’ordonnée à l’origine de la droite.

On donne ci-dessous les représentations graphiques de deux fonctions affines avec une
pente m positive, à gauche, ou négative, à droite.
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Mathématiques, MAP 1ère année 15. Fonctions affines

m > 0

y

y = mx+ h

h

x0
x

m < 0

y

y = mx+ h

h

x0
x

15.2.1 Quelques caractéristiques de la représentation graphique

Zéro de la fonction

L’abscisse x0 du point d’intersection de la droite représentant la fonction f(x) = mx+ h
et de l’axe Ox est le zéro de f : x0 = − h

m
.

Pente de la droite

On rencontre parfois un panneau de circulation signalant une montée
ou une descente importante. Par exemple, le panneau ci-contre signale
une montée dont la pente est de 10%. Cela signifie que l’on monte
verticalement de 10 mètres pour un déplacement de 100 mètres.

La notion mathématique de pente d’une droite est la
même. Elle est exprimée par le rapport m = ∆y

∆x
où

∆x est un accroissement selon l’axe Ox et ∆y l’ac-
croissement correspondant selon l’axe Oy. On l’ex-
prime généralement par un nombre sans unité et pas
en %.

Méthode de calcul de la pente
On choisit arbitrairement deux points A(x1; y1) et
B(x2; y2) sur la représentation graphique de la droite
dont on désire déterminer la pente. On détermine
ensuite la différence des abscisses des deux points,
∆x = x2 − x1, et la différence des ordonnées, ∆y =
y2 − y1. La pente est alors donnée par le quotient :

m =
∆y

∆x
=
y2 − y1
x2 − x1

(15.1)

Ce quotient est indépendant du choix de A et B.

y

b

b

y = mx+ h

x1 x2

y1

y2

∆x

∆y

1

m

A

B

α
x

L’angle α entre l’axe Ox et la droite peut facilement être déterminé à l’aide de la pente
et de l’égalité :

tan(α) = m

Cette égalité découle directement de la définition de la pente et de la définition de la
tangente dans un triangle rectangle.
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La pente m d’une fonction affine f(x) = mx+h détermine donc l’inclinaison de la droite
d’équation y = mx+ h et la croissance ou la décroissance de f :
– si la pente est positive (m > 0), la fonction affine est croissante.
– si la pente est négative (m < 0), la fonction affine est décroissante.

En résumé : sur la représentation graphique, lorsqu’on se déplace de 1 horizonta-
lement dans la direction de l’axe Ox, on monte d’une hauteur égale à m selon l’axe
Oy si m est positif, ou on descend d’une hauteur égale à |m| si m est négatif.

Exemple

On a représenté ci-contre la fonction affine f(x) =
−2x + 2. Par définition, la pente de la droite
représentant f est égale à −2 et l’ordonnée à l’ori-
gine à 2.

L’abscisse du point d’intersection entre la droite et
l’axe Ox est donnée par : x0 = − 2

−2
= 1.

On peut vérifier que la pente de la droite est égale
à −2. On choisit, par exemple, les points A(−1; 4)
et B(3;−4) et on obtient, par la formule (15.1),
que :

m =
−4− 4

3− (−1) = −2

y

1

2

3

4

5

6

7

−1

−2

−3

−4

1 2 3 4 5−1−2−3

b

b

y = −2x+ 2

A

B

1

| − 2|

α x

L’angle entre l’axe Ox et la droite vaut : α = arctan(−2) = −63, 43◦.

15.2.2 Représentation graphique à partir de l’expression fonc-

tionnelle

On peut mettre en oeuvre la méthode suivante pour dessiner, dans un repère cartésien,
la représentation graphique d’une fonction affine définie par f(x) = mx+ h.

Méthode

1. Choisir deux valeurs x1 et x2.

2. Calculer f(x1) et f(x2).

3. Reporter dans le repère cartésien les points (x1; f(x1)) et (x2; f(x2)) puis tracer
la droite passant par ces deux points.

Exemple

Soit la fonction affine f(x) = −x+ 2.

On choisit arbitrairement x1 = 0 et x2 = 2.

On a :

f(x1) = −1 · x1 + 2 = −1 · 0 + 2 = 2

f(x2) = −1 · x2 + 2 = −1 · 2 + 2 = 0

La droite passe donc par les points A(0; 2) et B(2; 0).
On obtient alors la représentation graphique ci-contre.

y

1

2

3

4

−1

−2

−3

1 2 3 4−1−2−3

b

b

y = −x+ 2

A

B
x
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15.2.3 Expression fonctionnelle à partir de la représentation

graphique

On peut mettre en oeuvre la méthode suivante pour déterminer l’expression fonctionnelle
d’une fonction affine f à partir de sa représentation graphique ou, plus exactement, à
partir de deux points de son graphe.

On sait que la fonction affine f est de la forme f(x) = mx+ h. Pour obtenir l’expression
fonctionnelle de f , on doit donc déterminer les coefficients m et h.

Méthode

1. Choisir deux points A(x1; y1) et B(x2; y2) du graphe de f .

2. Calculer la pente m en utilisant la formule (15.1).

3. Déterminer h en résolvant l’équation à une inconnue y1 = m · x1 + h.

Exemple

On donne ci-dessous la représentation graphique d’une fonction affine f .

y

1

2

3

4

−1
1 2 3 4 5 6 7 8−1

b

b

y = f(x)A

B

x

Les points A(3; 1) et B(7; 3) appartiennent au graphe de f .

La pente de la droite est donnée par : m =
3− 1

7− 3
=

1

2
.

Comme A(3; 1) est un point du graphe, h est la solution de l’équation : 1 = 1
2
·3+h.

En résolvant cette dernière, on trouve h = −1
2
.

L’expression fonctionnelle de f est donc : f(x) = 1
2
· x− 1

2
.

15.2.4 Intersection des graphes de deux fonctions affines

Soit deux fonctions affines f(x) et g(x). Pour déterminer l’intersection des graphes de ces
deux fonctions, on peut mettre en oeuvre la méthode suivante.

1. Résoudre l’équation f(x) = g(x) à une inconnue x. La solution x0 de cette
équation correspond à l’abscisse du point d’intersection I des graphes de f et
de g.

2. Calculer y0 = f(x0) (= g(x0)), l’ordonnée du point d’intersection.

Cette méthode permet ainsi de déterminer complètement le point d’intersection I(x0; y0).

On a supposé ci-dessus que l’équation f(x) = g(x) possède une seule solution. En
”réalité”, cette équation possède :
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– une unique solution si les droites représentant les graphes de f et g sont sécantes
(un seul point d’intersection) ;

– aucune solution si ces deux droites sont parallèles (aucun point d’intersection) ;
– une infinité de solutions si ces deux droites sont confondues (infinité de points
d’intersection).

Remarques

1. La méthode de résolution proposée ci-dessus est équivalente à la méthode qui consis-
terait à résoudre le système de deux équations à deux inconnues x et y suivant :

{
y = f(x)
y = g(x)

2. On peut également appliquer la méthode proposée ci-dessus pour déterminer le ou les
points d’intersection des graphes de deux fonctions réels f et g, même si ces dernières
ne sont pas affines.

Exemple

Les graphes des fonctions f(x) = 2x− 2 et g(x) = −x+ 2 sont donnés ci-dessous.

y

1

2

3

4

−1

−2

−3

1 2 3 4 5−1−2

b

y = f(x)

y = g(x)

I

x

Ces graphes se coupent en un point I.

L’abscisse de ce point est la solution de l’équation :

2x− 2 = −x+ 2

3x = 4

x0 =
4

3

L’ordonnée de I est alors l’image de 4
3
par f ou g : y0 = f(4

3
) = 2 · 4

3
− 2 = 2

3
.

On obtient finalement le point : I(4
3
; 2
3
).

15.3 Fonction linéaire

Définition 15.3
La fonction définie par

f : R −→ R

x 7−→ y = mx

où m est un nombre réel, est appelée fonction linéaire.
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Remarque

Une fonction linéaire est une fonction affine particulière où l’ordonnée à l’origine vaut 0.

La représentation graphique, dans un repère
cartésien, de la fonction linéaire définie par
f(x) = mx est une droite passant par
l’origine et dont l’inclinaison dépend du pa-
ramètre m.

On donne ci-contre la représentation gra-
phique d’une fonction linéaire avec une pente
m positive.

y

y = mx

x

Exemple

On suppose qu’un litre d’essence coûte 1.70 francs. Le prix à payer pour une quantité
de x litres d’essence est donné par la fonction linéaire suivante :

p(x) = 1.7 · x

Proposition 15.1
Soit une fonction linéaire f et x1, x2, λ ∈ R. Les égalités suivantes sont alors satisfaites :

1. f(x1 + x2) = f(x1) + f(x2)

2. f(λ · x1) = λ · f(x1)

Démonstration. Soit une fonction affine f(x) = mx et x1, x2, λ ∈ R.

1. A voir : f(x1 + x2) = f(x1) + f(x2).

Comme f(x) = m ·x, on a, d’après la distributivité de la multiplication sur l’addition :

f(x1 + x2) = m · (x1 + x2) = (m · x1) + (m · x2) = f(x1) + f(x2)

2. A voir : f(λ · x1) = λ · f(x1)
Comme f(x) = m · x, on a, d’après l’associativité et la commutativité de la multipli-
cation :

f(λ · x1) = m · (λ · x1) = λ · (m · x1) = λ · f(x1)

Remarque

Attention, ces propriétés sont souvent utilisées à tort pour des fonctions qui ne sont
pas linéaires. Par exemple, on voit souvent les erreurs suivantes : sin(3x) = 3 sin(x) ou√
x+ y =

√
x+
√
y.

Ces propriétés ne doivent être utilisées que pour des fonctions linéaires !
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15.4 Fonctions constantes

Définition 15.4
La fonction définie par

f : R −→ R

x 7−→ y = h

où h est un nombre réel, est appelée fonction constante.

Remarque

Une fonction linéaire est une fonction affine particulière où la pente vaut 0.

La représentation graphique, dans un repère
cartésien, de la fonction affine définie par
f(x) = h est une droite horizontale passant
par le point (0; h).

On donne ci-contre la représentation gra-
phique d’une fonction constante avec une or-
donnée à l’origine h positive.

y

y = h
h

x

Exemple

On suppose qu’un opérateur de téléphonie facture 0.70 francs la communication à
ses clients. Le prix à payer à cet opérateur pour une communication de t minutes
est donnée par la fonction constante suivante :

p(t) = 0.7
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Fonctions quadratiques

16.1 Définition

Définition 16.1
La fonction définie par

f : R −→ R

x 7−→ y = ax2 + bx+ c

où a, b et c sont des nombres réels et a 6= 0, est appelée fonction quadratique ou
fonction du deuxième degré.

Exemple

Un corps en chute libre, lâché avec une vitesse initiale égale à 2 [m/s], parcourt en
t secondes la distance s(t) donnée en mètre par

s(t) =
g

2
t2 + 2t

où g ∼= 9.81 [m/s2], l’accélération terrestre.

La fonction s(t) est une fonction quadratique où a = g
2
, b = 2 et c = 0.

16.2 Représentations graphiques

La représentation graphique, dans un repère cartésien, de la fonction quadratique définie
par f(x) = ax2+ bx+ c est une parabole passant par le point (0; c) et dont l’orientation
dépend du paramètre a.

On donne ci-dessous les représentations graphiques de deux fonctions quadratiques avec
un coefficient a positif, à gauche, ou négatif, à droite.
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a > 0

y

b

y = ax2 + bx+ c

c

x2x1

S
Axe de symétrie

x

a < 0

y

b

y = ax2 + bx+ c

c

x2x1

S
Axe de symétrie

x

16.2.1 Quelques caractéristiques de la représentation graphique

Zéro(s) de la fonction

La ou les abscisses x1 et x2 du ou des points d’intersection de la parabole représentant
la fonction f(x) = ax2 + bx+ c et de l’axe Ox sont les zéros de f .

Le nombre de zéros et donc de points de coupe avec l’axe Ox est donné par le signe de
∆ = b2 − 4ac :

– si ∆ > 0 : f possède 2 zéros (2 points de coupe) ;
– si ∆ = 0 : f possède 1 zéro (1 point de coupe) ;
– si ∆ < 0 : f ne possède pas de zéro (0 point de coupe).

Les zéros de f , si ∆ > 0, sont donnés par :

x1,2 =
−b±

√
∆

2a

Coefficient c

Le coefficient c est égal à l’ordonnée du point d’intersection entre la parabole représentant
f et l’axe Oy car f(0) = a · 02 + b · 0 + c = c.

On appelle également ce coefficient l’ordonnée à l’origine.

Coefficient a

Le coefficient a détermine l’écartement et l’orientation de la parabole :

– si a > 0 : la parabole est ouverte vers le haut ;
– si a < 0 : la parabole est ouverte vers le bas.

a < 0, |a| grande a < 0, |a| petite a > 0, |a| petite a > 0, |a| grande
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Position de la parabole par rapport à l’axe Ox

La position de la parabole représentant la fonction f(x) = ax2 + bx + c par rapport à
l’axe Ox dépend uniquement de la valeur du coefficient a et de la valeur de ∆ = b2−4ac :

∆ > 0 ∆ = 0 ∆ < 0

a > 0

x1 x2 x1 = x2

a < 0

x1 x2 x1 = x2

Sommet

Définition 16.2
Le sommet S d’une parabole est :

– le point le plus bas (d’ordonnée minimale) de la courbe si elle est ouverte vers le haut ;
– le point le plus élevé (d’ordonnée maximale) de la courbe si elle est ouverte vers le bas.

Pour déterminer les coordonnées du sommet S d’une parabole représentant la fonction
quadratique f(x) = ax2 + bx + c (avec a 6= 0), on transforme tout d’abord l’expression
fonctionnelle de f :

ax2 + bx+ c = a
(
x2 + b

a
x+ c

a

)
= a

(
(x+ b

2a
)2 − ( b

2a
)2 + c

a

)

= a
(
(x+ b

2a
)2 − b2−4ac

4a2

)
= a(x+ b

2a
)2 − b2−4ac

4a

En posant p = − b
2a

et q = − b2−4ac
4a

, l’expression fonctionnelle de la fonction quadratique
f peut s’écrire :

f(x) = a(x− p)2 + q

Si a > 0 , la parabole est ouverte vers le haut et le sommet est le point d’ordonnée
minimale. Or, ∀x ∈ R, l’expression a · (x−p)2 est positive ou nulle (produit d’un nombre
positif et d’un nombre positif ou nul) et q est un nombre (constant). Ainsi, on obtient
que :

f(x) = a(x− p)2 + q > q

La valeur minimale de f est donc q et elle est atteinte pour x = p. De plus, comme
f(p) = q, les coordonnées du sommet sont S = (p; q).

Si a < 0 , la parabole est ouverte vers le bas et le sommet est le point d’ordonnée maxi-
male. Or, ∀x ∈ R, l’expression a · (x − p)2 est négative ou nulle (produit d’un nombre
négatif et d’un nombre positif ou nul). Ainsi, on obtient que :

f(x) = a(x− p)2 + q 6 q
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La valeur maximale de f est donc q et elle est atteinte pour x = p. Les coordonnées du
sommet sont donc également S = (p; q).

En conclusion, quelque soit la valeur de a, le sommet de la parabole représentant f est
le point :

S =
(
− b

2a
; f(− b

2a
)
)

Axe de symétrie

La parabole représentant la fonction f(x) = ax2 + bx + c possède un axe de symétrie
d’équation :

x = − b

2a

Autrement dit, ∀k ∈ R, on a l’égalité :

f(− b
2a

+ k) = f(− b
2a
− k)

Démonstration. En posant p = − b
2a
, q = − b2−4ac

4a
et en utilisant l’expression fonctionnelle

équivalente f(x) = a(x− p)2 + q , on a les égalités suivantes :

f(p+ k) = a(p+ k − p)2 + q = a · k2 + q

et

f(p− k) = a(p− k − p)2 + q = a · (−k)2 + q = a · k2 + q

Ainsi, f(p+ k) = f(p− k).

16.2.2 Représentation graphique à partir de l’expression fonc-
tionnelle

On peut mettre en oeuvre la méthode suivante pour dessiner, dans un repère cartésien,
la représentation graphique d’une fonction quadratique définie par f(x) = ax2 + bx+ c.

Méthode

1. Déterminer le ou les zéros de f en résolvant l’équation f(x) = 0 −→ on obtient
les points de la forme (xi; 0) du graphe.

2. Calculer les coordonnées du sommet S de la parabole : S
(
− b

2a
; f(− b

2a
)
)
.

3. Calculer quelques couples (x; f(x)) du graphe de f en choisissant x dans R.

4. Dessiner sous la forme d’un trait discontinu, dans le repère cartésien, l’axe de
symétrie verticale d’équation x = − b

2a
.

5. Reporter, dans le repère cartésien, les points correspondant aux zéros de f , le
sommet de la parabole, le point (0; c) et les points du graphe calculés en 3 et
dessiner les points symétriques correspondants (par rapport à l’axe représenté
en 4).

6. Relier les points dessinés dans le plan Oxy de sorte à obtenir une parabole.

page 286
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Exemple

Soit la fonction quadratique f(x) = 1
2
x2 − x− 4.

On détermine tout d’abord les deux zéros de f (comme ∆ = (−1)2 − 4 · 1
2
· (−4) =

9 = 32) :

x1 =
1− 3

2 · 1
2

= −2 et x2 =
1 + 3

2 · 1
2

= 4

Comme − b
2a

= − −1
2· 1

2

= 1, les coordonnées du sommet sont données par :

S = (1; f(1)) = (1;−9
2
)

On calcule ensuite quelques points du graphe :

(2; f(2)) = (2;−4) ; (5; f(5)) = (5; 7
2
) ; . . .

L’équation de l’axe de symétrie est : x = 1.

On reporte ensuite ces informations dans un
repère cartésien pour obtenir la représentation
graphique ci-contre.

y

1

2

3

4

5

−1

−2

−3

−4

−5

1 2 3 4 5−1−2−3−4−5

b b

b
b

b

b

b

(−2; 0) (4; 0)

S(1;− 9
2
)

(2;−4)

(5; 7
2
)

y = f(x)

x = 1

x

16.3 Optimum d’une fonction quadratique

Comme la représentation graphique de f(x) = ax2+bx+c, pour a 6= 0, est une parabole,
on peut utiliser l’ordonnée du sommet, f(− b

2a
) pour déterminer le maximum ou le mini-

mum d’une fonction quadratique. En effet, puisque la parabole est ouverte vers le bas si
a < 0, et vers le haut si a > 0, cette valeur de la fonction est respectivement le maximum
ou le minimum de f . On peut résumer ceci par le théorème suivant.

Théorème 16.1
Si f(x) = ax2 + bx+ c, où a 6= 0, alors f(− b

2a
) est :

1. le maximum de f si a < 0,

2. le minimum de f si a > 0.

On va utiliser ce théorème dans l’exemple suivant.

Exemple

On dispose de 288 m de clôture grillagée pour construire 6 enclos pour un zoo selon
le plan ci-dessous. On aimerait déterminer les dimensions à donner à ces enclos
de manière à maximiser leur surface au sol.

x

y
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Sur ce dessin, on définit deux variables :
– x : la largeur d’un enclos
– y : la longueur d’un enclos
L’aire au sol est donnée par :

Aire = 3x · 2y

Or, comme on n’a à disposition que 288 m de clôture, il existe un lien entre x et y
donné par l’équation :

9x+ 8y = 288

En transformant un peu cette équation, on obtient que y = 288−9x
8

. On peut alors
exprimer l’aire uniquement en fonction de x. On définit ainsi une fonction
A(x) donnée par

A(x) = 3x · 2 · 288− 9x

8
= 216x− 27

4
x2

On doit maintenant déterminer le maximum de cette fonction. Comme c’est une
fonction du deuxième degré, on sait que la deuxième coordonnée du sommet donnera
le maximum (le coefficient devant x2 est négatif) et que la première coordonnée sera
la largeur qui produira ce maximum.

La première coordonnée du sommet est donnée par s1 = xmax = − 216

2·(− 27
4 )

= 16 et

la deuxième par s2 = A(16) = 1728.

La longueur qui correspond à une largeur de 16 m est : ymax = 288−9·16
8

= 18.

Un enclos a donc comme dimension 16 m × 18 m et la surface totale recouverte
est de 1728 m.
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16.4 Exercices

1) On veut faire une gouttière avec une longue feuille de métal de 12 cm de large en pliant
les deux côtés et en les relevant perpendiculairement à la feuille. Quelles doivent être
les cotés relevés pour que la gouttière ait une contenance maximale ?

2) Utilisons la formule de la chute libre en physique : y(t) = y0 + vy,0t− 1
2
gyt

2 où y0, vy,0
et gy sont des nombres réels connus.
En lançant un objet avec une vitesse initiale de vy,0 = 30 m/s depuis une hauteur
y0 = 0 m (on considère que gy = 10 m/s2),

a) combien de temps mettra l’objet pour atteindre sa hauteur maximale ?

b) quelle sera la hauteur maximale atteinte par l’objet ?

c) combien de temps mettra l’objet pour toucher à nouveau le sol ?

d) combien de temps mettra l’objet pour atteindre 30 m ?

3) Une compagnie de câble-opérateur dessert actuellement la région. Imaginons que 5000
foyers sont desservis, chacun payant 20.- par mois. Une étude de marché indique que
chaque diminution de 1.- amène 500 nouveaux clients.

a) Déterminer la fonction R(x), revenu total quand le prix est de x.-.

b) Déterminer la valeur de x qui donne le revenu mensuel maximal.

4) Dans une forêt, la population de souris varie en fonction du nombre x de hiboux qui
s’y trouvent. Le garde forestier estime que la population de souris est donnée par la
fonction suivante :

P (x) = −1
2
x2 + 7x+ 15

2

a) Quelle est la population de souris lorsque 5 hiboux vivent dans la forêt ?

b) Pour quel nombre de hiboux la population de souris est-elle la plus grande ? Quel
est alors le nombre de souris ?

c) Pour quel nombre de hiboux les souris disparaissent-elles ?

5) Une entreprise produit des pièces métalliques pour les voitures. Le coût de production
journalier varie en fonction du nombre x de pièces produites, il est donné par la
fonction suivante :

C(x) = 1
10
x2 − 10x+ 1500

a) Quel est le coût de production pour une quantité de 20 pièces par jour ?

b) Pour quel nombre de pièces le coût de production journalier est-il le plus bas ? Quel
est alors ce coût ?

c) Pour quelle quantité de pièces le coût est-il égal à 1′610 CHF?

d) Quel est le coût lorsque la production est arrêtée ?

6) Une entreprise lance sur le marché un nouveau produit. Elle prévoit que son bénéfice
B, en millions de francs, évoluera dans le temps suivant la courbe donnée par l’équation

B(t) = −t2 + 4.8t− 2.76 où t est exprimé en année.

a) Calculer dans combien de temps le bénéfice sera maximum et quel sera-t-il ?
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b) Trouver quand le bénéfice sera exactement de 2 millions, en déduire le nombre de
mois pendant lesquels le bénéfice sera supérieur à 2 millions.

7) Une société immobilière possède un certain nombre d’appartements dont les loyers
sont tous identiques (x francs par loyer). La société estime que les loyers engendrent
un revenu mensuel (R(x), en francs) donné par la fonction suivante :

R(x) = 280x− 1
10
x2

a) Calculer le revenu mensuel lorsque le loyer est fixé à 1′200 francs.

b) Pour quel loyer le revenu est-il maximum, et que vaut-il dans ce cas ?

c) Représenter graphiquement la fonction R.
Unité sur Ox : 2 carreaux pour 200 fr., sur Oy : 2 carreaux pour 20′000 fr.

d) Pour quels loyers le revenu est-il égal à 187’000 francs ?
Résoudre cette question : a) par graphique b) par l’algèbre

e) La société immobilière considère que les coûts (C(x), en francs) administratifs,
d’investissement et autres charges peuvent être estimés mensuellement par la fonc-
tion C(x) = 180′000 − 10x. Déterminer, par calculs, les valeurs x du loyer pour
lesquelles la gérance de ces appartements est rentable.
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16.5 Solutions des exercices

1) 3 cm

2) a) 3 s

b) 45 m

c) 6 m

d) 3 +
√
3 s

3) a) R(x) = 15′000x− 500x2

b) x = 15

4) a) 30 souris

b) 7 hiboux pour 32 souris

c) 15 hiboux

5) a) 1340.− CHF

b) 50 pièces pour un coût de 1250.− CHF

c) 110 pièces

d) 1′500.− CHF

6) a) Au bout de 2, 4 ans, le bénéfice sera de 3 millions

b) Au bout de 1, 4 ans ou 3, 4 ans. B(x) est > 2 millions pendant 24 mois.

7) a) 192′000 CHF

b) 1′400 CHF

d) 1′100 CHF ou 1′700 CHF

e) entre 900 et 2000 CHF

page 291



Chapitre 17

Fonctions polynômes et rationnelles

17.1 Fonctions polynômes

17.1.1 Définition

Définition 17.1
La fonction définie par

f : R −→ R

x 7−→ y = anx
n + an−1x

n−1 + an−2x
n−2 + . . .+ a2x

2 + a1x+ a0

où n ∈ N, ak ∈ R et an 6= 0, est appelée fonction polynôme de degré n ou, plus
simplement, polynôme de degré n.

Le nombre ai est appelé le coefficient de rang i de f(x) et an le coefficient dominant.

Exemples

1) La fonction définie par f(x) = 5x3− 4x2− 5x+3 est une fonction polynôme de
degré 3. Le coefficient dominant est a3 = 5.

2) La fonction définie par g(x) = −6x6 − 4x5 − 2x2 + 2 est une fonction polynôme
de degré 6. Le coefficient dominant est a6 = −6.

3) La fonction définie par h(x) = 4x2−3x+1 est une fonction polynôme de degré 2.
On l’appelle également fonction quadratique. Le coefficient dominant est a2 = 4.

4) La fonction définie par i(x) = −9x + 3 est une fonction polynôme de degré 1.
On l’appelle également fonction affine. Le coefficient dominant est a1 = −9.

17.1.2 Représentations graphiques

Degré n impair

On donne ci-dessous les représentations graphiques de deux fonctions polynômes de degré
3 avec un coefficient dominant a3 positif, à gauche, ou négatif, à droite.

La forme générale, notamment le comportement à l’infini, de la représentation graphique
d’une fonction polynôme de degré n impair ressemble à celles données en exemple ci-
dessous.
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a3 > 0

y

y = a3x
3 + . . .+ a0

a0

x1 x2 x3
x

a3 < 0

y

y = a3x
3 + . . .+ a0

a0

x1 x2 x3
x

Degré n pair

On donne ci-dessous les représentations graphiques de deux fonctions polynômes de degré
4 avec un coefficient dominant a4 positif, à gauche, ou négatif, à droite.

La forme générale, notamment le comportement à l’infini, de la représentation graphique
d’une fonction polynôme de degré n pair ressemble à celles données en exemple ci-dessous.

a4 > 0

y

y = a4x
4 + . . .+ a0

a0

x1 x2 x3 x4
x

a4 < 0

y

y = a4x
4 + . . .+ a0

a0

x1 x2 x3 x4
x

Quelques caractéristiques de la représentation graphique

Zéro(s) de la fonction

La ou les abscisses xi (0 6 i 6 n) du ou des points d’intersection de la courbe représentant
la fonction polynôme f(x) = anx

n + an−1x
n−1 + . . . + a1x + a0 et de l’axe Ox sont les

zéros de f .

Le nombre de zéros et donc de points de coupe avec l’axe Ox est inférieur ou égal au
degré n. Pour les déterminer, on peut utiliser la méthode de résolution des équations
polynomiales étudiée précédemment dans le chapitre (2.5) (recherche d’un zéro par essais
successifs puis division à l’aide du schéma de Horner . . . )
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Coefficient a0

Le coefficient a0 est égal à l’ordonnée du point d’intersection entre la courbe représentant
f et l’axe Oy.

Ce coefficient est également appelé l’ordonnée à l’origine.

Coefficient dominant an

Le coefficient an détermine l’orientation de la courbe représentant f . On doit différencier
ici les cas où n est pair de ceux où n est impair.

Pour un degré n impair, on observe que
– si an > 0 : la courbe représentant f est au-dessous de l’axe Ox pour des valeurs de
x suffisamment petites et au-dessus de l’axe Ox pour des valeurs de x suffisamment
grandes.

– si a < 0 : la courbe représentant f est au-dessus de l’axe Ox pour des valeurs de x
suffisamment petites et au-dessous de l’axe Ox pour des valeurs de x suffisamment
grandes.

Pour un degré n pair, on observe que
– si an > 0 : la courbe représentant f est ouverte vers le haut, c’est-à-dire que celle-ci se
trouve au-dessus de l’axe Ox pour des valeurs de x suffisamment grandes ou petites.

– si a < 0 : la courbe représentant f est ouverte vers le bas, c’est-à-dire que celle-ci se
trouve au-dessous de l’axe Ox pour des valeurs de x suffisamment grandes ou petites.

Esquisse de la représentation graphique à partir de l’expression fonctionnelle

On peut suivre la méthode de représentation ”générale” étudiée au chapitre (14.3.1) pour
dessiner, dans un repère cartésien, le graphe d’une fonction polynôme.

Par contre, si on ne desire pas obtenir un dessin ”très” précis, on peut utiliser les
éléments caractéristiques de la représentation graphique d’une fonction polynôme définie
par f(x) = anx

n+an−1x
n−1+ . . .+a1x+a0 (zéros, coefficient a0 et coefficient dominant)

pour l’esquisser, en s’aidant éventuellement d’un tableau donnant le signe de l’image de
chaque valeur possible de x.

Méthode

1. Déterminer le ou les zéros de f en résolvant l’équation f(x) = 0 −→ on obtient
les points de la forme (xi; 0) du graphe.

2. Etudier le signe de la fonction dans un tableau de signes (voir le chapitre (5)
portant sur les inéquations).

3. Reporter, dans le repère cartésien, les points correspondant aux zéros de f et
le point (0; a0).

4. Relier les points dessinés dans le plan Oxy de sorte à respecter les informations
données par le tableau de signes : si f(x) > 0 la courbe est au-dessus de l’axe
Ox et si f(x) < 0 la courbe est au-dessous de l’axe Ox.

page 294
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Exemple

Soit la fonction polynôme de degré 3 donnée par f(x) = x3 + x2 − 4x− 4.

On détermine tout d’abord les trois zéros de f en résolvant l’équation polynomiale
x3 + x2 − 4x− 4 = 0 (voir le chapitre (2.5.3) pour la résolution complète) :

x1 = −2; x2 = −1; x3 = 2

On construit ensuite le tableau de signes de f en remarquant qu’on peut factoriser
l’expression fonctionnelle de f : f(x) = (x+ 2)(x+ 1)(x− 2).

x −2 −1 2

x+ 2 − 0 + + + + +

x+ 1 − − − 0 + + +

x− 2 − − − − − 0 +

f(x) − 0 + 0 − 0 +

Position
courbe / axe

en-dessous en-dessus en-dessous en-dessus

On reporte enfin les points (−2; 0), (−1; 0), (2; 0) et (0;−4) dans un repère cartésien
et on les relie en tenant compte de la position de la courbe par rapport à l’axe Ox
donnée dans le tableau de signes.

y

b b b

b

(−2; 0) (−1; 0)

(2; 0)

(0;−4)

y = f(x)

x

17.2 Fonctions rationnelles

17.2.1 Définition

Définition 17.2
La fonction définie par

f : R \ {x ∈ R | q(x) = 0} −→ R

x 7−→ y =
p(x)

q(x)

où p(x) et q(x) sont des polynômes, est appelée fonction rationnelle.
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Remarques

1. L’ensemble de définition Df d’une fonction rationnelle comprend toutes les valeurs
réelles de x sauf celles qui annulent le dénominateur q(x).

2. L’ensemble des zéros d’une fonction rationnelle est donné par l’ensemble des zéros du
polynôme p(x) qui ne sont pas des zéros de q(x) : {x ∈ R | p(x) = 0 et q(x) 6= 0}

Exemples

1) La fonction définie par f(x) =
1

x− 2
est une fonction rationnelle qui admet

comme ensemble de définition Df = R\{2}. Cette fonction n’admet pas de zéro
(car 1 6= 0).

2) La fonction définie par g(x) =
x3 − 8

x2 + 4
est une fonction rationnelle qui admet

comme ensemble de définition Dg = R. L’ensemble des zéros de cette fonction
est l’ensemble : { 3

√
8} (solution de x3 − 8 = 0).

3) La fonction définie par h(x) =
x2

x2 − 4
est une fonction rationnelle qui admet

comme ensemble de définition Dh = R \ {−2; 2}. L’ensemble des zéros de cette
fonction est l’ensemble : {0} (solution de x2 = 0).

Son graphe est représenté ci-contre.

On remarque que, quand x prend des va-
leurs arbitrairement grandes ou petites (on
dit que x tend vers ±∞), la courbe se rap-
proche de de la droite horizontale y = 1.
Cette droite est appelée asymptote hori-
zontale (voir ci-dessous).

De manière analogue, les droites x = 2
et x = −2 sont appelées asymptotes verti-
cales.

y

1

2

3

4

5

−1

−2

−3

−4

−5

1 2 3 4 5−1−2−3−4−5

y = h(x)

x

Nous étudierons plus largement les représentations graphiques de fonctions rationnelles
quelconques (voir chapitre suivant pour un cas particulier) dans le cours de deuxième
année lorsque nous aurons à disposition certains outils d’analyse : limites, dérivées, . . . De
plus, les notions d’asymptote verticale et horizontale seront introduites de manière précise
et détaillée dans ce cours. Pour l’instant, on donne uniquement ci-dessous une première
idée de définition de ces deux notions en utilisant les notations suivantes :

• x→ a (ou f(x)→ a) : x (respectivement f(x)) tend vers (s’approche
de) a,

• x→ +∞ (ou f(x)→ +∞) : x (respectivement f(x)) prend des valeurs posi-
tives arbitrairement grandes,

• x→ −∞ (ou f(x)→ −∞) : x (respectivement f(x)) prend des valeurs néga-
tives arbitrairement petites.

Les symboles +∞ (plus infini) et −∞ (moins infini) ne représentent pas des nombres
réels ; ils précisent simplement certains types de comportement des variables et des fonc-
tions.
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Définition 17.3
La droite x = a est une asymptote verticale pour la représentation graphique de la
fonction f si

f(x)→ +∞ ou f(x)→ −∞
lorsque x tend vers (s’approche de) a par la gauche (par des valeurs inférieures à a) ou
par la droite (par des valeurs supérieures à a).

La droite y = c est une asymptote horizontale pour la représentation graphique de la
fonction f si

f(x)→ c

lorsque x→ +∞ ou x→ −∞.

Remarques

1. On représentera généralement les asymptotes en ”traitillés”.

2. La notation f(x)→ c lorsque x→ +∞ (ou x→ −∞) se lie ”f(x) tend vers c lorsque
x tend vers plus l’infini” (respectivement vers moins l’infini).

3. Si a est un zéro du dénominateur d’une fonction rationnelle f , alors il est possible que
le graphique de f ait une asymptote verticale en x = a. Il y a des fonctions rationnelles
pour lesquelles ce n’est pas le cas. Si le numérateur et le dénominateur n’ont pas de
facteur commun, alors f admet une asymptote verticale en x = a.

17.2.2 Fonctions homographiques

Définition 17.4
Une fonction homographique est une fonction rationnelle dont le numérateur est une
constante ou un polynôme de degré un et le dénominateur un polynôme de degré un.

Plus précisément, une fonction homographique est définie par

f : R \ {−d
c
} −→ R

x 7−→ y =
ax+ b

cx+ d

où a, b, c et d sont des nombres réels tels que c 6= 0 et ad− bc 6= 0.

Remarques

1. La condition ad − bc 6= 0 implique, entre autres, qu’une fonction homographique est
une fonction injective.

2. Si on restreint l’ensemble d’arrivée d’une fonction homographique f à l’ensemble image
de la fonction R \ {a

c
}, la fonction f est alors une fonction surjective.

Exemple

La fonction définie par f(x) =
4x− 5

3x− 2
est une fonction homographique qui admet

comme ensemble de définition Df = R \ {2
3
}.
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Représentations graphiques

La représentation graphique, dans un repère cartésien, de la fonction homographique
définie par f(x) = ax+b

cx+d
est une hyperbole (équilatère) passant par le point (0; b

d
) (si

d 6= 0) et dont l’orientation dépend du nombre ad− bc.
On donne ci-dessous les représentations graphiques de deux fonctions homographiques
avec ad− bc positif, à gauche, ou négatif, à droite.

ad− bc > 0

y

b

y = ax+b

cx+d

b
dx1

Cy = a
c

x = −d
c

x

ad− bc < 0

y

b

y = ax+b

cx+d

b
d

x1

Cy = a
c

x = −d
c

x

Quelques caractéristiques de la représentation graphique

Zéro de la fonction : L’abscisse x1 du point d’intersection de l’hyperbole représentant

la fonction f(x) = ax+b
cx+d

et de l’axe Ox est le zéro de f : x1 = −
b

a
si a 6= 0.

Asymptote verticale : La représentation graphique de f admet une asymptote verti-

cale d’équation x = −d
c
.

Asymptote horizontale : La représentation graphique de f admet une asymptote

horizontale d’équation y =
a

c
.

Symétrie : Le point C

(
−d
c
;
a

c

)
(le point d’intersection des deux asymptotes) est le

centre de symétrie de l’hyperbole représentant la fonction f .

Représentation graphique à partir de l’expression fonctionnelle

On peut mettre en oeuvre la méthode suivante pour dessiner, dans un repère cartésien,
la représentation graphique d’une fonction homographique définie par f(x) = ax+b

cx+d
.

Méthode

1. Déterminer le zéro de f en résolvant l’équation ax + b = 0 −→ on obtient le
point (− b

a
; 0) du graphe (si a 6= 0).

2. Déterminer les coordonnées du point d’intersection de l’hyperbole avec l’axe
Oy : (0; f(0)) = (0; b

d
) (si d 6= 0).
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3. Calculer quelques couples (x; f(x)) du graphe de f en choisissant x dans le
domaine de définition : R \ {−d

c
}.

4. Déterminer l’orientation de l’hyperbole en calculant le nombre ad− bc −→
- si ad−bc > 0, la ”branche gauche” de l’hyperbole est au-dessus de l’asymptote
horizontale et la ”branche droite” au-dessous,

- si ad− bc < 0, la ”branche gauche” de l’hyperbole est au-dessous de l’asymp-
tote horizontale et la ”branche droite” au-dessus.

5. Dessiner sous la forme d’un trait discontinu, dans le repère cartésien, l’asymp-
tote horizontale d’équation y = a

c
et l’asymptote verticale d’équation x = −d

c
.

6. Reporter, dans le repère cartésien, les points du graphe calculés en 1, 2 et 3 et
dessiner (éventuellement) les points symétriques correspondants (par rapport
au centre de symétrie C(−d

c
; a
c
)).

7. Relier les points dessinés dans le plan Oxy de sorte à obtenir une hyperbole
d’orientation déterminée en 4.

Exemple

Soit la fonction homographique f(x) = x−3
2x+4

.

On détermine tout d’abord le zéro de f , x1 = 3 (solution de x− 3 = 0), et le point
d’intersection avec l’axe des ordonnées, (0;−3

4
).

On calcule ensuite quelques points du graphe :

(−3; f(−3)) = (−3; 3) ; (−1; f(−1)) = (−1;−2) ; (1; f(1)) = (1;−1
3
) ; . . .

Comme ad− bc = 1 · 4− (−3) · 2 = 10 > 0, la ”branche gauche” de l’hyperbole est
au-dessus de l’asymptote horizontale et la ”branche droite” au-dessous.

L’équation de l’asymptote horizontale est y = 1
2
et l’équation de l’asymptote verti-

cale x = −2.
On reporte ensuite ces informations dans un repère cartésien pour obtenir la
représentation graphique ci-dessous.

y

1

2

3

4

5

6

7

−1

−2

−3

−4

−5

−6

−7

1 2 3 4 5 6 7 8 9 10 11−1−2−3−4−5−6−7−8−9−10−11

b
b

b

b

b

(3; 0)

(0;− 3
4 )

y = f(x)

x = −2

y = 1
2

x
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Chapitre 18

Fonctions puissances et racines

18.1 Fonctions puissances

18.1.1 Définition

Définition 18.1 (Rappel)
Un nombre a multiplié n fois par lui-même, a · a · . . . · a︸ ︷︷ ︸

a apparâıt n fois

, est appelé puissance n-ème

de a et est noté an. On dit également ”a élevé à la puissance n” ou plus rapidement ”a
puissance n”. Dans l’écriture an, on appelle a la base et n l’exposant.

Exemple

D’après cette définition, on peut écrire : 3 · 3 · 3 · 3 · 3 · 3︸ ︷︷ ︸
3 apparâıt 6 fois

= 36.

Définition 18.2
La fonction définie par

f : R −→ R

x 7−→ y = xn

où n ∈ N∗ (fixe), est appelée fonction puissance n-ème.

Exemple

1) La fonction définie par f(x) = x4 est la fonction puissance 4-ème.

2) La fonction définie par f(x) = x7 est la fonction puissance 7-ème.

18.1.2 Représentations graphiques et caractéristiques

Exposant n pair

On donne ci-dessous les représentations graphiques des fonctions puissances 2-ème (en
rouge) et 4-ème (en bleu).

La forme générale de la représentation graphique d’une fonction puissance d’exposant n
pair ressemble à celles données en exemple.
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y

1

2

3

4

5

6

7

8

9

−1

1 2 3 4−1−2−3−4

y = x2y = x4

x

Quelques caractéristiques de la fonction puissance n-ème pour un exposant n pair :

1) Symétrie : La représentation graphique de la fonction f(x) = xn admet une symé-
trie axiale par rapport à l’axe des ordonnées car (−x)n = xn, ∀x ∈ R. Cette fonction
est donc une fonction paire (car f(−x) = f(x)).

2) Forme : On peut remarquer que, plus l’exposant n est petit, plus la courbe représen-
tant la fonction f ”s’éloigne” rapidement de l’axe Oy quand x augmente (x > 0)
ou diminue (x < 0), qu’elle passe par les points (0; 0) (0 est le zéro de f) et (1; 1),
et qu’elle est toujours au-dessus de l’axe des abscisses (f(x) > 0 ∀x ∈ R).

3) Bijection : La fonction f(x) = xn n’est ni injective, ni surjective de R dans R. Par
contre en transformant les ensembles de départ et d’arrivée (réduction), on peut
obtenir une fonction bijective. En effet, f(x) = xn est bijective de R+ dans R+.

Exposant n impair

On donne ci-dessous les représentations graphiques des fonctions puissances 1-ème (en
vert ; fonction linéaire de pente 1), 3-ème (en rouge) et 5-ème (en bleu).

La forme générale de la représentation graphique d’une fonction puissance d’exposant n
impair ressemble à celles données en exemple.

y

1

2

3

4

5

−1

−2

−3

−4

−5

1 2 3 4−1−2−3−4

y = x

y = x3y = x5

x
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Quelques caractéristiques de la fonction puissance n-ème pour un exposant n impair :

1) Symétrie : La représentation graphique de la fonction f(x) = xn admet une symé-
trie centrale de centre O car (−x)n = −xn, ∀x ∈ R. Cette fonction est donc une
fonction impaire (car f(−x) = −f(x)).

2) Forme : On peut remarquer que, plus l’exposant n est petit, plus la courbe représen-
tant la fonction f ”s’éloigne” rapidement de l’axe Oy quand x augmente (x > 0)
ou diminue (x < 0), qu’elle passe par les points (0; 0) (0 est le zéro de f) et (1; 1),
et qu’elle est au-dessus de l’axe des abscisses pour x > 0 (f(x) > 0 ∀x ∈ R∗

+) et
au-dessous pour x < 0 (f(x) < 0 ∀x ∈ R∗

−).

3) Bijection : La fonction f(x) = xn est bijective de R dans R.

Remarque

Selon ce qui précède, la fonction puissance n-èmef(x) = xn avec n ∈ N∗ (pair ou impair)
est bijective de R+ dans R+. Il s’ensuit que cette fonction admet une fonction réciproque
(voir chapitre suivant).

18.1.3 Propriétés (rappel)

Si a et b sont des nombres réels non nuls (a, b ∈ R∗) et n et m des nombres naturels
strictement positifs (n,m ∈ N∗), on a les propriétés suivantes :

an = bn ⇐⇒ a = b, avec a, b > 0

an · am = an+m an

am
= an−m (si n > m)

(an)m = an·m an · bn = (a · b)n an

bn
=
(a
b

)n

Attention !

– (a+ b)n 6= an + bn (pour n 6= 1), en effet : (3 + 4)2 = 72 = 49 6= 32 + 42 = 9 + 16 = 25

18.2 Fonctions racines

18.2.1 Définition

Dans le chapitre précédent, nous avons vu que la fonction puissance n-ème donnée par
f(x) = xn, n ∈ N∗, est bijective de R+ dans R+, pour n pair ou impair. La fonction f
possède donc une fonction réciproque rf .

Cette fonction réciproque de la fonction puissance n-ème est appelée fonction racine
n-ème et est notée n

√
.
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x y = xn

puissance n-ème

racine n-ème

R+ R+

Définition 18.3
Soit n un nombre naturel positif (n ∈ N∗).

La racine n-ème de x, n
√
x, est défini par :

y = n
√
x⇐⇒ x = yn

pour tous nombres réels x > 0 et y > 0.

La fonction racine n-ème est alors définie par :

n
√

: R+ −→ R+

x 7−→ y = n
√
x tel que yn = x

Le symbole n
√

est appelé radical, l’expression sous le radical est appelé radicande et
n l’indice.

Noter que les deux équations données dans la définition sont équivalentes. On dit que :

n
√
x est le nombre positif qui élevé à la puissance n donne x.

Exemples

1) 5
√
32 = 2 car 25 = 32.

2) 3
√
125 = 5 car 53 = 125.

3) La fonction définie par f(x) = 5
√
x est la fonction racine 5-ème.

Remarques

1) Si n = 2, on écrit simplement f(x) =
√
x et on la nomme fonction racine carrée.

2) Si n est impair, il est possible de définir la racine n-ème d’un nombre négatif, car la
fonction puissance n-ème est alors bijective de R dans R.

Exemples

1) 3
√
−27 = 3

√
(−3)3 = −3

2) Si a > 0 et n impair, on peut poser : n
√

(−a)n = n
√−an = − n

√
an = −a.
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18.2.2 Représentations graphiques et caractéristiques

Indice n pair

On donne ci-dessous les représentations graphiques des fonctions racines 2-ème (en rouge)
et 4-ème (en bleu).

La forme générale de la représentation graphique d’une fonction racine d’indice n pair
ressemble à celles données en exemple.

y

1

2

3

−1

1 2 3 4 5 6 7 8 9 10 11 12 13 14−1

y = 2
√
x

y = 4
√
x

x

n pair

On peut remarquer que, plus l’indice n est petit, plus la courbe représentant la fonction
f(x) = n

√
x ”s’éloigne” rapidement de l’axe Ox quand x augmente (x > 0), qu’elle passe

par les points (0; 0) (0 est le zéro de f) et (1; 1), et qu’elle est toujours au-dessus de l’axe
des abscisses (f(x) > 0 ∀x ∈ R+).

Indice n impair

On donne ci-dessous les représentations graphiques des fonctions racines 3-ème (en rouge)
et 5-ème (en bleu).

La forme générale de la représentation graphique d’une fonction racine d’indice n impair
ressemble à celles données en exemple.

y

1

2

−1

−2

1 2 3 4 5 6 7 8 9−1−2−3−4−5−6−7−8−9

y = 3
√
x

y = 5
√
x

x

n impair

On peut remarquer que, plus l’indice n est petit, plus la courbe représentant la fonction
f(x) = n

√
x ”s’éloigne” rapidement de l’axe Ox quand x augmente (x > 0) ou diminue

(x < 0), qu’elle passe par les points (0; 0) (0 est le zéro de f) et (1; 1), et qu’elle est
au-dessus de l’axe des abscisses pour x > 0 (f(x) > 0 ∀x ∈ R∗

+) et au-dessous pour x < 0
(f(x) < 0 ∀x ∈ R∗

−).
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18.2.3 Propriétés (rappel)

Si a et b sont des nombres réels strictement positifs (a, b ∈ R∗
+) et n, m, p des nombres

naturels strictement positifs (n,m, p ∈ N∗), on a les propriétés suivantes :

n
√
a =

n
√
b⇐⇒ a = b

(
n
√
a
)n

= a
n
√
ab = n

√
a

n
√
b n

√
a

b
=

n
√
a

n
√
b

n
√
am =

(
n
√
a
)m n

√
m
√
a = nm

√
a np
√
amp = n

√
am

Attention !

–
√
a2 + b2 6= a + b, en effet :

√
32 + 42 =

√
25 = 5 6= 3 + 4 = 7

–
√
a+ b 6= √a+

√
b, en effet :

√
4 + 9 =

√
13 6=

√
4 +
√
9 = 5

Cas particulier

Pour tout nombre réel a (a ∈ R), on a l’égalité suivante :

√
a2 = |a|

Exemples

•
√
32 = |3| = 3

•
√

(−3)2 = |3| = 3

}
car 32 = (−3)2 = 9 et

√
9 = 3.

Attention à ne pas confondre :

a) la racine carrée de a2 qui est l’unique nombre positif dont le carré vaut a2.

b) les deux solutions de l’équation x2 = a2 : x1 = a et x2 = −a. (Exemple : x2 = 9 a
comme solutions x1,2 = ±

√
9 = ±3)
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Chapitre 19

Fonctions exponentielles

19.1 De la fonction puissance à la fonction exponen-

tielle

Fonction exponentielle de N∗ dans R+

Dans le chapitre précédent, nous avons étudié les fonctions puissances ayant une expres-
sion fonctionnelle de la forme

(base variable)puissance constante

tels que x2, x3, . . . Nous allons porter maintenant notre attention vers des fonctions ayant
une expression fonctionnelle de la forme

(base constante)puissance variable

tels que 2x, 1.04x, πx, que nous appellerons fonctions exponentielles. Il ne faut pas
confondre ces deux types de fonctions. Dans le premier cas, la base est variable tandis
que dans le second c’est l’exposant qui est variable.

Pour pouvoir définir les fonctions exponentielles, on considère un nombre réel strictement
positif a (a ∈ R∗

+, fixé) et on commence par restreindre l’ensemble de départ à l’ensemble
des nombres naturels strictement positifs. On obtient la fonction exponentielle de base a :

f : N∗ −→ R∗
+

x 7−→ y = ax

qui est bien définie pour chaque valeur de x ∈ N∗, puisque, pour un x fixé,

f(x) = ax = a · a · . . . · a︸ ︷︷ ︸
a apparâıt x fois

est équivalent à calculer l’image de a par la fonction puissance x-ème.

Une propriété fondamentale de la fonction puissance est, pour a ∈ R∗
+ et n,m ∈ N∗, :

an · am = an+m (19.1)

On va maintenant étendre la définition de cette fonction f à Z, puis à Q et finalement à
R en imposant cette propriété à la fonction exponentielle de base a fixée.
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Prolongement à Z

Pour prolonger la fonction exponentielle de base a à Z et obtenir une fonction de Z vers
R∗

+, on doit déterminer a0 et a−n (∀n ∈ N∗).

Pour que la propriété (19.1) soit conservée, a0 doit vérifier (m ∈ N∗) :

a0 · am = a0+m = am =⇒ a0 = 1

De même, a−n doit vérifier (n ∈ N∗) :

a−n · an = a−n+n = a0 = 1 =⇒ a−n =
1

an

On peut maintenant déterminer la valeur de a élevé à n’importe quelle puissance entière.

Prolongement à Q

Pour prolonger la fonction exponentielle de base a à Q et obtenir une fonction de Q vers
R∗

+, on doit déterminer a
1
n et a

m
n (∀m ∈ Z et ∀n ∈ N∗).

Pour que la propriété (19.1) soit conservée, a
1
n doit vérifier (n ∈ Z) :

(a
1
n )n = a

1
n · a 1

n · . . . · a 1
n︸ ︷︷ ︸

a
1
n apparâıt n fois

= a
1
n
+ 1

n
+...+ 1

n = a1 = a =⇒ a
1
n = n
√
a

car la racine n-ème de a correspond au nombre qui élevé à la puissance n donne a (suite
d’égalités de gauche).

De même, a
m
n doit vérifier :

a
m
n = am· 1

n =
(
a

1
n

)m
= ( n
√
a)m = n

√
am =⇒ a

m
n = n

√
am

en utilisant la propriétés des racines : ( n
√
a)m = n

√
am.

On peut maintenant déterminer la valeur de a élevé à n’importe quelle puissance ration-
nelle. Par contre, ces formules ne sont valables que si a est positif.

Prolongement à R

On ne peut pas utiliser la propriété (19.1) pour prolonger la fonction exponentielle de

base a à R. Comment définir alors a
√
2, aπ, a

√
3 ou plus généralement ax avec x ∈ R ?

Si x est un nombre rationnel (x ∈ Q), ax est clairement défini par ce qui précède. Par
contre si x est un nombre irrationnel, on utilise le fait que le nombre réel x peut être
approché aussi près que l’on veut par une suite de rationnels q1, q2, q3, . . . et on ”approche”
alors la valeur de ax par la suite de valeurs aq1 , aq2, aq3, . . .

Exemple

On désire déterminer la valeur de 5
√
2. Comme

√
2 = 1, 414 . . ., on peut écrire la

suite d’approximations successives :
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51 < 5
√
2 < 52

51,4 < 5
√
2 < 51,5

51,41 < 5
√
2 < 51,42

51,414 < 5
√
2 < 51,415

. . .

On estime
√
2 à gauche par une suite croissante de nombres rationnels qui s’ap-

proche de (tend vers)
√
2 et à droite par une suite décroissante de nombre ration-

nels. Ainsi, on peut affirmer que 5
√
2 est compris entre

51,414 = 5
1414
1000 =

1000
√
51414 ∼= 9, 7352

et
51,415 = 5

1415
1000 =

1000
√
51415 ∼= 9, 7509.

Pour plus de précision, on peut poursuivre la suite des approximations pour obtenir
des nombres rationnels aussi proches qu’on le souhaite de

√
2.

On peut maintenant ”déterminer” la valeur de a élevé à n’importe quelle puissance réelle
et définir la fonction exponentielle de base a de R vers R∗

+.

Remarque

Il est possible de définir ax pour x ∈ R de manière plus précise, mais ceci fait appel à des
notions mathématiques complexes qui ne sont pas étudiées dans le cadre du lycée.

19.2 Définition

Définition 19.1
Soit a un nombre réel positif différent de 1 (a ∈ R∗

+ \ {1}).
La fonction exponentielle de base a est définie par :

expa : R −→ R∗
+

x 7−→ y = expa(x) = ax

Exemple

1) La fonction définie par f(x) = 2x est la fonction exponentielle de base 2. On a :

f(2) = 22 = 4 ; f(−3) = 2−3 = 1
23

= 1
8
; f(1

2
) = 2

1
2 =
√
2 ∼= 1.414 ; 2π ∼= 8.825 ;

. . .

2) La fonction définie par f(x) = πx est la fonction exponentielle de base π.

19.2.1 Cas particulier : la base e

Dans le chapitre sur les progressions et les calculs financiers, nous avons rencontré la
formule des intérêts composés :

Cn = C0(1 + i)n

qui permet de déterminer le capital Cn obtenu à partir d’un capital initial C0 placé durant
n années à un taux d’intérêt annuel i exprimé de manière décimale (3% d’intérêt ≡ 0.03).
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Cette formule est valable si l’intérêt est capitalisé une fois par année. Que se passerait-il
si ce même intérêt était capitalisé tous les trimestres, tous les mois, tous les jours, . . . ?
Essayons de trouver une réponse à l’aide d’un exemple.

Capitalisation chaque an (une fois par année)

Imaginons un millionnaire qui place son argent dans une banque très généreuse qui pro-
pose un taux d’intérêt à 100% (i = 1), ce qui signifie que la fortune du millionnaire
doublera chaque année. S’il place un million à la banque l’année 0, voici comment aug-
mentera sa fortune :

Après 1 année : C1 = 1 + 1 · 1 = 1 · (1 + 1) = 2 millions

Après 2 années : C2 = 2 + 2 · 1 = 1 · (1 + 1)2 = 4 millions

Après 3 années : C3 = 4 + 4 · 1 = 1 · (1 + 1)3 = 8 millions

Après 4 années : C4 = 8 + 8 · 1 = 1 · (1 + 1)4 = 16 millions

. . .

En particulier, il aura 2 millions au bout d’une année.

Capitalisation chaque trimestre (4 fois par année)

Une banque concurrente apparâıt qui propose elle aussi un taux d’intérêt à 100%, mais
avec des intérêts capitalisés tous les trimestres, au lieu de tous les ans, sur la base du
taux proportionnel correspondant à un trimestre : i = 1

4
. Si notre millionnaire place un

million à la banque le trimestre 0, voici comment augmentera sa fortune :

Après 1 trimestre : C1 = 1 + 1 · 1
4
= 1 · (1 + 1

4
) = 1.25 million

Après 2 trimestres : C2 = 1.25 + 1.25 · 1
4
= 1 · (1 + 1

4
)2 = 1.563 million

Après 3 trimestres : C3 = 1.563 + 1.563 · 1
4
= 1 · (1 + 1

4
)3 = 1.953 million

Après 4 trimestres : C4 = 1.953 + 1.953 · 1
4
= 1 · (1 + 1

4
)4 = 2.441 millions

. . .

Au bout d’une année, il aura, au lieu de 2 millions, (1 + 1
4
)4 = 2.441 millions. Il a donc

intérêt à choisir cette deuxième banque.

Capitalisation chaque mois (12 fois par année)

Une troisième banque apparâıt qui propose elle aussi un taux d’intérêt à 100%, mais avec
des intérêts capitalisés tous les mois sur la base du taux proportionnel correspondant
à un mois : i = 1

12
. Si notre millionnaire place un million à la banque le mois 0, voici

comment augmentera sa fortune :

Après 1 mois : C1 = 1 + 1 · 1
12

= 1 · (1 + 1
12
) = 1.083 million

Après 2 mois : C2 = 1.083 + 1.083 · 1
12

= 1 · (1 + 1
12
)2 = 1.174 million

Après 3 mois : C3 = 1.174 + 1.174 · 1
12

= 1 · (1 + 1
12
)3 = 1.271 million

. . .

Après 12 mois : C12 = 2.412 + 2.412 · 1
12

= 1 · (1 + 1
12
)12 = 2.613 millions

. . .
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Au bout d’une année, il aura, au lieu de 2 ou 2.441 millions, (1 + 1
12
)12 = 2.613 millions.

Il a donc intérêt à choisir cette troisième banque.

Capitalisation chaque jour (365 fois par année)

Une quatrième banque apparâıt qui propose elle aussi un taux d’intérêt à 100%, mais
avec des intérêts capitalisés tous les jours sur la base du taux proportionnel correspondant
à un jours : i = 1

365
. Si notre millionnaire place un million à la banque le jour 0, voici

comment augmentera sa fortune :

Après 1 jour : C1 = 1 + 1 · 1
365

= 1 · (1 + 1
365

) = 1.003 million

Après 2 jours : C2 = 1.003 + 1.003 · 1
365

= 1 · (1 + 1
365

)2 = 1.005 million

Après 3 jours : C3 = 1.005 + 1.005 · 1
365

= 1 · (1 + 1
365

)3 = 1.008 million

. . .

Après 365 jours : C365 = 2.707 + 2.707 · 1
365

= 1 · (1 + 1
365

)365 = 2.714 millions

. . .

Au bout d’une année, il aura, au lieu de 2, 2.441 ou 2.613 millions, (1 + 1
365

)365 =
2.714 millions. Il a donc intérêt à choisir cette quatrième banque.

Capitalisation chaque ”instant” (n fois par année, n→ +∞)

Si enfin nous supposons qu’une cinquième banque propose de capitaliser la fortune à
chaque instant sur la base d’un taux d’intérêt proportionnel correspondant à un taux
annuel de 100%, le capital au bout d’une année sera le nombre vers lequel s’approche(
1 + 1

n

)n
quand n devient de plus en plus grand. En termes mathématiques, on parle de

limite quand n tend vers l’infini.

Pour n suffisamment grand, on peut démontrer que le nombre
(
1 + 1

n

)n
n’est pas du tout

infini, mais aussi proche qu’on le souhaite du nombre 2.718281828459045 . . . Il est facile
de constater ce phénomène sur une calculatrice. Depuis Euler, on désigne ce nombre par
la lettre e.

Définition 19.2
On écrit

e = lim
n→+∞

(
1 +

1

n

)n

∼= 2.718281828459045 . . .

et on dit que ”le nombre e est la limite de
(
1 + 1

n

)n
quand n tend vers l’infini”.

La fonction exponentielle naturelle est la fonction exponentielle de base e. Son ex-
pression fonctionnelle est f(x) = ex

Remarques

1) e est un nombre transcendant, comme π.

2) La fonction exponentielle naturelle est la plus utilisée des fonctions exponentielles.
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19.3 Représentations graphiques et caractéristiques

Base a > 1

On donne ci-dessous les représentations graphiques des fonctions exponentielles de base
2 (en vert), e (en bleu) et 10 (en rouge).

La forme générale de la représentation graphique d’une fonction exponentielle de base a,
avec a > 1, ressemble à celles données en exemple.

y

1

2

3

4

5

6

7

−1

1 2 3 4−1−2−3−4

y = 10x y = ex

y = 2x

x

On peut remarquer que, si a > 1, la fonction est croissante dans R et toujours positive.
Plus a est proche de 1 plus la courbe ”s’éloigne” rapidement de l’axeOy quand x augmente
(pour x > 0). Lorsque x diminue (pour x < 0), la courbe y = ax tend vers l’axe des
abscisses. Ainsi, cette axe est une asymptote horizontale lorsque x tend vers −∞. De
plus, cette courbe passe par le point (0, 1) quelque soit la base a de l’exponentielle.

Base 0 < a < 1

On donne ci-dessous les représentations graphiques des fonctions exponentielles de base
1
2
(en vert), 1

e
(en bleu) et 1

10
(en rouge).

La forme générale de la représentation graphique d’une fonction exponentielle de base a,
avec 0 < a < 1, ressemble à celles données en exemple.

y

1

2

3

4

5

6

7

−1

1 2 3 4−1−2−3−4

y =
(

1
10

)x
y =

(

1
e

)x

y =
(

1
2

)x

x
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On peut remarquer que, si 0 < a < 1, la fonction est décroissante dans R et toujours
positive. Plus a est proche de 1 plus la courbe ”s’éloigne” rapidement de l’axe Oy quand x
diminue (pour x < 0). Lorsque x augmente (pour x > 0), la courbe y = ax tend vers l’axe
des abscisses. Ainsi, cette axe est une asymptote horizontale lorsque x tend vers +∞. De
plus, cette courbe passe par le point (0, 1) quelque soit la base a de l’exponentielle.

19.4 Equations exponentielles

Définition 19.3
Une équation exponentielle à une inconnue est une équation où l’inconnue figure
comme exposant d’une ou plusieurs exponentielles de même base ou de bases différentes.

Exemples

1) e4x = e5x
2−3

2) 365+x = 7

3) 9x · 22x =
1

216

Proposition 19.1
La fonction exponentielle de base a donnée par expa(x) = ax est bijective de R dans R∗

+

pour 0 < a < 1 ou a > 1.

Ainsi, les conditions équivalentes suivantes sont vérifiées pour tout nombre réels x1 et
x2 :

1) Si x1 6= x2, alors a
x1 6= ax2 .

2) Si ax1 = ax2 , alors x1=x2.

19.4.1 Principe de résolution

Dans ce chapitre, nous allons nous restreindre aux équations exponentielles ”simples” où
il est possible d’obtenir par transformations successives une équation avec uniquement des
exponentielles de même base : af(x) = ag(x). Nous étudierons une méthode plus générale
dans le chapitre suivant.

Marche à suivre pour résoudre une équation exponentielle ”simple” :

1. transformer l’équation en utilisant les propriétés des exponentielles pour obte-
nir une équation de la forme :

af(x) = ag(x)

où f et g sont des fonctions de l’inconnue x,

2. ”éliminer” les bases a en utilisant l’injectivité de la fonction exponentielle (voir
proposition ci-dessus) :

af(x) = ag(x) =⇒ f(x) = g(x)

3. résoudre l’équation à une inconnue f(x) = g(x).
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Remarques

Attention ! Cette méthode de résolution permet uniquement de résoudre des équations
exponentielles de même base (après éventuellement quelques transformations).

Exemples

1) Résoudre : 27x+2 = 35x+8.

27x+2 = 35x+8 27 = 33

(33)x+2 = 35x+8 propriétés exp

33x+6 = 35x+8 éliminer les bases

3x+ 6 = 5x+ 8 −5x− 6

−2x = 2 ÷(−2)
x = −1

L’ensemble des solutions est : S = {−1}.
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Chapitre 20

Fonctions logarithmes

20.1 Introduction

Imaginons un millionnaire qui place son argent dans une banque très généreuse qui pro-
pose un taux d’intérêt à 100% ce qui signifie que la fortune du millionnaire doublera
chaque année. S’il place un million à la banque l’année 0 voici comment évoluera sa
fortune :

Années 0 1 2 3 4 5 6 7 8

Fortune en millions (CHF) 1 2 4 8 16 32 64 128 256

On pourrait définir une fonction qui donne la fortune en millions si le nombre d’années de
placement est connu. En observant le tableau ci-dessus, on remarque que cette fonction
correspond à la fonction exponentielle de base 2.

Exemple : Pour 4 ans, on obtient f(4) = 24 = 16.

On peut créer la fonction qui effectue le chemin inverse (on l’appelle fonction réciproque
de la fonction exponentielle) ; c’est-dire une fonction qui donne l’année lorsqu’on connâıt
la fortune. Cette fonction aura le nom de logarithme en base 2 et sera noté log2.

Exemple : log2(1) = 0, log2(2) = 1, log2(4) = 2, . . .

On a la relation générale suivante :

log2(x) = y ⇐⇒ 2y = x (x > 0)

20.2 Définition et représentations graphiques

Dans le chapitre précédent, nous avons vu que la fonction exponentielle donnée par f(x) =
ax, a ∈ R∗

+ \ {1}, est bijective. La fonction f possède donc une fonction réciproque rf .

Cette fonction réciproque de la fonction exponentielle de base a est appelée fonction
logarithme de base a et est notée loga.

x y = ax

exponentielle de base a

logarithme de base a

R R∗
+
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Définition 20.1
Soit a un nombre réel positif différent de 1 (a ∈ R∗

+ \ {1}).
Le logarithme en base a de x, loga(x), est défini par :

y = loga (x)⇐⇒ x = ay

pour tout x > 0 et tout nombre réel y.

La fonction logarithme en base a est alors définie par :

loga : R∗
+ −→ R

x 7−→ y = loga(x) tel que ay = x

Noter que les deux équations données dans la définition sont équivalentes. Il faut s’en-
trâıner à passer d’une forme à l’autre. Le diagramme suivant peut y aider.

loga(x) = y ay = x

Forme logarithmique Forme exponentielle

exposant

base

On remarque que, lorsqu’on passe d’une forme à l’autre, les bases des formes logarith-
miques et exponentielles sont les mêmes. Le nombre y (c’est-à-dire loga(x)) correspond à
l’exposant dans la forme exponentielle. On dit que :

loga(x) est la puissance à laquelle il faut élever a pour trouver x.

Exemples

1) log4(64) = 3 car 43 = 64.

2) log10(100) = 2 car 102 = 100.

Remarque

Attention ! Le logarithme en base a d’un nombre négatif ou nul n’existe pas ! ! !

Bases particulières

Base 10 : log10(x) se note log(x) et s’appelle logarithme décimal de x.

Base e = 2, 71828 . . . : loge(x) se note ln(x) et s’appelle logarithme naturel ou loga-
rithme népérien de x.
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20.2.1 Représentations graphiques

Base a > 1

On donne ci-dessous les représentations graphiques des fonctions exponentielles de base
2 (vert), e (bleu) et 10 (rouge), en traitillé, et des fonctions logarithmes de mêmes bases,
leurs réciproques, en trait plein.

y

1

2

3

4

5

−1

−2

−3

−4

1 2 3 4 5 6 7 8 9 10 11−1−2−3−4−5

y = 10x y = ex

y = 2x

y = log(x)

y = ln(x)

y = log2(x)

y = x

x

La forme générale de la représentation graphique d’une fonction logarithme de base a,
avec a > 1, ressemble à celles données en exemple ci-dessus.

On peut remarquer que plus a est proche de 1 plus la courbe ”s’éloigne” rapidement de
Ox quand x augmente (pour x > 1) et que la courbe passe par le point (1; 0) quelque
soit la base a du logarithme.

Base 0 < a < 1

On donne ci-dessous les représentations graphiques des fonctions exponentielles de base
1
2
(vert), 1

e
(bleu) et 1

10
(rouge), en traitillé, et des fonctions logarithmes de mêmes bases,

leurs réciproques, en trait plein.

y

1

2

3

4

5

−1

−2

−3

−4

1 2 3 4 5 6 7 8 9 10 11−1−2−3−4−5

y =
(

1
10

)x
y =

(

1
e

)x

y =
(

1
2

)x

y = log 1

10

(x)

y = log 1

e

(x)

y = log 1

2

(x)

y = x

x

La forme générale de la représentation graphique d’une fonction logarithme de base a,
avec 0 < a < 1, ressemble à celles données en exemple ci-dessus.

On peut remarquer que plus a est proche de 1 plus la courbe ”s’éloigne” rapidement de
Ox quand x augmente (pour x > 1) et que la courbe passe par le point (1; 0) quelque
soit la base a du logarithme.
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20.3 Propriétés

Proposition 20.1
Soit a ∈ R∗

+ \ {1}.
Quels que soient u ∈ R∗

+, v ∈ R∗
+ et r ∈ R, on a :

• aloga(u) = u • loga(a
r) = r

• loga(1) = 0 • loga(a) = 1

• loga(u · v) = loga(u) + loga(v)

• loga
(
u
v

)
= loga(u)− loga(v) • loga

(
1
v

)
= − loga(v)

• loga(u
r) = r · loga(u)

Démonstration. Soient a ∈ R∗
+ \ {1}, u ∈ R∗

+, v ∈ R∗
+ et r ∈ R.

Par surjectivité de la fonction exponentielle, il existe x, y ∈ R tels que :

u = ax et v = ay

Par définition de la fonction logarithme, ces égalités impliquent que :

loga(u) = x et loga(v) = y

– A voir : loga(a
r) = r

Cette propriété est immédiate à partir de la définition du logarithme de base a.

– A voir : loga(u · v) = loga(u) + loga(v).

Des égalités ci-dessus, on tire que :

loga(u · v) = loga(a
x · ay) prop. exp.

= loga(a
x+y)

déf. log.
= x+ y = loga(u) + loga(v)

– A voir : loga(
u
v
) = loga(u)− loga(v).

Des égalités ci-dessus, on tire que :

loga

(u
v

)
= loga

(
ax

ay

)
prop. exp.

= loga(a
x−y)

déf. log.
= x− y = loga(u)− loga(v)

– A voir : loga(u
r) = r · loga(u).

Des égalités ci-dessus, on tire que :

loga(u
r) = loga((a

x)r)
prop. exp.

= loga(a
x·r)

déf. log.
= r · x = r · loga(u)

– Les autres égalités se démontrent de manière immédiate à partir de la définition du
logarithme en base a et des propriétés démontrées ci-dessus.
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Exemple

A l’aide des propriétés ci-dessus, on peut exprimer
1

3
loga(x

2−1)−loga(y)−4 loga(z)
sous la forme d’un logarithme :

1

3
loga(x

2 − 1)− loga(y)− 4 loga(z) = loga((x
2 − 1)

1
3 )− loga(y)− loga(z

4)

= loga(
3
√
x2 − 1)− (loga(y) + loga(z

4))

= loga(
3
√
x2 − 1)− loga(y · z4)

= loga

(
3
√
x2 − 1

y · z4
)

20.4 Formule de changement de base des logarithmes

Une machine à calculer ne travaille qu’avec les logarithmes en base 10 et en base e. On
peut cependant utiliser comme base n’importe quel nombre strictement positif différent
de 1. La formule ci-dessous va nous permettre, à partir d’une base quelconque, de nous
ramener à une de ces bases particulières pour réaliser le calcul du logarithme.

Proposition 20.2
Si u > 0 et si a et b sont des nombres réels positifs différents de 1, alors

logb(u) =
loga(u)

loga(b)

On appelle cette égalité la formule de changement de base des logarithmes.

Démonstration. Soient a, b ∈ R∗
+ \ {1} et u ∈ R∗

+.

Par surjectivité de la fonction exponentielle, il existe x ∈ R tels que : u = bx.

On obtient alors que :

u = bx ⇐⇒ loga(u) = loga(b
x) = x · loga(b)

x = logb(u)

}
=⇒ loga(u) = logb(u) · loga(b)

et donc que : logb(u) =
loga(u)

loga(b)

Exemple

Calculer : log7(21).

A l’aide de la formule de changement de base des logarithmes, on trouve que :

log7(21) =
log(21)

log(7)
∼= 1, 32222

0, 84510
∼= 1, 56457

On pourrait également effectuer le calcul suivant :

log7(21) =
ln(21)

ln(7)
∼= 3, 04452

1, 94591
∼= 1, 56457
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20.5 Equations logarithmiques

Définition 20.2
Une équation logarithmique à une inconnue est une équation où l’inconnue figure dans
un ou plusieurs logarithmes de même base ou de bases différentes.

Exemples

1) ln(x+ 6)− ln(10) = ln(x− 1)− ln(2)

2) log4(5 + x) = 3

3) log9(x) =
1

8
log3(x

2 + 2)

20.5.1 Principe de résolution

Marche à suivre pour résoudre une équation logarithmique :

1. transformer l’équation en utilisant les propriétés des logarithmes pour obtenir
une équation de la forme :

loga(f(x)) = loga(g(x))

où f et g sont des fonctions de l’inconnue x,

2. ”éliminer” les loga en utilisant l’injectivité de la fonction logarithme :

loga(f(x)) = loga(g(x)) =⇒ f(x) = g(x)

3. résoudre l’équation à une inconnue f(x) = g(x),

4. vérifier les solutions obtenues dans l’équation de départ !

Remarques

1) Attention ! Le fait d’éliminer les logarithmes par injectivité peut introduire des solu-
tions qui ne satisfont pas l’équation initiale. C’est pourquoi il est nécessaire de tester
les solutions trouvées dans l’équation de départ.

2) f(x) = g(x) 6⇒ loga(f(x)) = logb(g(x)) pour tout x ∈ R car f(x) et g(x) pourraient
être négatifs pour des x particuliers.

Exemples

1) Résoudre : log(x+ 1)− log(3) = log(2x− 3) + log(7).

log(x+ 1)− log(3) = log(2x− 3) + log(7) propriétés log

log
(
x+1
3

)
= log(7(2x− 3)) éliminer log

x+1
3

= 7(2x− 3) ·3
x+ 1 = 42x− 63 −x+ 63

64 = 41x ÷41
64
41

= x
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Important ! Il faut maintenant vérifier la solution obtenue en la substituant à
x dans l’équation de départ.

Vérification

* log

(
64

41
+ 1

)

︸ ︷︷ ︸
0,408

− log(3)︸ ︷︷ ︸
0,477

︸ ︷︷ ︸
−0,069

?
= log

(
2 · 64

41
− 3

)

︸ ︷︷ ︸
−0,914

+ log(7)︸ ︷︷ ︸
0,845

︸ ︷︷ ︸
−0,069

−→ O.K.

L’ensemble des solutions, après vérification, est : S = {64
41
}.

1) Résoudre : 2 log3(x) = 1 + 2 log9(4x+ 15)

Pour pouvoir résoudre cette équation logarithmique, il faut choisir une base
unique entre 3 et 9. On conservera ici la base 3 (pas de règle précise pour
réaliser ce choix) et on utilisera la formule de changement de base pour modifier
log9(4x+ 15).

De plus, il faut ”transformer” le nombre réel 1 en une expression contenant un
log3 −→ 1 = log3(3).

2 log3(x) = 1 + 2 log9(4x+ 15) propriétés et formules log

log3(x
2) = log3(3) +

2 log3(4x+5)
log3(9)

propriétés log

log3(x
2) = log3(3(4x+ 15)) éliminer log3

x2 = 12x+ 45 −12x− 45

x2 − 12x− 45 = 0

On résout alors l’équation du deuxième degré x2 − 12x − 45 = 0 à l’aide de la
formule de résolution.
– Discriminant : ∆ = (−12)2 − 4 · 1 · (−45) = 324 = 182.
– ∆ > 0 : 2 solutions distinctes :

* x1 =
−(−12) +

√
324

2 · 1 =
12 + 18

2
= 15

* x2 =
−(−12)−

√
324

2 · 1 =
12− 18

2
= −3

Vérification

* 2 log3(15)︸ ︷︷ ︸
2,465︸ ︷︷ ︸
4,930

?
= 1 + 2 log9(4 · 15 + 15)︸ ︷︷ ︸

1,965︸ ︷︷ ︸
4,930

−→ O.K.

* 2 log3( −3︸︷︷︸
<0

)
?
= 1 + 2 log9(4 · (−3) + 15)︸ ︷︷ ︸

...

−→ Non

L’ensemble des solutions, après vérification, est : S = {15}.

20.6 Equations exponentielles

On a vu, au chapitre sur les fonctions exponentielles, comment résoudre une équation
exponentielle où il était possible d’obtenir par transformations successives une équation
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avec uniquement des puissances de même base : af(x) = ag(x), ce qui représente un ”petit
nombre” d’équations.

On donne ci-dessous une méthode, s’appuyant sur les logarithmes, pour résoudre des
équations où il est impossible d’obtenir des puissances de même base (méthode de résolu-
tion plus générale).

20.6.1 Principe de résolution

Marche à suivre pour résoudre une équation exponentielle :

1. transformer l’équation en utilisant les propriétés des exponentielles pour obte-
nir une équation de la forme :

af(x) = bg(x)

où f et g sont des fonctions de l’inconnue x,

2. ”éliminer” les puissances en utilisant les logarithmes :

af(x) = bg(x) ⇐⇒ log(af(x)) = log(bg(x))⇐⇒ f(x) · log(a) = g(x) · log(b)

3. résoudre l’équation à une inconnue f(x) · log(a) = g(x) · log(b).

Remarque

On peut utiliser une autre base a ∈ R∗
+ \ {1} que la base 10 pour effectuer les transfor-

mations équivalentes de 2.

Exemples

1) Résoudre : 32x = 15

32x = 15 log(. . .) (éliminer les puissances)

log(32x) = log(15) propriétés log

2x · log(3) = log(15) ÷2 log(3)

x =
log(15)

2 log(3)︸ ︷︷ ︸
∼=1,232

L’ensemble des solutions est : S =
{

log(15)
2 log(3)

}
.

2) Résoudre :
9

33x
= 2 · 8x

9

33x
= 2 · 8x propriétés exp

32 · 3−3x = 2 · 23x propriétés exp
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32−3x = 21+3x log(. . .)

log(32−3x) = log(21+3x) propriétés log

(2− 3x) log(3) = (1 + 3x) log(2) +3 log(3) · x− log(2)

2 log(3)− log(2) = x · (3 log(2) + 3 log(3)) ÷(3 log(2) + 3 log(3))

2 log(3)− log(2)

3 log(2) + 3 log(3)︸ ︷︷ ︸
∼=0,321

= x

L’ensemble des solutions est : S =
{

2 log(3)−log(2)
3 log(2)+3 log(3)

}
.
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20.7 Exercices

1) Mettre sous la forme m log(a) + n log(b) :

a) log(a2b−6) b) log

(
b4

a−3

)

c) log

(
a

1
3√
b

)
d) log

(
a3b−1

c
√
d

)

2) Résoudre les équations suivantes.

a) 2 log(3x−2) = 1+log(2)+log(x+1) b) log(
√
x+ 1) + log(

√
x− 1) = log(5)

c) log(2x− 5) + log(3x+ 7) = 4 log(2) d) log(x2 + 3x+ 1) = 2

e) log(20) + log(x2 − 4)− log(x− 2) = 1 + log(2x+ 4)

f) log4(x) = −3 + log2(x+ 16) g) log(x2) = (log(x))2

h) log3(x) · log9(x) = 2
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20.8 Solutions des exercices

1) a) 2 log(a)− 6 log(b) b) 3 log(a) + 4 log(b)

c)
1

3
log(a)− 1

2
log(b) d) 3 log(a)− log(b)− log(c)− 1

2
log(d)

2) a) 4 b)
√
26 c) 3 d) x1 = 8.66, x2 = −11.66

e) x ∈]2;∞[ f) 16 g) x1 = 1, x2 = 100 h) x1 =
1

9
, x2 = 9

page 324



Chapitre 21

Fonctions trigonométriques

21.1 Définitions et représentations graphiques

21.1.1 Fonctions cosinus et sinus

Définition 21.1

Soit P (1; 0) sur le cercle trigonométrique. Soit encore
M , l’image de P par une rotation de centre O et
d’angle α.

On appelle cosinus de l’angle α, noté cos(α), la
première coordonnée ou abscisse de M . Celle-ci cor-
respond à la mesure algébrique du segment OC, où
C est la projection de M sur l’axe des abscisses.

On appelle sinus de l’angle α, noté sin(α), la seconde
coordonnée ou ordonnée de M . Celle-ci correspond
à la mesure algébrique du segment OS, où S est la
projection de M sur l’axe des ordonnées.

x

y

I

J

α

b
M

C

S

O
si
n
(α

)
cos(α)

b

b

On note : M(cos(α), sin(α))

Représentations graphiques

En général, le radian sera utilisé comme unité de mesure (sauf indication contraire).
Ainsi, si on parle de la fonction f(x) = sin(x), il est entendu que x est exprimé en
radians. Les calculatrices doivent donc être convenablement configurées pour travailler
avec les fonctions trigonométriques.

La représentation graphique de la fonction cosinus :

cos : R −→ [−1; 1]
x 7−→ cos(x)

est donnée ci-dessous.
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π
2 π 3π

2 2π 5π
2 3π−π

2−π−3π
2−2π−5π

2−3π
1

−1

x

y

y = cos(x)

La représentation graphique de la fonction sinus :

sin : R −→ [−1; 1]
x 7−→ sin(x)

est donnée ci-dessous.

π
2 π 3π

2 2π 5π
2 3π−π

2−π−3π
2−2π−5π

2−3π
1

−1

x

y

y = sin(x)

Propriétés

La fonction cosinus possède les propriétés suivantes :

– son ensemble de définition est Dcos = R.

– son ensemble image est l’intervalle [−1; 1].
– elle est une fonction paire car pour tout x ∈ Dcos on a cos(−x) = cos(x).

– elle est une fonction bornée.

La fonction sinus possède les propriétés suivantes :

– son ensemble de définition est Dsin = R.

– son ensemble image est l’intervalle [−1; 1].
– elle est une fonction impaire car pour tout x ∈ Dsin on a sin(−x) = − sin(x).

– elle est une fonction bornée.

21.1.2 Les fonctions tangente et cotangente

Définition 21.2
Soit M(cos(α), sin(α)) sur le cercle trigonométrique.

On définit le point T comme l’intersection entre la droite passant par (0; 0) et M et la
droite verticale tangente au cercle au point I(1; 0).

On définit encore le point K comme l’intersection entre la droite passant par (0; 0) et M
(la même que ci-dessus) et la droite horizontale tangente au cercle au point J(0; 1).
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On appelle tangente de l’angle α, noté tan(α),
l’ordonnée de T . Celle-ci correspond à la mesure
algébrique du segment IT .

On appelle cotangente de l’angle α, noté cot(α),
l’abscisse de K. Celle-ci correspond à la mesure
algébrique du segment JK.

On note : T (1; tan(α)) et K(cot(α); 1)).

x

y

I

J

α

bM

K

T

O

ta
n
(α

)

cot(α)
b

b

Remarques

1. Lorsque la droite passant par (0; 0) etM est verticale, la tangente de l’angle correspon-
dant n’est pas définie (il n’y a pas de point d’intersection comme les deux droites sont
verticales). Ceci se produit pour les angles de l’ensemble {x ∈ R | x = π

2
+kπ, k ∈ Z}.

2. Lorsque la droite passant par (0; 0) et M est horizontale, la cotangente de l’angle
correspondant n’est pas définie (il n’y a pas de point d’intersection comme les deux
droites sont horizontales). Ceci se produit pour les angles de l’ensemble {x ∈ R | x =
kπ, k ∈ Z}.

Représentations graphiques

La représentation graphique de la fonction tangente :

tan : R \ {x ∈ R | x = π
2
+ kπ, k ∈ Z} −→ R

x 7−→ tan(x)

est donnée ci-dessous.

π
2 π 3π

2 2π 5π
2 3π−π

2−π−3π
2−2π−5π

2−3π
1

−1

x

y

y = tan(x)

La représentation graphique de la fonction cotangente :

cot : R \ {x ∈ R | x = kπ, k ∈ Z} −→ R

x 7−→ cot(x)

est donnée ci-dessous.
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π
2 π 3π

2 2π 5π
2 3π−π

2−π−3π
2−2π−5π

2−3π
1

−1

x

y

y = cot(x)

Propriétés

La fonction tangente possède les propriétés suivantes :

– son ensemble de définition est Dtan = R \ {x ∈ R | x = π
2
+ kπ, k ∈ Z}.

– son ensemble image est l’ensemble des nombres réels, R.

– elle est une fonction impaire car pour tout x ∈ Dtan on a tan(−x) = − tan(x).

– elle est une fonction non bornée.

La fonction cotangente possède les propriétés suivantes :

– son ensemble de définition est Dcot = R \ {x ∈ R | x = kπ, k ∈ Z}.
– son ensemble image est l’ensemble des nombres réels, R.

– elle est une fonction impaire car pour tout x ∈ Dcot on a cot(−x) = − cot(x).

– elle est une fonction non bornée.

21.1.3 Fonctions périodiques

En considérant les figures qui nous ont permis de définir les fonctions cosinus, sinus,
tangente et cotangente, on constate que l’ajout à l’angle α d’un multiple entier de 2π ne
change pas le point M sur le cercle trigonométrique. De même, l’ajout à l’angle α d’un
multiple entier de π ne change pas le point T , ni le point K.

De même, sur les représentations graphiques, on remarque que, en ”décalant” la fonction
sinus ou cosinus de 2π vers la droite ou vers la gauche, elle ne se modifie pas (le dessin reste
le même). La même observation peut être faite pour les fonctions tangente et cotangente
avec un décalage de π.

Ainsi, par définition des fonctions trigonométriques, on a

cos(α + k · 2π) = cos(α), ∀k ∈ Z

sin(α + k · 2π) = sin(α), ∀k ∈ Z

tan(α + k · π) = tan(α), ∀k ∈ Z

cot(α + k · π) = cot(α), ∀k ∈ Z

On dit que les fonctions sinus et cosinus sont périodiques de période 2π et que les
fonctions tangente et cotangente sont périodiques de période π.
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Remarques

1. Pour les fonction sinus et cosinus, le nombre k représente le nombre de tours entre
deux angles ayant, respectivement, le même sinus ou le même cosinus.

2. Pour les fonction tangente et cotangente, le nombre k représente le nombre de demi-
tours entre deux angles ayant, respectivement, la même tangente ou la même cotan-
gente.

Plus généralement, on a la définition suivante.

Définition 21.3
Une fonction f de D (D ⊂ R) vers R est périodique s’il existe p ∈ R∗

+, tel que, pour
tout x ∈ D, on a

a) x+ p ∈ D
b) f(x+ p) = f(x)

Le plus petit nombre réel strictement positif p satisfaisant cette condition est appelé la
période de f . Pour tout multiple entier kp (k ∈ Z) de p, on a :

x+ kp ∈ D et f(x+ kp) = f(x) ∀x ∈ D.

La connaissance du graphe de f restreinte à un intervalle de longueur p permet de
représenter le graphe de f sur D tout entier, grâce à des translations dans la direction
de l’axe Ox.

21.1.4 Fonctions sinusöıdales

Définition 21.4
Une fonction f est dite sinusöıdale s’il existe quatre nombres nombres réels a, b, c et d,
tel que :

f(x) = a · sin(b · (x− c)) + d

On appelle a l’amplitude et c le déphasage.

Exemple

Le graphique de la fonction sinusöıdale f(x) = 3
2
· sin (2(x− π)) + 1 est donnée

ci-dessous.

π
2 π 3π

2 2π 5π
2 3π−π

2−π−3π
2−2π−5π

2−3π

1

−1
x

y
y = f(x)

Effets des paramètres a, b, c et d

Durant les exercices, nous donnerons une interprétation des effets des paramètres a, b, c
et d dans le cas d’une fonction sinusöıdale en se basant sur les représentations graphiques
de quelques fonctions réalisées sur papier millimétré.
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21.1.5 Fonctions réciproques

Les fonctions trigonométriques ne sont pas bijectives si on considère comme ensemble de
départ R. En effet, elles ne sont pas injectives car plusieurs angles (une infinité) possèdent
le même sinus, respectivement, le même cosinus ou la même tangente. Par contre, on peut
obtenir des fonctions bijectives si on restreint l’ensemble de départ de ces fonctions.

Propriétés

1. La fonction sinus est bijective si on considère comme ensemble de départ l’intervalle
[−π

2
; π
2
] et comme ensemble d’arrivée l’intervalle [−1; 1].

2. La fonction cosinus est bijective si on considère comme ensemble de départ l’intervalle
[0; π] et comme ensemble d’arrivée l’intervalle [−1; 1].

3. La fonction tangente est bijective si on considère comme ensemble de départ l’intervalle
]−π

2
; π
2
[ et comme ensemble d’arrivée l’ensemble des nombres réels R.

L’avantage d’avoir des fonctions bijectives réside dans le fait qu’il existe alors des fonction
réciproques.

Définition 21.5

1. On appelle arcsin(x), l’arc compris entre −π
2

et
π
2
dont le sinus vaut x. La fonction arcsinus est

alors la fonction réciproque de la fonction sinus
restreinte à l’intervalle [−π

2
; π
2
].

arcsin : [−1; 1] −→ [−π
2
;
π

2
]

x 7−→ y = arcsin(x)

tel que sin(y) = x

π
2

−π
2

1

−1

π
2

−π
2

1−1
x

y

y = sin(x)

y = arcsin(x)

2. On appelle arccos(x), l’arc compris entre 0 et π
dont le cosinus vaut x. La fonction arccosinus est
alors la fonction réciproque de la fonction cosinus
restreinte à l’intervalle [0; π].

arccos : [−1; 1] −→ [0; π]

x 7−→ y = arccos(x)

tel que cos(y) = x

π
2 π

1

−1

π
2

π

1−1
x

y

y = cos(x)

y = arccos(x)

3. On appelle arctan(x), l’arc compris entre −π
2

et π
2

dont la tangente vaut x. La fonction arctangente
est alors la fonction réciproque de la fonction tan-
gente restreinte à l’intervalle ]−π

2
; π
2
[.

arctan : R −→ ]− π

2
;
π

2
[

x 7−→ y = arctan(x)

tel que tan(y) = x

π
2

−π
2

1

−1

π
2

−π
2

1

−1
x

y

y = tan(x)

y = arctan(x)
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Exemples

1. arcsin(1
2
) = π

6

2. arcsin(−
√
2
2
) = −π

4

3. arcsin(2) n’existe pas.

21.2 Formules de symétries, d’addition, de duplica-

tion et de bissection

21.2.1 Formules de symétries

On peut lier les valeurs des fonctions trigonométriques pour certains angles en utilisant
des symétries axiales au sein du cercle trigonométrique.

La symétrie d’axe horizontal (y = 0)

Lorsqu’à un angle α, on associe l’angle −α,
les points correspondants sur le cercle trigo-
nométrique sont symétriques par rapport à l’axe
horizontal.

Cette symétrie ne change pas la première coor-
donnée d’un point du plan, mais change le signe
de la deuxième coordonnée.

On a ainsi les formules de symétrie horizontale
suivantes :

cos(−α) = cos(α)

sin(−α) = − sin(α)

tan(−α) = − tan(α)

x

y

I

J

O

α

b

b

M

T

−α

b

b

M ′

T ′

Symétrie d’axe vertical (x = 0)

Lorsqu’à un angle α, on associe l’angle π − α,
les points correspondants sur le cercle trigo-
nométrique sont symétriques par rapport à l’axe
vertical.

Cette symétrie change le signe de la première
coordonnée d’un point du plan, mais ne change
pas la deuxième coordonnée.

Pour la tangente, on utilise la formule tan(α) =
sin(α)

cos(α)
pour obtenir que tan(π − α) = − tan(α)

(ce que montre également le dessin).

x

y

I

J

O

α

π − α

b

b

M

T

b

b

M ′

T ′
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On a ainsi les formules de symétrie verticale sui-
vantes :

cos(π − α) = − cos(α)

sin(π − α) = sin(α)

tan(π − α) = − tan(α)

Symétrie dont l’axe est la première bissectrice (y = x)

Lorsqu’à un angle α, on associe l’angle
π

2
− α,

les points correspondants sur le cercle trigo-
nométrique sont symétriques par rapport à la
première bissectrice.

Cette symétrie échange les coordonnées : la
première devient la seconde et vice-versa.

Pour la tangente, on utilise à nouveau la formule

tan(α) =
sin(α)

cos(α)
pour obtenir que tan(

π

2
−α) =

1

tan(α)
= cot(α).

On a ainsi les formules de symétrie dont l’axe
est la première bissectrice suivantes :

cos(
π

2
− α) = sin(α)

sin(
π

2
− α) = cos(α)

tan(
π

2
− α) =

1

tan(α)

x

y

I

J

O
α

π
2 − α

b
M ′

b M

21.2.2 Formules d’addition et de soustraction

Est-il vrai que sin(α + β) = sin(α) + sin(β) ? Un cas particulier permet de montrer que
ceci n’est pas le cas :

sin
(π
3
+
π

6

)
= sin

(π
2

)
= 1

mais

sin
(π
3

)
+ sin

(π
6

)
=

√
3

2
+

1

2

On voit donc par cet exemple que la fonction sinus n’est pas linéaire. En fait, aucune des
fonctions trigonométriques ne l’est. Mais que vaut donc sin(α + β) ?

Propriétés

On a les formules d’addition et de soustraction suivantes pour chacune des fonctions
trigonométriques.
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1. sin(α + β) = sin(α) cos(β) + sin(β) cos(α)

2. sin(α− β) = sin(α) cos(β)− sin(β) cos(α)

3. cos(α + β) = cos(α) cos(β)− sin(α) sin(β)

4. cos(α− β) = cos(α) cos(β) + sin(α) sin(β)

5. tan(α + β) =
tan(α) + tan(β)

1− tan(α) tan(β)

6. tan(α− β) = tan(α)− tan(β)

1 + tan(α) tan(β)

Démonstration. Nous allons démontrer les 6 formules d’addition et de soustraction don-
nées ci-dessus.

1. A voir : sin(α + β) = sin(α) cos(β) + sin(β) cos(α).

b

bb

O LF C I

H
E

M

N

α
β

α+ β

α

Par construction :

OM = 1 ; OC = cos(α) ; MC = sin(α) ; OE = cos(β) ; NE = sin(β) ; NF =
sin(α + β) ;

ĤNE = α ; EL = HF ; NH = NE cos(α) = sin(β) cos(α).

De plus, les triangles OEL et OMC sont semblables, d’où

EL

MC
=

OE

OM
ou EL = sin(α) cos(β)

Finalement, sin(α + β) = NF = NH +HF et donc

NH +HF = sin(β) cos(α) + sin(α) cos(β)
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2. A voir : sin(α− β) = sin(α) cos(β)− sin(β) cos(α).

On a immédiatement :

sin(α− β) = sin(α + (−β)) = sin(α) cos(−β) + sin(−β) cos(α)
= sin(α) cos(β)− sin(β) cos(α)

3. A voir : cos(α+ β) = cos(α) cos(β)− sin(α) sin(β).

En utilisant les propriétés de symétries et celles démontrées ci-dessus, on a :

cos(α + β) = sin
(
α + β +

π

2

)
= sin

(
α + (β +

π

2
)
)

= sin(α) cos
(
β +

π

2

)
+ sin

(
β +

π

2

)
cos(α)

Or cos(β + π
2
) = − sin(β) et sin(β + π

2
) = cos(β) et donc

cos(α + β) = cos(α) cos(β)− sin(α) sin(β)

4. A voir : cos(α− β) = cos(α) cos(β) + sin(α) sin(β).

On a immédiatement :

cos(α− β) = cos(α + (−β)) = cos(α) cos(−β)− sin(α) sin(−β)
= cos(α) cos(β) + sin(α) sin(β)

5. + 6. A voir : tan(α± β) = tan(α)± tan(β)

1∓ tan(α) tan(β)
.

En utilisant les formules démontrées ci-dessus et la définition de la fonction tangente,
on obtient :

tan(α± β) =
sin(α± β)
cos(α± β) =

sin(α) cos(β)± sin(β) cos(α)

cos(α) cos(β)∓ sin(α) sin(β)

=

sin(α) cos(β)
cos(α) cos(β)

± sin(β) cos(α)
cos(α) cos(β)

cos(α) cos(β)
cos(α) cos(β)

∓ sin(α) sin(β)
cos(α) cos(β)

=
tan(α)± tan(β)

1∓ tan(α) tan(β)

21.2.3 Formules de duplication

Propriétés

On a les formules de duplication suivantes pour chacune des fonctions trigonométriques.

1. sin(2α) = 2 sin(α) cos(α)

2. cos(2α) = cos2(α)− sin2(α)

3. tan(2α) =
2 tan(α)

1− tan2(α)

Démonstration. Les démonstrations sont immédiates en utilisant les formules d’addition.

Ainsi, sin(2α) = sin(α+ α) = sin(α) cos(α) + sin(α) cos(α) = 2 sin(α) cos(α)

Les autres démonstrations sont laissées au lecteur.
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21.2.4 Formules de bissection

Propriétés

On a les formules de bissection suivantes pour chacune des fonctions trigonométriques.

1. sin2
(α
2

)
=

1− cos(α)

2

2. cos2
(α
2

)
=

1 + cos(α)

2

3. tan2
(α
2

)
=

1− cos(α)

1 + cos(α)

Les démonstrations de ces formules sont laissées au lecteur.

21.3 Equations trigonométriques

Définition 21.6
On appelle équation trigonométrique toute équation comportant des fonctions trigo-
nométriques de l’inconnue (ou des inconnues).

Exemples

1. cos(x) =
π

2
2. cos(2x) + 2 sin(x) cos(x) = 0

21.3.1 Equations du type sin(x) = c

Equation : sin(x) = c

Pour résoudre une équation du type sin(x) = c, avec |c| 6 1, on utilise l’équivalence (on
travaille en radians) :

sin(x) = c⇐⇒
{
x1 = arcsin(c) +k · 2π, k ∈ Z
x2 = π − arcsin(c) +k · 2π, k ∈ Z

On obtient ainsi deux familles de solutions.

Illustration

Le schéma ci-dessous montre les intersections de la courbe y = sin(x) avec la droite
horizontale y = 0.5. Ces points d’intersections correspondent aux solutions de l’équation :

sin(x) = 0.5

On remarque qu’il existe bien deux familles de solutions : les ”ronds” et les ”carrés”.
Chaque famille comprend une infinité de solutions.
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π
2 π 3π

2 2π 5π
2 3π−π

2−π− 3π
2−2π− 5π

2

1

−1

x

y

y = sin(x)

y = 0.5

Equation : cos(x) = c

Pour résoudre une équation du type cos(x) = c, avec |c| 6 1, on utilise l’équivalence :

cos(x) = c⇐⇒
{
x1 = arccos(c) +k · 2π, k ∈ Z
x2 = − arccos(c) +k · 2π, k ∈ Z

On obtient ainsi deux familles de solutions.

Illustration

Le schéma ci-dessous montre les intersections de la courbe y = cos(x) avec la droite hori-
zontale y = −0.5. Ces points d’intersections correspondent aux solutions de l’équation :

cos(x) = −0.5
On remarque qu’il existe bien deux familles de solutions : les ”ronds” et les ”carrés”.
Chaque famille comprend une infinité de solutions.

π
2 π 3π

2 2π 5π
2

−π
2−π− 3π

2
−2π− 5π

2

1

−1

y

y = cos(x)
y = −0.5

Equation : tan(x) = c

Pour résoudre une équation du type tan(x) = c, avec c ∈ R, on utilise l’équivalence :

tan(x) = c⇐⇒ x = arctan(c) +k · π, k ∈ Z

On obtient ainsi une famille de solutions.

Illustration

Le schéma ci-dessous montre les intersections de la courbe y = tan(x) avec la droite
horizontale y = 1.5. Ces points d’intersections correspondent aux solutions de l’équation :

tan(x) = 1.5

On remarque qu’il existe bien une famille de solutions : les ”ronds”. Cette famille com-
prend une infinité de solutions.

page 336
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π
2 π 3π

2 2π 5π
2 3π−π

2−π− 3π
2

−2π− 5π
2

−3π

1

−1

x

y

y = tan(x)

y = 1.5

Exemples

1. Résoudre l’équation : sin(x) = 1
2
.

Comme arcsin(1
2
) = π

6
, on obtient immédiatement les deux familles de solutions :

{
x1 = π

6
+k · 2π, k ∈ Z

x2 = π − π
6

+k · 2π, k ∈ Z

ou, en simplifiant l’expression des solutions :

{
x1 = π

6
+k · 2π, k ∈ Z

x2 = 5π
6

+k · 2π, k ∈ Z

Remarque : on exprime, si cela est possible, les réponses sous forme exacte.

2. Résoudre l’équation : cos(2x) = −0.75.
Comme arccos(−0.75) = 2.4188, on obtient que :

{
2x1 = 2.4188 +k · 2π, k ∈ Z

2x2 = −2.4188 +k · 2π, k ∈ Z

On isole alors x1 et x2 en divisant par 2 chacun des membres des égalités données
ci-dessus pour obtenir les familles de solutions :

{
x1 = 1.2094 +k · π, k ∈ Z

x2 = −1.2094 +k · π, k ∈ Z

Attention : le terme k · 2π est également divisé par 2.

3. Résoudre l’équation : tan(x
4
+ π

5
) =
√
3.

Comme arctan(
√
3) = 1.0472, on obtient que :

x
4
+ π

5
= 1.0472 +k · π, k ∈ Z

On transforme alors cette expression afin d’isoler x :
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x
4
+ π

5
= 1.0472 +k · π, k ∈ Z −π

5
x
4

= 0.4189 +k · π, k ∈ Z ·4
x = 1.6755 +k · 4π, k ∈ Z

21.3.2 Equations du type sin(x) = sin(α)

Equation : sin(x) = sin(α)

On a deux familles de solutions pour une équation du type
sin(x) = sin(α) :

{
x1 = α +k · 2π, k ∈ Z (angles égaux)

x2 = π − α +k · 2π, k ∈ Z (angles supplémentaires)

x

y

I

J

O
α

π − α

b MbM ′

Equation : cos(x) = cos(α)

On a deux familles de solutions pour une équation du type
cos(x) = cos(α) :

{
x1 = α +k · 2π, k ∈ Z (angles égaux)

x2 = −α +k · 2π, k ∈ Z (angles opposés)

x

y

I

J

O

α

b M

−α

b M ′

Equation : tan(x) = tan(α)

On a une famille de solutions pour une équation du type
tan(x) = tan(α) :

x = α +k · π, k ∈ Z (angles égaux ou

de différence π)

x

y

I

J

O
α

π + α

b

b

M

T

bM ′

Exemples

1. Résoudre l’équation : sin(2x) = sin(x+ π).

On a deux familles de solutions :

{
2x1 = x1 + π +k · 2π, k ∈ Z

2x2 = π − (x2 + π) +k · 2π, k ∈ Z

On isole alors x1 et x2 dans les deux égalités :

{
2x1 = x1 + π +k · 2π, k ∈ Z

2x2 = −x2 +k · 2π, k ∈ Z

−x1
+x2

{
x1 = π +k · 2π, k ∈ Z

3x2 = 0 +k · 2π, k ∈ Z ·1
3
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{
x1 = π +k · 2π, k ∈ Z

x2 = 0 +k · 2
3
π, k ∈ Z

2. Résoudre l’équation : cos(2x) = sin(3x).

On utilise les formules de symétrie dont l’axe est la 1ère bissectrice pour se
ramener à une équation simple.

cos(2x) = sin(3x)

cos(2x) = cos(
π

2
− 3x)

On a deux familles de solutions :

{
2x1 = π

2
− 3x1 +k · 2π, k ∈ Z

2x2 = −(π
2
− 3x2) +k · 2π, k ∈ Z

+3x1

−3x2
{

5x1 = π
2

+k · 2π, k ∈ Z

−x2 = −π
2

+k · 2π, k ∈ Z

·1
5

·(−1)
{
x1 = π

10
+k · 2

5
π, k ∈ Z

x2 = π
2

+k · 2π, k ∈ Z

21.3.3 Equations réductibles à une équation de degré 2 en sin(x)
ou cos(x) ou tan(x)

Pour ce type d’équations, on présente ici uniquement une méthode de résolution appliquée
à un exemple.

Exemple

Résoudre l’équation : 4 sin2(x)− 3 cos(x) = 3

A l’aide de la relation fondamentale sin2(x) + cos2(x) = 1, on se ramène tout
d’abord à une équation du deuxième degré en cos(x).

4 · (1− cos2(x))− 3 cos(x)− 3 = 0

−4 cos2(x)− 3 cos(x) + 1 = 0

On pose ensuite t = cos(x) et on résout l’équation :

4t2 + 3t− 1 = 0

Les deux solutions de cette équation sont t1 =
1
4
et t2 = −12.

On résout ensuite chacune des deux équations simples :
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a) cos(x) = 1
4{

x1 = 1.3181 +k · 2π, k ∈ Z

x2 = −1.3181 +k · 2π, k ∈ Z

b) cos(x) = −1
2{

x1 = 2π
3

+k · 2π, k ∈ Z

x2 = −2π
3

+k · 2π, k ∈ Z

21.3.4 Equations du type : a cos(x) + b sin(x) = c

Idées d’une méthode de résolution

a) Si c = 0, a 6= 0, b 6= 0,

on transforme l’équation a cos(x) + b sin(x) = 0 comme suit :

a cos(x) = −b sin(x)
tan(x) = −a

b

On utilise ensuite la méthode usuelle pour résoudre une équation du type tan(x) = c.

Pour être certain de ne pas oublier de solutions, il faut encore tester si la famille
d’angles π

2
+ k · π, k ∈ Z, est solution de l’équation de départ (calculs pour π

2
et 3π

2
).

b) Si c 6= 0, a 6= 0, b 6= 0,

on transforme l’équation a cos(x) + b sin(x) = c en posant :

cos(x) =
1− tan2(x

2
)

1 + tan2(x
2
)

et sin(x) =
2 tan(x

2
)

1 + tan2(x
2
)

On obtient alors une équation du deuxième degré, au plus, en tan(x
2
), qu’on peut

résoudre en utilisant les méthodes vues précédemment.

Pour simplifier les notations et les calculs, on pose généralement t = tan(x
2
) afin

d’obtenir l’équation

a · 1− t
2

1 + t2
+ b · 2t

1 + t2
= c

Pour être certain de ne pas oublier de solutions, il faut encore tester si la famille
d’angles π + k · 2π, k ∈ Z, est solution de l’équation de départ (calculs pour π).

Remarques

1. Une équation du type a cos(x) + b sin(x) = c (du premier degré en cos(x) et sin(x))
est appelée une équation linéaire.

2. Les relations entre cos(x), sin(x) et tan(x
2
) peuvent être démontrées à partir des for-

mules de bissection.

3. D’autres méthodes de résolution sont possibles
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Exemple

Résoudre l’équation cos(x) + 3 sin(x) = 3

En exprimant cos(x) et sin(x) en fonction de tan(x
2
) et en posant t = tan(x

2
), on

obtient l’équation :
1− t2
1 + t2

+ 3 · 2t

1 + t2
= 3

On peut résoudre cette équation en utilisant les techniques habituelles :

1− t2 + 6t = 3 · (1 + t2)

4t2 − 6t+ 2 = 0

2t2 − 3t+ 1 = 0

(2t− 1) · (t− 1) = 0

Les deux solutions de cette équation sont t1 =
1
2
et t2 = 1.

On résout ensuite chacune des deux équations simples :

a) tan(x
2
) = 1

2
x1

2
= 0.4636 +k · π, k ∈ Z

x1 = 0.9273 +k · 2π, k ∈ Z

b) tan(x
2
) = 1

x2

2
= π

4
+k · π, k ∈ Z

x2 = π
2

+k · 2π, k ∈ Z

Finalement, on teste si la famille d’angles : π + k · 2π, k ∈ Z, est solution de
l’équation de départ.

cos(π) + 3 sin(π)
?
= 3

−1 + 0 6= 3

π + k · 2π, k ∈ Z, n’est donc pas solution.

Ainsi, l’équation cos(x) + 3 sin(x) = 3 admet comme solutions :

{
x1 = 0.9273 +k · 2π, k ∈ Z

x2 = π
2

+k · 2π, k ∈ Z
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21.4 Exercices

1) Représenter, dans un même système d’axe Oxy, les fonctions sinusöıdales suivantes
données par leur expression fonctionnelle (dessin sur du papier millimétré) :

a) f(x) = sin(x) b) g(x) = 2 sin(x) c) h(x) = sin(2x)

d) i(x) = sin
(
x− π

2

)
e) j(x) = sin(x) + 2

Interpréter les effets des paramètres a, b, c et d dans le cas d’une fonction sinusöıdale
a · sin(b · (x− c))+d sur la base des représentations graphiques des fonctions ci-dessus.

2) Sans machine, mais en utilisant les symétries du cercle trigonométrique, trouver l’angle

a) du deuxième quadrant ayant le même sinus que α = 20◦.

b) du troisième quadrant ayant le même sinus que β = −50◦.
c) du troisième quadrant ayant le même cosinus que γ =

3π

4
.

d) du quatrième quadrant ayant le même cosinus que δ =
π

6
.

e) du quatrième quadrant ayant le même sinus que ǫ = 200◦.

f) du deuxième quadrant ayant le même cosinus que ϕ = 260◦.

g) du deuxième quadrant ayant le même cosinus que η =
7π

4
.

3) Exprimer les valeurs suivantes au moyen de cos(x) ou sin(x) uniquement :

a) cos(x+ 2π) b) sin(x+ 6π) c) cos(−x) d) sin(−x)
e) cos(π + x) f) sin(π + x) g) cos(π − x) h) sin(π − x)
i) cos(π

2
− x) j) sin(π

2
− x)

4) Sans machine, mais en utilisant les propriétés de périodicité et de symétries du cercle
trigonométrique, donner la valeur exacte de :

a) cos

(
3π

4

)
b) sin

(
5π

6

)
c) cos

(
−2π

3

)
d) sin

(
11π

6

)

e) sin

(
25π

6

)
f) tan

(−7π
3

)
g) cos

(−17π
4

)
h) tan

(
19π

6

)

5) Etablir les égalités toujours vraies suivantes :

a) sin(π
4
+ t)− sin(π

4
− t) =

√
2 sin(t)

b) sin(π
6
+ t) + cos(π

3
+ t) = cos(t)

c) tan(π
4
+ α) =

cos(α) + sin(α)

cos(α)− sin(α)

d) cos(a+ b) cos(a− b) = cos2(a)− sin2(b)

e) tan(2t)− tan(t) =
tan(t)

cos(2t)
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6) Résoudre les équations suivantes en donnant les solutions en radians.

a) cos(3t− π) = 1

2
b) sin

(π
2
− 2t

)
=

√
3

2

c) − cos(2t) =

√
3

2
d) − sin(2t+ 1) =

1

2

e) cos

(
t

4
− 2π

)
+

√
2

2
= 0 f) sin

(
π

3
− t

4

)
− 1

2
= 0

g) tan
(
3t− π

4

)
= −
√
3

3
h) 1− tan

(π
6
−
√
2 · t
)
= 0

7) Résoudre les équations suivantes en donnant les solutions en radians.

a) sin
(
2t− π

2

)
= sin

(π
4
− 3t

)
b) cos(5t) = cos

(
t

6
− 2π

3

)

c) sin
(
2t− π

3

)
= cos

(
−3t+ 5π

6

)
d) cos(4t) = sin

(
3t− 4π

5

)

e) sin
(
2t− π

3

)
+ cos

(
4t− π

4

)
= 0 f) cos

(π
5
− 5t

)
+ sin

(
3t− π

6

)
= 0

g) tan(2t− 3π) = tan(3t− π) h) tan
(
2t+

π

4

)
+ tan

(π
5
− t
)
= 0
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21.5 Solutions des exercices

2) a) 160◦ b) 230◦ c) 5π
4

d) 11π
6

e) 340◦ f) 100◦ g) impossible

3) a) cos(x) b) sin(x) c) cos(x) d) − sin(x)

e) − cos(x) f) − sin(x) g) − cos(x) h) sin(x)

i) sin(x) j) cos(x)

4) a) −
√
2

2
b)

1

2
c) −1

2
d) −1

2

e)
1

2
f) −

√
3 g)

√
2

2
h)

√
3

3

6) a)

{
t1 = 4π

9
+ k · 2π

3

t2 = 2π
9
+ k · 2π

3

b)

{
t1 = π

12
+ k · π

t2 = − π
12

+ k · π

c)

{
t1 = 5π

12
+ k · π

t2 = −5π
12

+ k · π d)

{
t1 = −π−6

12
+ k · π

t2 = 7π−6
12

+ k · π

e)

{
t1 = 3π + k · 8π
t2 = −3π + k · 8π

f)

{
t1 = 2π

3
+ k · 8π

t2 = −2π + k · 8π

g) t = π
36

+ k · π
3

h) t = −
√
2π
24

+ k ·
√
2π
2

7) a)

{
t1 = 3π

20
+ k · 2π

5

t2 = −5π
4
+ k · 2π b)

{
t1 = −4π

29
+ k · 12π

29

t2 = 4π
31

+ k · 12π
31

c)

{
t1 = k · 2π
t2 = π

3
+ k · 2π

5

d)

{
t1 = 13π

70
+ k · 2π

7

t2 = −13π
10

+ k · 2π

e)

{
t1 = 5π

24
+ k · π

t2 = 25π
72

+ k · π
3

f)

{
t1 = − π

60
+ k · π

4

t2 = 4π
15

+ k · π

g) t = k · π h) t = −9π
20

+ k · π
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Chapitre 22

Limites

22.1 Notion de limites

22.1.1 Exemple introductif

Soit la fonction f(x) = 2x3−2x2

x−1
. Le domaine de définition de cette fonction est

Df = R \ {1}.
Nous allons examiner le comportement de la fonction f pour des valeurs de x proches de
a = 1, car elle est indéfinie en ce point, puisqu’on aurait 0

0
.

Méthode numérique :

On construit un tableau de valeurs pour un certain nombre de valeurs de x proches de
1. On s’approche de a = 1 en venant depuis la gauche (≡ en prenant des nombres
plus petits que 1) et depuis la droite (≡ en prenant des nombres plus grands que 1).
D’après le tableau ci-dessous, on voit que lorsque x est proche de 1 (de part et d’autre),
les valeurs de f(x) sont proches de 2.

gauche −→ a ←− droite

x 0.9 0.99 0.999 0.9999 1 1.0001 1.001 1.01 1.1

f(x) 1.6200 1.9602 1.9960 1.9996 indéfini 2.0004 2.0040 2.0402 2.4200

Méthode graphique :

On donne ci-dessous la représentation graphique de la fonction f sur un voisinage de
a = 1 (≡ intervalle ouvert qui contient 1). On peut effectuer le même constat que ci-
dessus lorsque x s’approche de 1.

y

bc2

1

y =
2x3 − 2x2

x− 1
f(x)

s’approche
de 2

quand x
s’approche de 1

x
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Conclusion :

Il semble qu’on puisse rendre les valeurs de f(x) arbitrairement proches de 2 en choisissant
x suffisamment proche de 1. C’est le sens de l’expression ”la limite de f(x) = 2x3−2x2

x−1

quand x s’approche de 1 est 2”. Cela s’écrit :

lim
x→1

2x3 − 2x2

x− 1
= 2

Remarques :

On a l’égalité suivante si x 6= 1 et donc si x ∈ Df :

f(x) =
2x3 − 2x2

x− 1
=

2x2(x− 1)

x− 1
= 2x2

En considérant g(x) = 2x2 au lieu de f(x), on retrouverait exactement le même tableau
de valeurs et la même représentation graphique, sauf pour x = 1. Cette remarque sera
importante pour le calcul de limites dans la suite du cours.

22.1.2 Définitions

Définition 22.1
On appelle un voisinage du nombre réel a un intervalle I ouvert contenant a.

Exemples

1) I =]− 2; 4[ est un voisinage de 1,

2) I =]a− δ; a+ δ[ est un voisinage du nombre réel a pour tout nombre réel δ > 0.

Pour la suite de ce paragraphe, on considère une fonction f définie sur un voisinage d’un
nombre réel a, sauf éventuellement en a.

Définition 22.2
Le nombre L est limite de f en a si on peut rendre les valeurs de f(x) arbitrairement
proches de L (aussi proches qu’on le veut) en prenant x suffisamment proche de a (à
gauche ou à droite), mais non égal à a.

On note :
lim
x→a

f(x) = L

On dit encore que f(x) tend vers L quand x tend vers a.

Remarque

Si elle existe, la limite de la fonction f en a est unique.

La proposition ”mais x 6= a” dans la définition de la limite signifie que dans la recherche
de la limite de f(x) quand x est proche de a, on n’envisage jamais x = a. En fait, f(x)
ne doit même pas être définie en a. La seule chose qui importe est que f soit définie tout
à côté de a.

La notion de limite est particulièrement utile pour déterminer le comportement du graphe
d’une fonction au voisinage d’un trou, d’un saut ou d’un bord de son domaine de
définition. Ces trois notions sont illustrées ci-dessous.
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y

bcL

a

y = f(x)

x

trou

y

bc

bc

L1

L2

a

y = f(x)

x

saut

y

bcL2

a2

bcL1

a1

y = f(x)

x

bords

On a donné une définition de la notion de limite qui a du sens en français mais qui
ne s’appuie pas sur des concepts mathématiques formels. Il est possible de donner une
définition plus rigoureuse de cette notion, ce que nous faisons ci-dessous.

Définition 22.3 (Définition en ε - δ)
Le nombre L est limite de f en a si, pour tout ε > 0, il existe δ > 0 tel que

0 < |x− a| < δ =⇒ |f(x)− L| < ε

Illustration

Les représentations graphiques ci-dessous illustrent cette définition formelle. Dès que
ε > 0 est fixé, on trace les droites horizontales y = L+ ε, y = L− ε et la courbe y = f(x)
(voir la figure de gauche). S’il est vrai que lim

x→a
f(x) = L, alors on peut trouver un nombre

δ > 0 tel que si x n’est autorisé à varier que dans l’intervalle ]a− δ; a+ δ[ tout en restant
différent de a, alors la courbe y = f(x) se trouve entre les droites y = L− ε et y = L+ ε
(voir la figure de droite). On voit aussi que, dès qu’un tel δ est trouvé, n’importe quel δ
inférieur convient aussi.

Il est important de prendre conscience que le résultat illustré dans les figures ci-dessous
doit être vrai pour tout nombre positif ε, aussi petit soit-il.

y

bc

y = L+ ε

y = L− ε

y = f(x)

L

L+ ε

L− ε

a
x

y

bc

y = L+ ε

y = L− ε

y = f(x)

L

L+ ε

L− ε

a

f(x)
est ici

a− δ a+ δ
quand x est ici

(x 6= a)

x

Exemples

Soit la fonction h(x) définie sur R\{2} et donnée par son expression fonctionnelle :

h(x) =




−2x+ 3 si x < 1
2 si x = 1
−x+ 4 si 1 < x < 2 ou x > 2

On donne sa représentation graphique ci-dessous.
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y

1

2

3

4

5

1 2 3 4−1

bc

bc

bcb
y = h(x)

x

Quelques limites :

1. lim
x→3

h(x) = 1 −→ On peut rendre h(x) arbitrairement proche de 1 en prenant x

suffisamment proche de 3. (Ici : h(3) = 1.)

2. lim
x→2

h(x) = 2 −→ On peut rendre h(x) arbitrairement proche de 2 en prenant x

suffisamment proche de 2. (Ici : h(2) n’est pas définie.)

3. lim
x→1

h(x) n’existe pas −→ Si x est proche de 1 en étant strictement plus grand

que 1, h(x) est proche de 3, alors que si x est proche de 1 en étant strictement
inférieur à 1, h(x) est proche de 1. On ne peut donc par rendre h(x) arbitraire-
ment proche d’un nombre L en prenant x suffisamment proche de 1 avec x 6= 1.
(Ici : h(1) = 2.)

Limite à droite, limite à gauche

Définition 22.4
Soit f une fonction définie sur un intervalle de la forme ]a; d[.

Le nombre L est limite à droite de f en a si on peut rendre les valeurs de f(x) arbi-
trairement proches de L en prenant x suffisamment proche de a et strictement supérieur
à a (x > a).

On note :
lim
x→a+

f(x) = L

Soit f une fonction définie sur un intervalle de la forme ]g; a[.

Le nombre L est limite à gauche de f en a si on peut rendre les valeurs de f(x) arbi-
trairement proches de L en prenant x suffisamment proche de a et strictement inférieur
à a (x < a).

On note :
lim
x→a−

f(x) = L

Proposition 22.1
Soit f une fonction définie sur un voisinage de a, sauf éventuellement en a.

La comparaison des définitions d’une limite et d’une limite à droite, respectivement à
gauche, implique que

lim
x→a

f(x) = L⇐⇒ lim
x→a+

f(x) = L et lim
x→a−

f(x) = L
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Exemples

On considère à nouveau la fonction h de l’exemple précédent. Quelques exemples
de limites :
• lim

x→2−
h(x) = 2

• lim
x→2+

h(x) = 2

}
=⇒ lim

x→2
h(x) = 2

• lim
x→1−

h(x) = 1

• lim
x→1+

h(x) = 3

}
=⇒ lim

x→1
h(x) n’existe pas.

22.2 Propriétés et calculs de limites

22.2.1 Limites de fonctions élémentaires

A partir de la définition de la limite en a, on peut déterminer facilement celle-ci pour des
fonctions élémentaires.

Proposition 22.2
Soit a, c ∈ R. Alors :

• lim
x→a

c = c • lim
x→a

x = a

• lim
x→a

sin(x) = sin(a) • lim
x→a

cos(x) = cos(a)

• lim
x→a
|x| = |a| • lim

x→a

√
x =
√
a (si a > 0)

Exemples

1) lim
x→3

x = 3

2) lim
x→π

cos(x) = cos(π) = −1

22.2.2 Propriétés

Proposition 22.3
Soit λ un nombre réel et f , g deux fonctions réelles. Supposons que les limites

lim
x→a

f(x) et lim
x→a

g(x)

existent. Alors :

1. lim
x→a

[f(x) + g(x)] = lim
x→a

f(x) + lim
x→a

g(x)

2. lim
x→a

[f(x)− g(x)] = lim
x→a

f(x)− lim
x→a

g(x)

3. lim
x→a

[λf(x)] = λ · lim
x→a

f(x)
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4. lim
x→a

[f(x) · g(x)] = lim
x→a

f(x) · lim
x→a

g(x)

5. lim
x→a

f(x)

g(x)
=

lim
x→a

f(x)

lim
x→a

g(x)
si lim

x→a
g(x) 6= 0

Il n’est pas difficile de croire que ces propriétés sont vraies. Par exemple, si f(x) est près
de L et g(x) près de M , il est raisonnable de penser que f(x) + g(x) est près de L+M .
Par contre, toutes ces lois ne peuvent être démontrées formellement qu’en utilisant la
définition rigoureuse d’une limite, ce que nous ne ferons pas ici.

En utilisant de façon répétée la loi du produit dans le cas g(x) = f(x), on obtient les lois
données ci-dessous.

Proposition 22.4
Soit n ∈ N∗ et f une fonction réelle tel que lim

x→a
f(x) existe. Alors :

6. lim
x→a

[f(x)]n = [lim
x→a

f(x)]n

7. lim
x→a

xn = an

De manière semblable, on a les lois suivantes pour les racines.

Proposition 22.5
Soit n ∈ N∗ et f une fonction réelle tel que lim

x→a
f(x) existe. Alors :

8. lim
x→a

n
√
f(x) = n

√
lim
x→a

f(x)

(Dans le cas où n est pair, on suppose lim
x→a

f(x) > 0)

9. lim
x→a

n
√
x = n
√
a

(Dans le cas où n est pair, on suppose a > 0)

22.2.3 Calculs de limites

Pour calculer les limites, on va les classer en différentes catégories, puis on développera
des techniques de résolution pour chacune de ces catégories.

Calcul d’une limite à l’aide des propriétés

Les propriétés des limites données au paragraphe précédent seront très utiles pour calculer
certaines limites où il est possible, par quelques transformations, de se ramener à des
limites de fonctions élémentaires.
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Exemples

1) Calculer : lim
x→5

(2x2 − 3x+ 4).

lim
x→5

(2x2 − 3x+ 4) = lim
x→5

(2x2)− lim
x→5

(3x) + lim
x→5

4 (lois 1, 2)

= 2 lim
x→5

x2 − 3 lim
x→5

x+ lim
x→5

4 (loi 3)

= 2 · 52 − 3 · 5 + 4 (lois 7, fct. élém.)

= 39

2) Calculer : lim
x→−2

x3 + 2x2 − 1

5− 3x
.

On va utiliser la loi 5 au départ même si on n’est pas certain que la limite du
dénominateur ne soit pas nulle. Ce n’est qu’à la fin qu’on pourra juger de la
validité des calculs.

lim
x→−2

x3 + 2x2 − 1

5− 3x
=

lim
x→−2

(x3 + 2x2 − 1)

lim
x→−2

(5− 3x)
(loi 5)

=
lim
x→−2

x3 + 2 lim
x→−2

x2 − lim
x→−2

1

lim
x→−2

5− 3 lim
x→−2

x
(lois 1, 2, 3)

=
(−2)3 + 2 · (−2)2 − 1

5− 3 · (−2) (loi 7, fct. élém.)

= − 1

11

3) Calculer : lim
x→4

√
3x2 − 3

On va utiliser la loi 8 au départ même si on n’est pas certain que la limite du
radicande soit strictement positive. Ce n’est qu’à la fin qu’on pourra juger de la
validité des calculs.

lim
x→4

√
3x2 − 3 =

√
lim
x→4

3x2 − 3 (loi 8)

=
√

3 lim
x→4

x2 − lim
x→4

3 (lois 2, 3)

=
√
3 · 42 − 3 (loi 7, fct. élém.)

=
√
45

Remarque

Si f(x) = 2x2 − 3x + 4, alors f(5) = 39. En d’autres mots, on aurait obtenu la réponse
exacte dans la partie 1 de l’exemple ci-dessus en substituant 5 à x. De la même manière,
la substitution de −2 à x dans la partie 2 et de 4 à x dans la partie 3 conduisait à
la réponse correcte. Les fonctions de cet exemple sont une fonction polynomiale, une
fonction rationnelle et une racine d’une fonction polynomiale. L’application des lois des
limites dans de tels cas montre que la substitution directe marche toujours.
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Proposition 22.6
Si f est une fonction polynomiale ou rationnelle (quotient de deux polynômes) et a un
point de son domaine de définition, alors :

lim
x→a

f(x) = f(a)

Calcul d’une limite du type
0

0

On considère, dans ce paragraphe, une fonction f qui est le quotient de deux fonctions
N(x) et D(x),f(x) = N(x)

D(x)
, et on cherche à calculer sa limite en un nombre réel a :

lim
x→a

f(x) = lim
x→a

N(x)

D(x)

Trois cas peuvent se présenter :

• Cas 1 : lim
x→a

N(x) = c et lim
x→a

D(x) = d 6= 0 (a ∈ Df)

On peut utiliser la loi 5 et on obtient lim
x→a

f(x) =
lim
x→a

N(x)

lim
x→a

D(x)
=
c

d
.

• Cas 2 : lim
x→a

N(x) = c 6= 0 et lim
x→a

D(x) = 0 (a /∈ Df)

La limite n’existe pas. On reviendra sur ce cas au paragraphe (22.3.3).

• Cas 3 : lim
x→a

N(x) = 0 et lim
x→a

D(x) = 0 (a /∈ Df )

Définition 22.5
Si le numérateur N(x) et le dénominateur D(x) tendent tous les deux vers 0, on dit

que la limite a une forme indéterminée du type
0

0
(0
0
est indéterminée car k · 0 = 0,

∀k ∈ R).

Lorsque le calcul d’une limite conduit à une ”expression” du type 0
0
, on ne peut conclure

de manière immédiate, il est en général nécessaire de transformer l’expression de f(x).

a) Si N(x) et D(x) sont des polynômes

Comme N(x) et D(x) sont des polynômes, on a les égalités suivantes d’après la pro-
position (22.6) :

lim
x→a

N(x) = N(a) = 0 et lim
x→a

D(x) = D(a) = 0

Ainsi, comme N(a) = 0, a est un racine de N(x) et donc N(x) est divisible par x− a.
De même, comme D(a) = 0, D(x) est divisible par x− a.
Avec ce constat, on calcule lim

x→a
f(x) de la manière suivante :

1. factoriserN(x) etD(x) en faisant apparâıtre le facteur x−a (toujours possible),
2. simplifier la fraction f(x) = N(x)

D(x)
par x − a −→ on obtient une fraction plus

simple qu’on nomme g(x),

3. calculer lim
x→a

g(x).
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Exemple

Calculer : lim
x→−1

x2 − 1

x+ 1
.

Forme indéterminée 0
0
avec un polynôme au numérateur et au dénominateur.

lim
x→−1

x2 − 1

x+ 1

0
0= lim

x→−1

(x+ 1)(x− 1)

x+ 1
= lim

x→−1
(x− 1) = −1 − 1 = −2

Justification de la méthode de calcul utilisée dans l’exemple : Le procédé qui consiste
à remplacer f(x) = x2−1

x+1
par une fonction plus simple g(x) = x − 1 est valide car

f(x) = g(x) sauf quand x = 1 et car le calcul de la limite pour x tendant vers 1 est
indépendant de ce qui se passe lorsque x est égal à 1. De façon plus générale, on peut
s’appuyer sur le résultat suivant.

Proposition 22.7
Si f(x) = g(x) lorsque x 6= a, alors lim

x→a
f(x) = lim

x→a
g(x), à condition que ces limites

existent.

b) Si N(x) et/ou D(x) ne sont pas des polynômes

Dans certains cas, on peut suivre le même schéma que ci-dessus et simplifier la fraction,
après transformation de cette dernière.

Exemple

Calculer : lim
x→4

√
x− 2

x− 4
.

Forme indéterminée : 0
0
. On peut factoriser le dénominateur en utilisant les iden-

tités remarquables :

lim
x→4

√
x− 2

x− 4

0
0= lim

x→4

√
x− 2

(
√
x− 2)(

√
x+ 2)

= lim
x→4

1√
x+ 2

=
1

4

ou amplifier la fraction par le conjugué du numérateur :

lim
x→4

√
x− 2

x− 4

0
0= lim

x→4

(
√
x− 2)(

√
x+ 2)

(x− 4)(
√
x+ 2)

= lim
x→4

x− 4

(x− 4)(
√
x+ 2)

= lim
x→4

1√
x+ 2

=
1

4

Dans d’autres cas, il faut une autre méthode, par exemple numérique (voir l’exemple intro-
ductif). Nous verrons dans le chapitre consacré aux dérivées, le théorème de l’Hospital,
qui pourra également être utilisé dans ces cas.

Calcul d’une limite par le théorème des deux gendarmes

Théorème 22.8
Soit f et g deux fonctions définies sur voisinage I de a, sauf éventuellement en a.

Si f(x) 6 g(x) pour tout x ∈ I \ {a} et si lim
x→a

f(x) et lim
x→a

g(x) existent, alors

lim
x→a

f(x) 6 lim
x→a

g(x)

Théorème 22.9 (Théorème des deux gendarmes)
Soit f , g et h trois fonctions définies sur un voisinage I de a, sauf éventuellement en a.
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Si f(x) 6 h(x) 6 g(x) pour tout x ∈ I \ {a} et si lim
x→a

f(x) = lim
x→a

g(x) = L existent, alors

lim
x→a

h(x) = L

Ces deux théorèmes peuvent se démontrer à partir de la définition formelle d’une limite.

Une illustration graphique du théorème des deux gendarmes est donnée à l’exemple ci-
dessous.

Exemple

Montrer que : lim
x→0

x2 sin
(
1
x

)
= 0. Comme

−1 6 sin

(
1

x

)
6 1

pour tout x ∈ R\{0}, on a, comme le montre la représentation graphique ci-dessous,

−x2 6 x2 sin

(
1

x

)
6 x2

y

y = −x2

y = x2y = x2 sin
(

1
x

)

x

Par ailleurs, on a que

lim
x→0

(−x2) = 0 et lim
x→0

x2 = 0

Le théorème des deux gendarmes, appliqué aux fonctions f(x) = −x2, g(x) = x2

et h(x) = x2 sin( 1
x
), conduit à la conclusion

lim
x→0

x2 sin

(
1

x

)
= 0

Une limite importante pour la suite du cours peut aussi être calculée à l’aide du théorème
des deux gendarmes (voir les exercices)

lim
x→0

sin(x)

x
= 1
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22.3 Extensions de la notion de limite

22.3.1 Limites infinies

Exemple introductif

Prenons la fonction f(x) = 1
(x−1)2

. Cette fonction est représentée graphiquement ci-
dessous.

y

1

2

3

4

5

6

7

1 2 3 4 5 6−1−2−3−4

y = 1
(x−1)2

x = 1 x

D’après cette représentation, les valeurs de f(x) = 1
(x−1)2

peuvent être rendues arbitrai-
rement grandes pourvu que x soit suffisamment proche de 1. Par conséquent, les valeurs
de f(x) ne s’approchant pas d’un nombre, lim

x→1
f(x) n’existe pas.

On traduit ce comportement par l’écriture : lim
x→1

f(x) = +∞.

Le symbole de l’infini (∞) ne représente pas un nombre réel. Ce symbole est employé pour
décrire le comportement d’une fonction lorsque les valeurs de son domaine de définition
ou de son image dépassent toute borne finie. On ne peut pas utiliser ce symbole de la
même façon qu’une valeur quelconque.

22.3.2 Définitions

Soit f une fonction définie sur un voisinage de a, sauf éventuellement en a.

Définition 22.6
On écrit lim

x→a
f(x) = +∞ si on peut rendre les valeurs de f(x) arbitrairement grandes

(aussi grandes qu’on le souhaite) à condition de prendre x suffisamment proche de a,
mais non égal à a.

On écrit lim
x→a

f(x) = −∞ si lim
x→a

(−f(x)) = +∞

On définit de manière semblable lim
x→a+

f(x) = +∞, lim
x→a+

f(x) = −∞, lim
x→a−

f(x) = +∞ et

lim
x→a−

f(x) = −∞.

22.3.3 Propriétés et calculs de limites infinies

Propriétés

Les propriétés des limites (page 353) ne se généralisent pas sans autre aux limites infinies.
Cependant, un certain nombre d’entre elles restent valables. Par exemple
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1. lim
x→a

f(x) = L et lim
x→a

g(x) = +∞ =⇒ lim
x→a

[f(x) + g(x)] = +∞

2. lim
x→a

f(x) = L < 0 et lim
x→a

g(x) = +∞ =⇒ lim
x→a

[f(x) · g(x)] = −∞

3. lim
x→a

f(x) = L 6= 0 et lim
x→a

g(x) = 0 =⇒ lim
x→a

∣∣∣∣
f(x)

g(x)

∣∣∣∣ = +∞

4. lim
x→a

f(x) = L et lim
x→a

g(x) = ±∞ =⇒ lim
x→a

f(x)

g(x)
= 0

On peut se convaincre intuitivement de ces propriétés.

Calcul d’une limite du type
c

0

Soit f(x) = N(x)
D(x)

avec N(x) et D(x) deux fonctions. On cherche à calculer lim
x→a

f(x) dans

le

• Cas 2 : lim
x→a

N(x) = c 6= 0 et lim
x→a

D(x) = 0 (a /∈ Df)

de la page 356. D’après la propriété 3 ci-dessus, cette limite est ”∞” (en considérant une
valeur absolue). Il reste à déterminer si f(x) tend vers +∞, −∞ (même comportement
de f(x) à gauche et à droite de a) ou aucun des deux si le comportement de f(x) est
différent à gauche et à droite de a.

Pour ceci, on calculera les limites à gauche et à droite en a en se basant sur le
tableau ci-dessous résumant l’ensembles des cas possibles.

P
P
P
P
P
P
P
P
P

D(x)
N(x)

c > 0 c < 0

0+ +∞ −∞

0− −∞ +∞

avec les notations :

0+ : la valeur de D(x) s’approche de 0 par des valeurs positives lorsque x s’approche de
a (par la gauche ou par la droite),

0− : la valeur de D(x) s’approche de 0 par des valeurs négatives lorsque x s’approche de
a (par la gauche ou par la droite).

Exemples

1) Calculer : lim
x→1

1

(x− 1)2

• lim
x→1−

1

(x− 1)2

1
0+= +∞

• lim
x→1+

1

(x− 1)2

1
0+= +∞





=⇒ lim
x→1

1

(x− 1)2
= +∞
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2) Calculer : lim
x→1

x− 2

x− 1

• lim
x→1−

x− 2

x− 1

−1
0−= +∞

• lim
x→1+

x− 2

x− 1

−1
0+= −∞





=⇒ lim
x→1

x− 2

x− 1
n’existe pas.

Formes indéterminées

Lorsqu’un calcul de lim
x→a

f(x) conduit à des ”expressions” du type ci-dessous

0

0

∞
∞ 0 · ∞ ∞−∞

appelées formes indéterminées, on ne peut pas conclure de manière immédiate ; il est
en général nécessaire de transformer l’expression f(x).

Exemple

Calculer : lim
x→1

1
x−1
1

x2−1

Forme indéterminée : ∞
∞ . Il faut donc transformer l’expression de f .

lim
x→1

1
x−1
1

x2−1

∞

∞= lim
x→1

1

x− 1
· (x2 − 1)

∞·0
= lim

x→1

x2 − 1

x− 1

0
0= lim

x→1

(x+ 1)(x− 1)

x− 1

= lim
x→1

(x+ 1) = 2

22.3.4 Limites à l’infini

Exemple introductif

Au paragraphe précédent, nous faisions tendre x vers un certain nombre et il en résultait
des valeurs arbitrairement grandes (positives ou négatives) pour f(x). Ici, nous rendons
x arbitrairement grand et regardons ce qui en résulte pour f(x).

Prenons la fonction f(x) = x2−1
x2+1

. Cette fonction est représentée graphiquement ci-dessous.

y

1

−1

1 2 3 4 5 6 7−1−2−3−4−5−6−7

y = x
2
−1

x2+1

y = 1

x

Plus les valeurs de x sont grandes (négatives ou positives), plus les valeurs de f(x) sont
proches de 1. On peut même rendre les valeurs de f(x) aussi proches qu’on veut de 1, à
condition de prendre des valeurs de x suffisamment grandes.

Ceci s’écrit mathématiquement lim
x→+∞

x2−1
x2+1

= 1 et lim
x→−∞

x2−1
x2+1

= 1.
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Définition

Définition 22.7
Soit f une fonction définie sur un intervalle de la forme [a; +∞[.

On écrit lim
x→+∞

f(x) = L si on peut rendre les valeurs de f(x) arbitrairement proches de

L à condition de prendre x suffisamment grand.

Soit f une fonction définie sur un intervalle de la forme ]−∞; a].

On écrit lim
x→−∞

f(x) = L si lim
x→+∞

f(−x) = L.

Voici la représentation graphique de quelques fonctions qui vérifient lim
x→+∞

f(x) = L.

y

y = f(x)

y = L

x

y

y = f(x)

y = L

x

y

y = f(x)

y = L

x

Cas particulier : fonctions polynomiales et fonctions rationnelles

Théorème 22.10
La limite d’une fonction polynomiale lorsque x tend vers +∞ (respectivement −∞) est
égale à la limite de son terme de plus haut degré.

Démonstration.

lim
x→±∞

(anx
n + . . .+ a1x+ a0) = lim

x→±∞
anx

n(1 +
an−1

an

1

x︸ ︷︷ ︸
→0

+
an−2

an

1

x2︸ ︷︷ ︸
→0

+ . . .+
a0
an

1

xn︸ ︷︷ ︸
→0

)

= lim
x→±∞

(anx
n)

Théorème 22.11
La limite d’une fonction rationnelle lorsque x tend vers +∞ (respectivement −∞) est
égale à la limite du quotient des termes de plus haut degré.

Démonstration.

lim
x→±∞

anx
n + . . .+ a1x+ a0

bmxn + . . .+ b1x+ b0
= lim

x→±∞

anx
n
(
1 + an−1

an
1
x
+ an−2

an
1
x2 + . . .+ a0

an
1
xn

)

bmxm
(
1 + bm−1

bm
1
x
+ bm−2

bm
1
x2 + . . .+ b0

bm
1
xm

)

= lim
x→±∞

anx
n

bmxm
=





0 si n < m
an
bm

si n = m

±∞ si n > m
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Exemple

Calculer : lim
x→+∞

2x2 + 2x− 15

3x2 + 8x+ 12
Il suffit de calculer la limite des termes de plus haut degré.

lim
x→+∞

2x2 + 2x− 15

3x2 + 8x+ 12
= lim

x→+∞

2x2

3x2
=

2

3

Une limite célèbre : le nombre e

Dans le chapitre consacré aux exponentielles, nous déjà déjà rencontré une limite ”célèbre”
en donnant la définition du nombre d’Euler, e (dont la valeur est 2.718281828459 . . .) :

e = lim
x→+∞

(
1 +

1

x

)x

De plus, on a aussi : e = lim
x→−∞

(
1 +

1

x

)x

.

La représentation graphique de la fonction f(x) =

(
1 +

1

x

)x

est donnée ci-dessous.

y

1

2

3

4

5

6

7

8

−1
1 2 3 4 5 6 7−1−2−3−4−5−6−7

y =

(

1 +
1

x

)x

y = e

x

Remarque

On peut facilement se tromper en faisant des raisonnements qui semblent justes. On
pourrait en effet se dire que quand x tend vers l’infini, 1

x
tend vers 0, et qu’il reste alors

1 puissance infini, donc 1. Or ce n’est pas le cas comme le montre le calcul de quelques
valeurs de f(x) pour x suffisamment grand.

On a aussi : lim
y→0

(1 + y)
1
y = e

En effet, en substituant y à 1
x
, on retrouve la première limite (à remarquer que, quand

x→ ±∞, y → 0 car y = 1
x
).
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22.4 Limite et convergence d’une suite

22.4.1 Définitions

Exemple

On considère la suite (un) donnée par un =
n

2n+ 1
.

On donne ci-dessous quelques termes de cette suite.

n 1 2 3 10 20 50 100 500 1000

un
1

3

2

5

3

7

10

21

20

41

50

101

100

201

500

1001

1000

2001
∼= 0.333 0.400 0.428 0.476 0.488 0.495 0.4975 0.4995 0.4997

On observe que les termes de la suite croissante (un) s’approchent de plus en plus

du nombre
1

2
lorsque l’indice n devient grand. On peut alors déterminer les indices

n pour lesquels la différence entre
1

2
est inférieure à un milliardième, soit 10−9)

On a
1

2
− un =

1

2
− n

2n+ 1
=

2n+ 1− 2n

2(2n+ 1)
=

1

4n+ 2

et la condition

1

4n+ 2
< 10−9 ⇒ 109 < 4n+ 2⇒ 109 − 2

4
< n⇒ 249′999′999.5 < n

Ainsi, cette différence est inférieure à 10−9 pour n > 250′000′000.

En suivant l’idée de la définition de la limite d’une fonction, on peut également définir la
notion de limite d’une suite.

Définition 22.8
Soit (un) une suite infinie. Un nombre réel L est appelé limite de la suite (un), et on
note L = lim

n→+∞
un, si un est arbitrairement proche de a dès que n est suffisamment grand.

Lorsqu’une suite infinie admet un nombre limite L, on dit qu’elle converge vers ce
nombre. Une suite infinie qui ne converge pas diverge.

Il est possible de donner une définition plus rigoureuse de cette notion.

Définition 22.9 (Définition en ε - δ)
Le nombre L est limite de la suite (un) si, pour tout ε > 0, il existe p ∈ N tel que

n > p =⇒ |un − L| < ε

Illustration

Dans la représentation graphique ci-dessous, on a représenté une suite (un) par un en-
semble de points. Chaque point admet comme première coordonnée le rang d’un terme
de la suite, n, et comme deuxième coordonnée le terme de la suite associé, un.
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Mathématiques, MAP 1ère année 22. Limites

On a ensuite fixé une valeur de ε arbitraire et on a tracé les droites horizontales y = L+ε,
y = L − ε. Comme la valeur |un − L| mesure la proximité du terme un de la limite L,
on peut remarquer que, si un point se trouve entre les deux droites horizontales (dans
la surface jaune), la condition |un − L| < ε est vérifiée. Si un point se trouve hors de la
surface jaune ou sur une des deux droites, on a alors que |un − L| > ε.

S’il est vrai que lim
n→+∞

un = L, alors on peut trouver un nombre p ∈ N tel que, si n > p,

les points représentant les termes de la suite se trouvent tous entre les deux droites. On
voit aussi que, dès qu’un tel p est trouvé, n’importe quel p supérieur convient aussi.

Pour que la limite existe, il faut que le résultat illustré dans la figure ci-dessous soit vrai
pour tout nombre positif ε, aussi petit soit-il.

y

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b
b

b b

b
b b b b b

b b b b
b

b b b bL

L+ ε

L− ε

(n, un)

(0, u0)

(1, u1)

(2, u2)

(3, u3)

p n
x

Exemples

1. Soit la suite (un) définie par un =
2n− 1

n
.

Cette suite (un) est convergente car elle admet 2 pour limite en +∞. En effet,

on a que

∣∣∣∣
2n− 1

n
− 2

∣∣∣∣ =
1

n
et

1

n
< ε dès que n >

1

ε
. Le plus petit p possible est

alors la partie entière de
1

ε
.

2. Soit la suite (vn) définie par vn =
4n2 + 1

3n2
.

Cette suite (vn) est convergente car elle admet
4

3
pour limite en +∞. En effet,

on a que

∣∣∣∣
4n2 + 1

3n2
− 4

3

∣∣∣∣ =
1

3n2
et

1

3n2
< ε dès que n >

1√
3ε

. Le plus petit p

possible est alors la partie entière de
1√
3ε

.

3. Comme lim
n→+∞

(−1)n n’existe pas, la suite((−1)n) diverge.

22.4.2 Propriétés

Théorème 22.12
Si une suite admet une limite, cette limite est unique.

On parlera donc de la limite d’une suite convergente.
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Théorème 22.13
Une suite croissante et majorée converge.

Une suite décroissante et minorée converge.

Une suite monotone et bornée converge.

Ce théorème permet de démontrer la convergence de certaines suites, mais non d’en
calculer la limite.

Démonstration. On considère, par exemple une suite (un) croissante et majorée. On note
L le plus petit de ses majorants. Étant donné un réel strictement positif, il doit exister
au moins un terme, noté up, appartenant à l’intervalle ]L− ε, L], sinon L ne serait pas le
plus petit majorant de la suite (le nombre L− ε serait alors un majorant de la suite plus
petit que L).

La suite (un) étant de plus croissante, on a up 6 un 6 L à partir du rang p. Ainsi, si
n > p, alors |un − L| < ε.

Exemple

On considère la suite (un) définie par

{
u1 = 1
un+1 =

√
3un

Cette suite est croissante et majorée (démonstration par récurrence), donc conver-
gente.

Théorème 22.14
Une suite convergente est bornée.

Remarques

1. La contraposée de ce théorème est un critère de divergence. Une suite qui n’est pas
bornée diverge.

2. La réciproque de ce théorème est fausse. La suite définie par un = (−1)n, n ∈ N∗, est
bornée mais pas convergente.

Théorème 22.15
Si (un) et (vn) sont deux suites qui convergent respectivement vers L et M , et si λ est
un nombre réel, alors :

1. la suite de terme général un + vn converge vers L+M ;

2. la suite de terme général λ · un converge λ · L ;

3. la suite de terme général un · vn converge vers L ·M ;

4. la suite de terme général
un
vn

converge vers
L

M
, si M 6= 0 et vn 6= 0 pout tout n.

Ces propriétés découlent directement des propriétés générales des limites.
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Exemples

On montre aisément que la suite
(
1
n

)
, avec n ∈ N∗, converge vers 0 et que toute

suite constante (un = λ) converge vers λ. Le théorème précédent permet alors d’en
déduire que la suite de terme général

1. un =
3n + 1

n
= 3 +

1

n
converge vers 3 ;

2. un =
2n− 3

7n
=

2

7
− 3

7n
converge vers

2

7
;

3. un =
1

n2
=

(
1

n

)2

converge vers 0 ;

4. un =
2n2 − 2n+ 3

5n2 − 7
=
n2
(
2− 2

n
+ 3

n2

)

n2
(
5− 7

n2

) =
2− 2

n
+ 3

n2

5− 7
n2

converge vers
2

5
.
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22.5 Exercices

1) Calculer, si elles existent, les limites suivantes :

a) lim
x→4

5x2 − 7x− 52

−2x2 + 5x+ 12
b) lim

x→4

x2 − 3x+ 2

x2 − 6x+ 8

c) lim
x→5

3x2 − 14x− 5

−x2 + 10x− 25
d) lim

x→−2

x3 + 3x2 − 4

(x+ 2)2

e) lim
x→3

x3 − 5x− 12

−x2 + 6x− 9
f) lim

x→3

−x2 + 6x− 9

x3 − 4x2 − 3x+ 18

g) lim
x→−5

2x2 + 7x− 15

3x2 + 11x− 20
h) lim

x→−3

2x2 + 12x+ 18

2x2 + 7x+ 3

2) Calculer, si elles existent, les limites suivantes :

a) lim
x→1

x− 1√
x2 + 3− 2

b) lim
x→2

√
5−
√
−3 + 4x

x2 − 4

c) lim
x→4

√
2x+ 1− 3√
x− 2−

√
2

d) lim
x→5

4−
√
5x− 9√

2x− 1− 3

e) lim
x→0

x2 + |x|
x2 − |x| f) lim

x→0

4x3 − |x|
|x2| − |3x|

g) lim
x→0

2 sin
(
x
5

)

x
h) lim

x→0

3x · sin
(
x
5

)

6x2

i) lim
x→0

1− cos2(2x)

x · tan(2x) j) lim
x→− 3π

2

1 + sin2(x)

cos(x)

k) lim
x→π

sin2(x)

x · (1 + cos(x))
l) lim

x→0

tan2(5x)

1− cos(4x)

m) lim
x→0

x · sin(x)
1− cos(x)

n) lim
x→π

4

−3 + cos(2x)

1− cos
(
π
4
− x
)

3) Calculer, si elles existent, les limites suivantes ( lim
x→−∞

et lim
x→+∞

séparément) :

a) lim
x→±∞

(2x− 3)3

3x3 − 2x+ 5
b) lim

x→±∞

(
√
2x− 3)2 − 2x2√

3x− 1

c) lim
x→±∞

√
x2 + 3x− 1− x d) lim

x→±∞
x−
√
x2 − 8x+ 1

e) lim
x→±∞

√
4x2 + 1− 2x√
3x2 + x− 2

f) lim
x→±∞

2x−
√
9x2 − 4√

2x2 + 5x− 3
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4) Calculer, si elles existent, les limites suivantes :

a) lim
x→+∞

(
1 +

1

x

)x+5

b) lim
x→+∞

(
1 +

1

x

)3x

c) lim
x→+∞

(
1 +

2

x

)x

d) lim
x→+∞

(
1− 1

x

)x

e) lim
x→0

(1− 4x)
1
x f) lim

x→+∞

(
x

1 + x

)x

g) lim
x→+∞

(
x+ 3

x− 1

)x+1

h) lim
x→0

(
1 + 3 tan2(x)

)cot2(x)

5) En utilisant la définition de la limite d’une suite, puis en utilisant les critères de
convergence, montrer que

a) lim
n→+∞

2n+ 1

n + 3
= 2 b) lim

n→+∞

n+ 1

n2
= 0

c) lim
n→+∞

2n

3n2 + 1
= 0 d) lim

n→+∞

2n2 + 1

7n2 + 5
=

2

7

e) lim
n→+∞

sin(n2 + 3)√
n + 1

= 0 f) lim
n→+∞

5− n2

n+ 2
= −∞

6) Étudier la convergence des suites dont on donne le terme général

a)
n2 + 1

n2 + n− 1
b)

n4 + 2n+ 2

n + 4
c)

n2 + 6

n(n + 1)(n+ 2)

7) On définit la suite de terme général vn de la manière suivante :

{
v1 = 1
vn+1 =

√
12 + vn

a) Montrer par récurrence que 0 < vn < 4 pour tout n strictement positif.

b) On pose 4 − vn = wn. Démontrer que wn+1 <
1

4
wn et en déduire la limite de wn

puis celle de vn quand n tend vers l’infini.

8) La suite de terme général un est définie par u1 = 0 et un =
√
1 + un−1 pour n

strictement supérieur à 1.

a) Montrer que si (un) a pour limite L, L est nécessairement solution de l’équation
L =
√
L+ 1.

b) Montrer que (un) est croissante et majorée, donc convergente. En déduire la valeur
de L.
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22.6 Solutions des exercices

1) a) −3 b) − c) − d) −3

e) − f) −1
5

g)
13

19
h) 0

2) a) 2 b) − 1

2
√
5

c)
2
√
2

3
d) −15

8

e) −1 f)
1

3
g)

2

5
h)

1

10

i) 2 j) − k)
2

π
l)

25

8

m) 2 n) −∞

3) a)
8

3
et

8

3
b) −6

√
2√
3

et −6
√
2√
3

c) +∞ et
3

2
d) −∞ et 4

e)
4√
3

et 0 f) − 5√
2

et − 1√
2

4) a) e b) e3 c) e2 d) e−1

e) e−4 f) e−1 g) e4 h) e3

6) a) converge b) diverge c) converge

7) b) lim
n→+∞

wn = 0 et lim
n→+∞

vn = 4

8) b) L =
1 +
√
5

2
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Chapitre 23

Statistique descriptive

23.1 Introduction et vocabulaire

La statistique est la branche des mathématiques qui s’occupe de rassembler, d’organiser,
d’analyser et d’interpréter des observations numériques. Ces observations portent sur
un ensemble d’objets de même nature, que l’on désigne par le terme de population.
Ces objets présentent tous un certain caractère qu’il s’agit d’étudier pour en révéler les
tendances principales. Le caractère étudié est soit de nature discrète (c’est-à-dire qu’il
ne peut prendre que des valeurs réelles isolées), soit de nature continue (c’est-à-dire qu’il
peut prendre toute valeur d’un certain intervalle réel).

Exemple

On donne ci-dessous quelques exemples de populations et de caractères étudiés.

Population
Elèves d’une

classe

Poulets d’un
élevage

Tiges usinées Ampoules

Caractère
Note de
français

Poids Longueur Durée de vie

Nature Discret Continue Continue Continue

La phase de rassemblement des données est très importante, puisque c’est sur la base
de ces données que vont se développer les phases ultérieures. Les données étant souvent
nombreuses et en désordre, il faut essayer de les représenter de manière claire, à l’aide
de tableaux et de graphiques : c’est l’organisation des données. L’analyse essaie de
résumer un tableau de données à l’aide d’un petit nombre de valeurs caractéristiques.
Parmi celles-ci, les mesures de tendance centrale (aussi appelées paramètres de
position) jouent un rôle essentiel. La plus connue est la moyenne, mais on utilise aussi
la médiane ou le mode. Les mesures de tendance ne suffisent pas à donner une idée de la
manière dont les valeurs sont distribuées au voisinage de ces valeurs centrales. Ainsi, il est
souvent utile d’introduire une mesure de dispersion. La plus utilisée est l’écart-type.

Ces trois phases ont en commun le fait que les renseignements que l’on essaie de tirer des
données se rapportent justement à l’ensemble soumis à l’observation. Elles constituent la
statistique descriptive, dont nous parlerons ici.
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Mathématiques, MAP 1ère année 23. Statistique descriptive

Le problème de l’interprétation est différent. L’ensemble soumis à observation est un
sous-ensemble convenablement choisi, que l’on appelle échantillon, d’un ensemble plus
vaste, et on voudrait, à partir de l’étude de cet échantillon, arriver à tirer des conclusions
sur l’ensemble total d’où est issu cet échantillon. Il est clair que ces conclusions auront
d’autant plus de chances d’être valables que la taille de l’échantillon sera grande. Cette
interprétation, basée sur le calcul des probabilités, constitue un aspect de la statistique
inductive ou inférentielle, que nous n’étudierons pas ici.

23.2 Symbole de sommation (Rappel)

Dans la suite de ce cours, nous allons fréquemment utiliser le signe : Σ (Sigma). Il est
défini comme suit :

Définition 23.1
Le symbole de sommation, noté à l’aide de la lettre grecque Σ, s’utilise pour désigner
de manière générale la somme de plusieurs termes.

Soit n termes x1, x2, . . . , xn. La somme de ces n termes s’écrit de la manière suivante à
l’aide du symbole de sommation :

x1 + x2 + . . .+ xn =

n∑

k=1

xk

On appelle k l’indice de sommation. Il permet de décrire la manière dont on somme
les éléments.

Le nombre se trouvant à droite de l’égalité sous le symbole de sommation est la valeur
de départ de l’indice de sommation, ici 1, et le nombre au-dessus du symbole la valeur
finale de l’indice, ici n. La somme porte sur toutes les valeurs de k comprises entre ces
deux bornes (bornes comprises).

Le symbole de sommation permet donc d’écrire des sommes d’un nombre important de
termes de manière précise et condensée sans utiliser les points de suspension.

L’indice de sommation peut être utilisé pour décrire les termes de la somme de manière
directe et les bornes sur l’indice de sommation peuvent avoir d’autre valeurs que 1 et n.

Par exemple, la somme des puissance de 2 comprises entre 26 et 227 peut s’écrire

27∑

k=6

2k

au lieu de 26 + 27 + . . .+ 226 + 227.
Donnons d’autres exemples pour bien comprendre cette notation.

Exemples

1.

8∑

k=3

k = 3 + 4 + 5 + 6 + 7 + 8 = 33

2.
4∑

k=1

2k = 21 + 22 + 23 + 24 = 30
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3.
4∑

k=1

(k2 − 1) = (12 − 1) + (22 − 1) + (32 − 1) + (42 − 1) = 0 + 3 + 8 + 15 = 26

4.
n∑

k=1

(k2 − 1) = 0 + 3 + 8 + 15 + . . .+ (n2 − 1)

5.

4∑

k=2

(k − 1)3 = (2− 1)3 + (3− 1)3 + (4− 1)3 = 13 + 23 + 33 = 36

Proposition 23.1
Soient n ∈ N∗ ; x1, . . . , xn ∈ R ; y1, . . . , yn ∈ R et a ∈ R.

Le symbole de sommation possède les propriétés suivantes :

1.

n∑

k=1

(xk + yk) =

n∑

k=1

xk +

n∑

k=1

yk

2.
n∑

k=1

a · xk = a ·
n∑

k=1

xk

3.
n∑

k=1

a = n · a

Ces propriétés du symbole de sommation découlent directement de l’associativité et de
la commutativité de l’addition ainsi que de la distributivité de la multiplication sur l’ad-
dition.

23.3 Tableaux des données et principales représenta-

tions graphiques

Le caractère que l’on étudie est soit de nature discrète soit de nature continue. Dans le cas
discret, on regroupe les données en un tableau où figurent les k valeurs possibles x1, x2,
x3, . . . , xk du caractère et le nombre ”d’individus” ni (i = 1, 2, 3, . . . , k) correspondant
qui prennent cette valeur. Ce nombre est appelé effectif . Dans le cas continu, on regroupe
les valeurs possibles du caractère en classes de même amplitude (de même ”largeur”).
En règle générale, on choisit un nombre de classes compris entre 8 et 15.

Exemple - Cas discret

On donne ci-dessous l’ensemble des résultats du concours d’Innsbruck lors de la
Tournée des Quatre Tremplins, le 4 janvier 2012.

Nom Saut 1 Saut 2 Note Nom Saut 1 Saut 2 Note

1. Stoch Kamil 132,5 108,0 232,0 26. Janda Jakub 125,5 121,5 224,4

2. Mechler Maximilian 119,0 126,0 235,1 27. Hocke Stephan 122,5 118,5 218,0

3. Freund Severin 118,5 116,5 211,8 28. Gangnes Kenneth 124,5 111,5 206,2

4. Schlierenzauer Greg 130,5 123,0 247,6 29. Happonen Janne 122,5 112,2

5. Bardal Anders 128,0 125,5 244,4 30. Ito Daiki 129,5 91,5 193,6

6. Koudelka Roman 123,5 122,5 239,5 31. Hayboeck Michael 116,5 121,5 213,0

7. Velta Rune 115,5 123,5 225,0 32. Tepes Jurij 107,0 90,7

8. Kranjec Robert 117,0 105,0 192,8 33. Meznar Mitja 106,5 86,0
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Nom Saut 1 Saut 2 Note Nom Saut 1 Saut 2 Note

9. Morgenstern Thomas 120,5 123,0 237,1 34. Sklett Vegard Hauk 119,5 109,5

10. Zauner David 119,5 116,5 218,5 35. Unterberger David 111,0 94,0

11. Neumayer Michael 132,0 121,5 234,4 36. Matura Jan 118,0 106,4

12. Prevc Peter 129,5 118,0 227,9 37. Takeuchi Taku 131,5 124,0 246,7

13. Ammann Simon 119,5 120,5 221,0 38. Hula Stefan 101,5 82,6

14. Kasai Noriaki 118,0 107,5 39. Boyd-Clowes Mack 121,0 109,6

15. Damjan Jernej 122,5 113,5 211,6 40. Vassiliev Dimitry 133,0 120,0 222,4

16. Kot Maciej 118,5 101,0 185,4 41. Ito Kenshiro 117,5 110,5

17. Koivuranta Anssi 123,0 102,0 192,1 42. Hautamaeki Matti 116,0 108,6

18. Koch Martin 113,5 122,0 210,6 43. Colloredo Sebastia 114,5 104,2

19. Loitzl Wolfgang 115,0 115,5 209,0 44. Roensen Atle Pede 111,5 92,6

20. Kaliniteschenko Ant 108,0 89,3 45. Mueller Lukas 107,5 94,1

21. Freitag Richard 128,5 114,0 227,2 46. Evensen Johan Re 110,5 98,7

22. Hlava Lukas 126,0 118,0 229,5 47. Morassi Andrea 110,0 94,5

23. Romoeren Bjorn Ein 120,0 103,5 48. Kobayashi Junshiro 107,0 95,6

24. Watase Yuta 124,0 113,5 208,7 49. Fettner Manuel 110,5 98,0

25. Kornilov Denis 128,0 114,0 212,9 50. Kofler Andreas 127,5 131,5 252,8

Pour la suite, on considérera uniquement le premier saut. On regroupe alors ces
résultats dans le tableau ci-dessous. Dans la première colonne de ce tableau (colonne
i), on numérote les observations possibles (de 1 à 66). Dans la deuxième colonne
(colonne xi), on inscrit les valeurs que prend le caractère longueur du premier saut
en mètres (de 101, 0 à 133, 5). Dans la troisième colonne (colonne ni), on inscrit
l’effectif de chaque observation (le nombre de fois qu’apparâıt chaque observation).
Le tableau a été découpé en trois parties pour des questions de lisibilité.

Obs. Long. Eff. Obs. Long. Eff. Obs. Long. Eff.
i xi ni i xi ni i xi ni

1 101,0 0 23 112,0 0 45 123,0 1
2 101,5 1 24 112,5 0 46 123,5 1
3 102,0 0 25 113,0 0 47 124,0 1
4 102,5 0 26 113,5 1 48 124,5 1
5 103,0 0 27 114,0 0 49 125,0 0
6 103,5 0 28 114,5 1 50 125,5 1
7 104,0 0 29 115,0 1 51 126,0 1
8 104,5 0 30 115,5 1 52 126,5 0
9 105,0 0 31 116,0 1 53 127,0 0
10 105,5 0 32 116,5 1 54 127,5 1
11 106,0 0 33 117,0 1 55 128,0 2
12 106,5 1 34 117,5 1 56 128,5 1
13 107,0 2 35 118,0 2 57 129,0 0
14 107,5 1 36 118,5 2 58 129,5 2
15 108,0 1 37 119,0 1 59 130,0 0
16 108,5 0 38 119,5 3 60 130,5 1
17 109,0 0 39 120,0 1 61 131,0 0
18 109,5 0 40 120,5 1 62 131,5 1
19 110,0 1 41 121,0 1 63 132,0 1
20 110,5 2 42 121,5 0 64 132,5 1
21 111,0 1 43 122,0 0 65 133,0 1
22 111,5 1 44 122,5 3 66 133,5 0

∑
50

Par la suite, on va ajouter quelques colonnes à ce tableau afin de réaliser plus
simplement le calcul de certaines mesures de tendance centrale ou de dispersion.
Dans la dernière ligne du tableau, on peut indiquer la somme des valeurs contenues
dans la colonne correspondante.

On note par n =
66∑

i=1

ni l’effectif total (qui correspond à la taille de la population).

page 378
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Digramme en bâtons

Afin de rendre plus lisible les données observées, il est intéressant de les représenter
graphiquement. Plusieurs représentations sont possibles dans chaque situation. Il faut
souvent chercher la plus adaptée à la situation donnée.

Dans le cas de l’exemple précédent, on pourrait représenter les données par un dia-
gramme en bâtons. On associe alors à chaque observation un rectangle fin (ou bâton)
dont la hauteur est proportionnelle à l’effectif de l’observation.

Dans cet exemple, on remarque que cette représentation graphique n’apporte pas une
lisibilité supplémentaire. Elle n’est donc pas adéquate.

Pour améliorer la lisibilité des données, on peut regrouper les longueurs observées en
classes.

Exemple - Cas continu

Dans notre exemple, on peut regrouper les sauts en classes de largeur 3 m et obtenir
le tableau suivant.

Observations Longueur des sauts Centres des classes Effectifs

i xi ni

1 [100, 25; 103, 25[ 101,75 1
2 [103, 25; 106, 25[ 104,75 0
3 [106, 25; 109, 25[ 107,75 5
4 [109, 25; 112, 25[ 110,75 5
5 [112, 25; 115, 25[ 113,75 3
6 [115, 25; 118, 25[ 116,75 7
7 [118, 25; 121, 25[ 119,75 9
8 [121, 25; 124, 25[ 122,75 6
9 [124, 25; 127, 25[ 125,75 3
10 [127, 25; 130, 25[ 128,75 6
11 [130, 25; 133, 25[ 131,75 5

∑
50
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Histogramme

On représente généralement les données, dans le cas continu, par un histogramme dans
lequel chaque classe se voit attribuer un rectangle dont l’aire est proportionnelle à l’effectif
de la classe.

Le graphique suivant est dessiné d’après les données présentées à l’exemple précédent.

Polygone des effectifs

Une autre représentation graphique équivalente est le polygone des effectifs dans lequel
on trace une ligne brisée passant par les points qui ont pour abscisses les centres des
classes et pour ordonnées les effectifs de ces classes. On fait précéder et suivre les classes
considérées par deux classes d’effectif zéro.

Polygone des fréquences cumulées

Il est souvent intéressant de faire figurer dans un tableau statistique, pour chaque valeur
xi que peut prendre le caractère (ou pour chaque classe, dans le cas d’une distribution
continue), la proportion fi des individus qui présentent cette valeur xi. Ces proportions
sont appelées fréquences.
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Définition 23.2

Si n représentent l’effectif total (n =
k∑

i=1

ni), alors la fréquence fi de l’observation i

(i = 1, 2, . . . , k) est donnée par

fi =
ni

n

La proportion F (x), appelée fréquence cumulée, est la proportion des observations
qui présentent des valeurs xi du caractère inférieures ou égales à x. Elle se calcule en
additionnant toutes les fréquences fi correspondant aux xi tels que xi 6 x.

On peut également considérer la proportion des observations qui présentent des valeurs xi
du caractère supérieures ou égales à une valeur x. On les appelle les fréquences cumulées
décroissantes.

Exemple

On reprend ici les longueurs des premiers sauts des 50 participants au concours de
saut d’Innsbruck et on ajoute les valeurs des fréquences et des fréquences cumulées.

Observa-
tions

Longueur
des sauts

Centres des
classes

Effectifs Fréquences
Fréquences
cumulées

i xi ni fi F (xi + 1.5)

1 [100.25; 103.25[ 101.75 1 0.02 0.02
2 [103.25; 106.25[ 104.75 0 0.00 0.02
3 [106.25; 109.25[ 107.75 5 0.10 0.12
4 [109.25; 112.25[ 110.75 5 0.10 0.22
5 [112.25; 115.25[ 113.75 3 0.06 0.28
6 [115.25; 118.25[ 116.75 7 0.14 0.42
7 [118.25; 121.25[ 119.75 9 0.18 0.60
8 [121.25; 124.25[ 122.75 6 0.12 0.72
9 [124.25; 127.25[ 125.75 3 0.06 0.78
10 [127.25; 130.25[ 128.75 6 0.12 0.90
11 [130.25; 133.25[ 131.75 5 0.10 1.00

∑
50 1

On peut remarquer, dans ce tableau, que la somme des fréquences est égale à 1.
Ceci sera toujours le cas. En effet, on a

k∑

i=1

fi =

k∑

i=1

ni

n
=

k∑
i=1

ni

n
=
n

n
= 1

Dans le cas continu, on représente souvent les fréquences cumulées par le polygone des
fréquences cumulées. Ce dernier est obtenu en reliant chacun des points (si;F (si)), où
si est la borne supérieure de la classe i, par un segment de droite. Pour réaliser ceci, on
suppose que les observations se répartissent de manière uniforme dans leur classe. Pour
le polygone des fréquences cumulées décroissantes, on considère les bornes inférieures des
classes.

Pour l’exemple précédent, on obtient les représentations graphiques ci-dessous.
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Diagramme circulaire

Pour le diagramme circulaire, on associe à chaque observation un secteur circulaire dont
l’aire est proportionnelle à l’effectif de l’observation.

On donne ci-dessous l’exemple des dépenses de l’état jurassien par catégorie.

Diagramme en bandes

Le même exemple, que celui donné ci-dessus, peut être représenté par un rectangle séparé
en plus petits rectangles dont l’aire est proportionnelle à l’effectif de l’observation.
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Diagramme polaire

Le diagramme polaire est surtout utilisé pour représenter des données chronologiques.
Pour ce diagramme, on associe à chaque observation une demi-droite ayant pour origine
un point fixe O, deux demi-droites consécutives formant toujours le même angle. Pour
représenter les effectifs, on place sur chaque demi-droite un point dont la distance à O
est proportionnelle à l’effectif de l’observation.

On donne ci-dessous l’exemple des précipitations mensuelles mesurées durant l’année 2011
à Payerne.

Diagramme figuratif

Dans un diagramme figuratif, les observations sont représentées à l’aide d’images plus ou
moins grandes selon la valeur des effectifs.

On donne ci-dessous un exemple de diagramme figuratif représentant l’évolution du prix
du carburant.
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Mathématiques, MAP 1ère année 23. Statistique descriptive

On peut également représenter les observations à l’aide d’images de même taille en quan-
tités proportionnelles aux effectifs.

On représente ci-dessous le nombre de véhicules vendus en Suisse en 2011 par marque.
Une voiture équivaut à 5’000 véhicules neufs vendus.

Pyramide des âges

La pyramide des âges est un double histogramme représenté horizontalement. Les classes
d’âges d’une population sont représentées en vertical et les effectifs en horizontal. A
gauche, on représente les effectifs des personnes de sexe masculin et, de l’autre côté, ceux
des personnes de sexe féminin.

Ci-dessous, on donne la pyramide des âges de la population du canton du Jura en 2008.

Ce type de graphique porte le nom de pyramide car sa forme était (ce qui n’est plus le
cas aujourd’hui) celle d’un triangle presque isocèle.
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23.4 Mesures de position ou de tendance centrale

Les tableaux et les graphiques donnent une bonne idée de la manière dont un caractère
est distribué. Cependant, on cherche souvent à illustrer cette distribution de manière plus
sommaire par quelques nombres caractéristiques.

23.4.1 Moyenne arithmétique

Cas discret

La moyenne arithmétique, plus communément appelée moyenne, est la plus utilisée
des mesures de tendance centrale. Elle s’obtient en divisant la somme des valeurs par le
nombre de valeurs.

Définition 23.3
La moyenne arithmétique x d’un caractère prenant les valeurs x1, x2, . . . , xk avec les
effectifs respectifs n1, n2, . . . , nk est définie par

x =

k∑
i=1

nixi

n

où n =
k∑

i=1

ni est l’effectif total.

Le calcul de la moyenne peut se faire également à partir des fréquences fi :

x =
k∑

i=1

fixi

Remarques

1) La moyenne est influencée par toutes les valeurs xi et ni observées et, à ce titre, très
sensible aux valeurs extrêmes, au point d’en perdre parfois une bonne partie de sa
représentativité, surtout dans les échantillons de petite taille.

Ainsi la moyenne des six salaires mensuels suivants :

3′500 4′200 4′600 5′000 6′200 36′500

est égale à 10′000, alors qu’un seul salaire dépasse cette moyenne.

2) Les deux définitions données de la moyenne sont bien équivalente. En effet :

k∑

i=1

fixi =

k∑

i=1

ni

n
xi =

1

n

k∑

i=1

nixi = x

3) La moyenne des écarts xi − x est nulle. En effet :

k∑
i=1

ni(xi − x)

n
=

k∑
i=1

nixi

n
−
x ·

k∑
i=1

ni

n
= x− x · n

n
= 0
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Exemple

Dans une classe de 25 élèves (population), on a relevé les notes suivantes :

4 5 3 4 2 3 5 6 5 3 4 4 6 0 5 5 4 3 5 4 2 5 3 4 5

Pour effectuer le calcul de la moyenne et de la variance des notes, on reprend le
tableau statistique présenté précédemment pour le cas discret (numéro de l’obser-
vation, i, valeur du caractère, xi et effectif, ni) et on le complète par les notes
pondérées nixi (4

ème colonne). Pour calculer la moyenne, on peut aussi compléter
le tableau par les fréquences fi (5

ème colonne)et les fréquences pondérées fixi (6
ème

colonne).

i xi ni nixi
fi fixi

1 0 1 0 0, 04 0, 00
2 1 0 0 0, 00 0, 00
3 2 2 4 0, 08 0, 16
4 3 5 15 0, 20 0, 60
5 4 7 28 0, 28 1, 12
6 5 8 40 0, 32 1, 60
7 6 2 12 0, 08 0, 48

∑
25 99 1, 00 3, 96

On obtient facilement la valeur de la moyenne en utilisant les résultats contenus
dans ce tableau.

x =

7∑
i=1

nixi

n
=

99

25
= 3, 96

On peut également lire directement la moyenne 3, 96 comme somme des fixi.

Cas continu

Dans de le cas d’un caractère continu, la moyenne se calcule comme dans le cas discret
en utilisant comme valeurs xi les centres de classes.

La moyenne changera légèrement selon la manière dont on aura formé les classes.

23.4.2 Autres moyennes

Nous venons de présenter la moyenne arithmétique. Or, il existe d’autres types de mesure
de tendance centrale aussi appelés moyennes.

Moyenne géométrique

Définition 23.4
La moyenne géométrique g d’un caractère prenant les valeurs x1, x2, . . . , xk avec les
effectifs respectifs n1, n2, . . . , nk est définie par

g = n

√√√√
k∏

i=1

xni

i
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où
k∏

i=1

représente le produit des éléments qui suivent ce symbole, avec i variant de 1 à k.

Exemple

Si l’augmentation d’un pays est de 5% la première année et de 15% la suivante,
l’augmentation moyenne des prix se calcule grâce à la moyenne géométrique des
coefficients multiplicateurs 1, 05 et 1, 15 soit une coefficient moyen de

g =
√

1, 05 · 1, 15 = 1, 0988

et une augmentation moyenne de 9, 88%.

Moyenne harmonique

Définition 23.5
La moyenne harmonique h d’un caractère prenant les valeurs x1, x2, . . . , xk avec les
effectifs respectifs n1, n2, . . . , nk est définie par

h =
n

k∑
i=1

ni

xi

où n =
k∑

i=1

ni est l’effectif total.

Lorsqu’on parle de vitesse moyenne sur un parcours, on fait parfois référence à la moyenne
harmonique.

Exemple

Un automobiliste roule sur 1 km à 30 km/h, 7 km à 60 km/h, puis sur 16 km à
80 km/h et encore 48 km à 120 km/h. Il aura donc parcouru 72 km en 2+7+12+
24 = 45 min, soit une vitesse moyenne de

v =
72
45
60

= 96 km/h

qui est bien la moyenne harmonique des vitesses :

v =
72

1
30

+ 7
60

+ 16
80

+ 48
120

= 96 km/h

Moyenne quadratique

Définition 23.6
La moyenne quadratique q d’un caractère prenant les valeurs x1, x2, . . . , xk avec les
effectifs respectifs n1, n2, . . . , nk est définie par

q =

√√√√ 1

n

k∑

i=1

nix2i

où n =
k∑

i=1

ni est l’effectif total.

page 387
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Moyenne pondérée

Définition 23.7
La moyenne pondérée x d’un caractère prenant les valeurs x1, x2, . . . , xk avec les poids
respectifs p1, p2, . . . , pk est définie par

x =

k∑
i=1

pixi

p

où p =
k∑

i=1

pi est le poids total.

Le rôle des pi est d’accorder une importance plus grande à certaines observations qu’à
d’autres. Ils jouent en quelque sorte le rôle de l’effectif. Un enseignant qui donne différents

poids à ses travaux écrits utilisera la moyenne pondérée.

23.4.3 Médiane

Cas discret

La médiane est une valeur telle que la moitié des valeurs xi de la population (ou de
l’échantillon) lui soient inférieures ou égales et l’autre moitié supérieures ou égales.

Définition 23.8
La médiane x̃ d’un caractère prenant les valeurs x1, x2, . . . , xn (où n représente l’effectif
total), rangé dans l’ordre des grandeurs croissantes, est la valeur du ”milieu” :

– si n est impair, on considère la valeur centrale :

x̃ = xn+1
2

– si n est pair, on considère la moyenne arithmétique des deux valeurs centrales :

x̃ =
1

2

(
xn

2
+ xn

2
+1

)

Remarques

1) La médiane n’est pas affectée par les valeurs extrêmes de la distribution.

2) Dans le cas des six salaires (voir remarque 1 moyenne), la médiane vaut 4′800.

3) Dans les distributions asymétriques la médiane donne également une idée plus ”équili-
brée” de la tendance centrale.

Exemple

Nous reprenons ici les données de l’exemple sur les notes d’une classe. On com-
mence par trier les 25 valeurs par ordre croissant :

0 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 6 6

On peut ensuite déterminer la médiane comme étant la 13ème note : x̃ = x 25+1
2

=
x13 = 4
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Cas continu

Définition 23.9
Dans le cas d’un caractère continu, dont le polygone des fréquences cumulées est donné
par la fonction F (x), la médiane est la valeur x̃ telle que F (x̃) = 1

2

Pour son calcul, on repère la classe [iq; sq[ où la fréquence cumulée dépasse pour la
première fois 0, 5 et on ne considère alors plus que le segment du polygone des fréquences
cumulées qui correspond à cette classe. On détermine ensuite x̃ par interpolation linéaire
en posant, d’après le schéma ci-dessous, que (grâce au théorème de Thalès sur les triangles
semblables ou à la définition de la pente d’une droite) :

c

a
=
d

b
ou

0, 5− F (iq)
x̃− iq

=
F (sq)− F (iq)

sq − iq

c
d

b
ald

ld

F (iq)

0.5

F (sq)

iq x̃ sq

Ainsi :

x̃ = iq +
0, 5− F (iq)
F (sq)− F (iq)

· (sq − iq)

Exemple

On donne ci-dessous le polygone des fréquences cumulées des longueurs des sauts
donné dans un précédant exemple en indiquant la manière de déterminer graphi-
quement la médiane.

Par lecture graphique, la médiane vaut environ 119, 5 m. On peut la calculer plus
précisément selon la méthode donnée ci-dessus.

page 389
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La classe où la fréquence cumulée dépasse 0, 5
est : [118, 25; 121, 25[. On peut donc poser,
d’après la représentation ci-contre, que

0, 50− 0, 42

x̃− 118, 25
=

0, 60− 0, 42

121, 25− 118, 25

et donc en isolant x̃ :

x̃ = 118, 25 +
0, 08

0, 18
· 3 = 119, 58

c

d

b
ars

rs

0, 42

0, 50

0, 60

118, 25 x̃ 121, 25

23.4.4 Mode

Cas discret

Définition 23.10
Le mode est la valeur la plus fréquente dans une série de données.

Remarques

1) Dans certaines distributions, il y a plusieurs modes.

2) Le mode est insensible aux valeurs extrêmes.

3) Il est moins utilisé que la moyenne ou la médiane.

Exemple

Pour les données de l’exemple sur les notes d’une classe, le mode vaut 5 car 8 ob-
servations (maximum au niveau du nombre d’observations par valeur du caractère)
ont été réalisées de la valeur 5.

Cas continu

Définition 23.11
Dans le cas d’un caractère continu, le mode se trouve dans la classe [im; sm[ ayant le plus
grand effectif, appelée la classe modale. Il se calcule à partir de l’histogramme (voir
exemple ci-dessous pour une représentation graphique) en tenant compte comme suit du
”gain” en fréquence de la classe modale par rapport aux deux classes voisines (d’après
théorème de Thalès sur les triangles semblables) :

x

c− x =
b

d

et ainsi, en isolant x dans cette expression :

mode = a+
bc

b+ d

où a = im.
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Exemple

On donne ci-dessous l’histogramme des longueurs des sauts vu dans un précédant
exemple.

Dans ce cas, on voit que la classe modale est la classe [118, 25; 121, 25[ et que le
mode est égal à environ 119, 5. Il se calcule exactement à partir de la classe modale
de la manière suivante :

mode = 118, 25 +
2 · 3
2 + 3

= 119, 45

23.5 Mesures de dispersion

Pour affiner l’analyse des données, il faut pouvoir évaluer la dispersion plus ou moins
grande des données autour d’une valeur centrale. En effet, un même valeur centrale ne
permet pas d’affirmer que deux jeux d’observations sont identiques, comme le montre
l’exemple suivant.

Exemple

Un élève français a obtenu les notes suivantes à sept travaux écrits de mathéma-
tiques :

12 15 11 8, 5 10 14 10

Cette série de notes pour être ”résumée” en calculant la moyenne qui vaut 11, 5.

Un élève de la même classe a obtenu les notes :

15 14 5 9, 5 8 12 18

La moyenne est encore ici de 11, 5. Mais, le premier élève a des notes moins dis-
persées que le second. Par exemple, l’écart entre la note la plus basse et la note la
plus haute est de 6, 5 pour le premier et de 13 pour le second.

Pour différencier ces deux jeux de données, on peut utiliser une mesure de dispersion.
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Mathématiques, MAP 1ère année 23. Statistique descriptive

23.5.1 Variance et écart-type

Cas discret

Si l’on désire se faire une idée de la manière dont les valeurs du caractère s’écartent de
la moyenne x de ce caractère, on peut calculer la moyenne des écarts absolus |xi − x|.
Pour des raisons essentiellement théoriques et pratiques, on préfère néanmoins calculer
la moyenne des écarts quadratiques.

Définition 23.12
La variance ν d’un caractère prenant les valeurs x1, x2, . . . , xk avec les effectifs respectifs
n1, n2, . . . , nk est définie par

ν =

k∑
i=1

ni(xi − x)2

n

L’écart-type σ est défini comme la racine carré de la variance :

σ =
√
ν

Remarques

1) Si l’on utilise la moyenne pour mesurer la tendance centrale, on lui associe naturelle-
ment l’écart-type pour mesurer la dispersion (par rapport à la moyenne).

2) Le calcul de la variance est plus simple si l’on utilise la formule suivante :

ν =

k∑
i=1

nix
2
i

n
− x2

qui se justifie comme suit :

ν =

k∑
i=1

ni(xi − x)2

n
=

k∑
i=1

ni · x2i
n

−

k∑
i=1

ni · 2xix

n
+

k∑
i=1

ni · x2

n

=

k∑
i=1

ni · x2i
n

− 2x ·

k∑
i=1

ni · xi
n

+ x2 ·

k∑
i=1

ni

n

=

k∑
i=1

ni · x2i
n

− 2x2 + x2 =

k∑
i=1

ni · x2i
n

− x2

La variance d’une série statistique est donc égale à la moyenne des carrés moins le carré
de la moyenne. Cette formule simplifie énormément les calculs puisque x n’intervient
qu’une fois. Si on avait utiliser la moyenne des écarts absolus, une formule de ce type
n’existerait pas. Il faudrait donc pour chaque observation calculer la différence à la
moyenne et en prendre la valeur absolue.

3) Lorsqu’on calcule la variance d’un échantillon et non de la population entière, le
dénominateur est n− 1 dans la formule de la définition.

4) Dans le cours de troisième année, nous verrons que lorsque la population a une distri-
bution ”normale”, alors :
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− 68, 3% des valeurs sont situées entre x− σ et x+ σ
− 95, 4% des valeurs sont situées entre x− 2σ et x+ 2σ
− 99, 7% des valeurs sont situées entre x− 3σ et x+ 3σ

5) Les calculatrices modernes comprennent des touches spéciales pour calculer efficace-
ment la moyenne et l’écart-type.

Exemple

Nous reprenons ici les données de l’exemple sur les notes d’une classe. Pour ef-
fectuer de la variance et de l’écart-type des notes, on reprend le tableau statistique
donné dans cet exemple et on le complète par le carré des notes x2i (4ème colonne)
et par le carré des notes pondérées nix

2
i (5ème colonne).

i xi ni x2
i

nix
2
i

1 0 1 0 0
2 1 0 1 0
3 2 2 4 8
4 3 5 9 45
5 4 7 16 112
6 5 8 25 200
7 6 2 36 72

∑
99 437

On obtient facilement les valeurs de la variance et de l’écart-type des notes en
utilisant les résultats contenus dans ce tableau.

ν =

k∑
i=1

nix
2
i

n
− x2 = 437

25
− 3, 962 = 1, 80

σ =
√

1, 80 = 1, 34

On peut remarquer que dans cet exemple 20 notes sur 25, soit le 80%, sont situées
entre x − σ et x + σ et 24 notes sur 25, soit le 96%, sont situés entre x − 2σ et
x+ 2σ.

Cas continu

Dans de le cas d’un caractère continu, la variance et l’écart-type se calculent comme dans
le cas discret en utilisant comme valeurs xi les centres de classes.

La variance et l’écart-type changeront légèrement selon la manière dont on aura formé
les classes.

23.5.2 Intervalle semi-interquartile

Définition 23.13
L’intervalle semi-interquartile x̃ d’un caractère prenant les valeurs x1, x2, . . . , xn est
calculé de la manière suivante :

1. Trier les données dans l’ordre croissant.
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2. Diviser les données en deux groupes de taille égale : le groupe A avant la médiane, le
groupe B après la médiane (si la population de départ a une taille impaire, rajouter
la médiane en tête du groupe B).

3. Calculer la médiane du groupe A, que l’on appellera le premier quartile et qu’on
notera Q1.

4. Calculer la médiane du groupe B, que l’on appellera le troisième quartile et qu’on
notera Q3.

5. L’intervalle semi-interquartile (isi) vaut alors :

isi =
Q3 −Q1

2

Remarques

1) Le deuxième quartile, noté Q2, est égal, par définition, à la médiane x̃.

2) Si on utilise la médiane pour mesurer la tendance centrale, on lui associera l’intervalle
semi-interquartile pour mesurer la dispersion.

3) On peut encore affiner la caractérisation de la distribution en réalisant une bôıte à
moustache (ou box plot) qui indique les emplacements respectifs des quartiles et de
la médiane relativement à la plus petite et à la plus grande des valeurs de la population
(on nomme étendue la distance xmax − xmin).

b b

xmin xmax

Q1 x̃ Q3

Ce type de diagramme peut être utilisé, par exemple, pour comparer un même ca-
ractère dans deux populations de tailles différentes. On peut également représenté les
bôıte à moustaches verticalement.

On donne ci-dessous la représentation sous forme de bôıtes à moustaches des tempé-
ratures mensuelles moyennes à Berne de 1826 à 2004.
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Exemple

Nous reprenons les données de l’exemple précédent et nous les séparons en deux
groupes comme indiqué dans la définition de l’intervalle semi-interquartile :

Groupe A Groupe B
0 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 6 6

Q1 =
3 + 3

2
= 3 Q3 = 5

isi =
5− 3

2
= 1

Cas continu

Définition 23.14
Dans le cas d’un caractère continu, dont le polygone des fréquences cumulées est donné
par la fonction F (x), on appelle respectivement premier, deuxième et troisième quartile
les valeurs Q1, Q2 et Q3 telles que

F (Q1) =
1

4
; F (Q2) =

1

2
; F (Q3) =

3

4

L’intervalle semi-interquartile est égal à la moitié de la longueur de l’intervalle
[Q1;Q3] :

isi =
Q3 −Q1

2

Remarque

L’intervalle [Q1;Q3] contient le 50% des valeurs de la population.

Exemple

On donne ci-dessous le polygone des fréquences cumulées des longueurs des sauts
donné dans un précédant exemple en indiquant la manière de déterminer graphi-
quement les premier, deuxième et troisième quartiles.
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Par lecture graphique, la premier quartile vaut environ 113, 7 m, le deuxième envi-
ron 119, 5 m et le troisième environ 125, 7 m. On peut réaliser les calculs suivants
pour déterminer plus précisément l’intervalle semi-interquartile.

La classe où la fréquence cumulée dépasse
0, 25 est : [112, 25; 115, 25[. On peut donc po-
ser que

0, 25− 0, 22

Q1 − 112, 25
=

0, 28− 0, 22

115, 25− 112, 25

et donc en isolant Q1 :

Q1 = 112, 25 +
0, 03

0, 06
· 3 = 113, 75

c
d

b
ars

rs

0.22

0.25

0.28

112, 25 Q1 115, 25

La classe où la fréquence cumulée dépasse
0, 75 est : [124, 25; 127, 25[. On peut donc po-
ser que

0, 75− 0, 0, 72

Q3 − 124, 25
=

0, 78− 0, 72

127, 25− 124, 25

et donc en isolant Q3 :

Q3 = 124, 25 +
0, 03

0, 06
· 3 = 125, 75

c
d

b
ars

rs

0.72

0.75

0.78

124, 25 Q3 127, 25

Et finalement : isi =
125, 75− 113, 75

2
= 6
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23.6 Exercices

1) On donne les valeurs de x1, . . . , x7 et n1, . . . , n7 dans le tableau ci-dessous.

Indice i Valeur de xi Valeur de ni

1 0 2
2 1 5
3 2 3
4 3 6
5 4 2
6 5 9
7 6 1

Avec les données ci-dessus, calculer les expressions suivantes :

a)

5∑

i=2

xi b)

6∑

k=1

nk c)

4∑

i=1

nixi d)

4∑

i=1

ni

4∑

j=1

xj

2) Les trois élèves suivants ont 4 de moyenne. Et pourtant, ils sont très différents. Calculer
l’écart-type de leurs quatre notes et réaliser un digramme en bâtons pour chaque
situation. Quels constats peut-on réaliser ?

a) 4 4 4 4 b) 2 2 6 6 c) 2 3 5 6

3) Au laboratoire de physique, une série de mesures de l’accélération de la pesanteur
terrestre a donné les résultats suivants :

9,95 9,85 10,13 9,69 9,47 9,98 9,87 9,46 10,00

Calculer la moyenne et l’écart-type de ces résultats.

4) On a pesé 100 poussins âgés de deux semaines. Les résultats de ces pesées ont été
regroupés par classe (de centre xi et d’effectif ni) dans le tableau suivant

xi 78 83 88 93 98 103 108 113 118 123 128 133

ni 1 1 4 9 14 20 17 15 10 5 3 1

Représenter ces données sous forme d’un diagramme en bâtons. Calculer la moyenne
et l’écart-type du poids.

5) Lors d’une journée, on a relevé les âges de 20 personnes venant se présenter à l’examen
théorique du permis de conduire :

18 19 19 23 36 21 57 23 22 19
18 18 20 21 19 26 32 19 21 20

Calculer la moyenne, la médiane, le mode, la variance, l’écart-type et l’intervalle semi-
interquartile de ces valeurs.

6) Les températures mensuelles moyennes de cinq villes suisses ont été les suivantes (entre
1901 et 1960) :
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Bâle 0,2 1,4 5,2 8,9 13,4 16,6 18,4 17,6 14,3 9,2 4,3 1,4
Neuchâtel 0,0 1,0 4,9 8,8 13,4 16,6 18,6 17,9 14,7 9,2 4,3 1,3
Genève 0,2 1,1 4,9 8,7 13,1 16,5 18,3 17,6 14,3 9,1 4,5 1,5
Lausanne 0,2 1,2 5,0 8,5 13,0 16,2 18,2 17,6 14,5 9,5 4,5 4,4
Sion -0,2 1,6 6,2 10,3 14,9 18,0 19,6 18,6 15,3 10,0 4,6 0,8

Calculer pour chaque ville la température moyenne annuelle, l’écart-type, la médiane,
les premier et troisième quartiles et l’intervalle semi-interquartile.

7) L’enseignant de mathématiques dit à un élève : ”Tu as réussi à obtenir 4, 5 de note
de semestre”. Quelle est sa dernière note, sachant que dans les quatre premières il a
obtenu 5, 1, 4, 6, 3, 2 et 4, 3 ?

8) 41′250′000 personnes d’un pays ont atteint leur taille définitive (1, 67 mètres de moyen-
ne). Si l’on dit que, dans ce pays, la femme moyenne mesure 1, 61 mètre et l’homme
moyen 1, 74 mètre, quel est le nombre de femmes dans ce pays ?

9) Chaque élève de la classe est prié de relever le prix de trente articles différents
choisis au hasard, soit en se promenant dans un grand magasin, soit en parcourant
un catalogue de vente par correspondance. Il notera ensuite combien de fois apparâıt
chaque premier chiffre significatif (le chiffre tout à gauche, 0 excepté), i.e. combien de
fois le prix des articles commence par 1, par 2, . . . , par 9.

Les résultats seront rassemblées et analysés en classe.

10) Calculer la moyenne arithmétique, la moyenne géométrique, la moyenne harmonique
et la moyenne quadratique pour l’exemple des longueurs des sauts lors du concours
d’Innsbruck. Utiliser les données regroupées en classes.

11) Les salaires mensuels payés aux ouvriers d’une entreprise se répartissent comme suit :

4 ouvriers gagnent entre 3′400 et 3′700 francs
21 ouvriers gagnent entre 3′700 et 4′000 francs
104 ouvriers gagnent entre 4′000 et 4′300 francs
163 ouvriers gagnent entre 4′300 et 4′600 francs
121 ouvriers gagnent entre 4′600 et 4′900 francs
57 ouvriers gagnent entre 4′900 et 5′200 francs
22 ouvriers gagnent entre 5′200 et 5′500 francs
10 ouvriers gagnent entre 5′500 et 5′800 francs

a) Dessiner l’histogramme et le polygone des fréquences cumulées.

b) Calculer le mode, la médiane et l’intervalle semi-interquartile.

c) Calculer le salaire mensuel moyen et l’écart-type.

12) Lors d’un contrôle de vitesse on a relevé les vitesses suivantes (arrondies à l’entier
inférieur ou égal) :

117 134 130 113 127 125 98 110 124 122 126 101
106 121 121 104 124 117 109 128 134 146 111 139
123 124 130 123 120 133 111 143 145 111 110 119
114 104 126 99 140 105 119 134 128 119 137 109
122 130 92 104 113 130 120 84 166 138 129 119
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a) Grouper ces données par classes : [80; 90[, [90; 100[, . . .

b) Dessiner le diagramme à secteur correspondant

c) Calculer le mode, la médiane et l’intervalle semi-interquartile.

d) Calculer la vitesse moyenne et l’écart-type.

13) Un fabricant de cigarettes souhaite commercialiser une nouvelle sorte de cigarettes.
Pour cela, il a fait mesurer la quantité de goudron (en mg) d’un échantillon de 50 de
ces cigarettes. Voici les résultats :

11,70 11,02 11,24 11,12 12,23 10,32 10,33 10,89 11,88 10,72
10,86 11,05 11,23 9,67 10,88 11,36 10,65 11,33 12,00 10,71
10,90 10,74 11,42 10,03 10,35 10,31 11,85 10,88 10,97 10,77
11,06 11,68 10,82 10,16 9,89 10,66 10,94 11,14 10,28 10,35
10,87 11,14 10,79 10,65 11,07 11,43 10,98 10,92 11,20 11,49

a) Réunir ces données en 9 classes d’amplitude égale entre 9, 60 mg et 12, 30 mg.

b) Dessiner l’histogramme en utilisant les classes du point a).

c) Calculer la valeur moyenne de la quantité de goudron par cigarette ainsi que l’écart-
type en utilisant 1) les 50 mesures, 2) les 9 classes.

d) La qualité de cette nouvelle cigarette est jugée stable si la quantité de goudron
d’au moins 3

4
des cigarettes se situe entre x−σ et x+σ. Est-ce que cet échantillon

donne satisfaction ?

14) On donne, dans le tableau suivant, la population du canton du Jura en 2009 et la
population (estimée) du Sénégal en 2010.

Classes Jura Sénégal

[0; 5[ 3073 2060535
[5; 10[ 3832 1656892
[10; 15[ 4321 1486441
[15; 20[ 4585 1397139
[20; 25[ 4300 1228971
[25; 30[ 4009 1028779
[30; 35[ 3858 791366
[35; 40[ 4670 653021
[40; 45[ 5267 525850
[45; 50[ 5439 419856
[50; 55[ 4911 338742
[55; 60[ 4559 277726
[60; 65[ 4356 211036
[65; 70[ 3450 147084
[70; 75[ 2900 119899
[75; 80[ 2538 68501
[80; 85[ 2039 84462
[85; 90[ 1233
[90; 95[ 469
[95; 100[ 219

a) Calculer la moyenne, la médiane, l’écart-type et les premier et troisième quartiles
pour la population du Jura.
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b) Calculer la moyenne, la médiane, l’écart-type et les premier et troisième quartiles
pour la population du Sénégal.

15) Lors d’un concours de Mathématiques sans Frontières, le nombre de points obtenus
par les écoles de Suisse se répartit selon l’histogramme suivant :

a) Calculer la moyenne de cette série.

b) En utilisant l’histogramme, trouver le pourcentage des écoles qui ont moins de 64
points.

16) Après avoir constaté que la moyenne de classe était catastrophique, l’enseignant décide
de monter tout le monde d’un demi-point. Laquelle de ces mesures statistiques ne
changera pas : la moyenne, l’écart-type, le mode ou la médiane ?
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23.7 Solutions des exercices

1) a) 10 b) 27 c) 29 d) 96

2) a) 0 b) 2 c) 1, 581

3) x = 9, 82, σ = 0, 22

4) x = 106, 25, σ = 10, 52

5) x = 23, 55, x̃ = 20, 5, mode = 19,

ν = 79, 74, σ = 8, 93, isi = 2

6)
x σ x̃ Q1 Q3 isi

Bâle 9,24 6,43 9,05 2,85 15,45 6,30
Neuchâtel 9,23 6,61 9,00 2,80 15,65 6,43
Genève 9,15 6,42 8,90 3,00 15,40 6,20
Lausanne 9,40 6,13 9,00 4,45 15,35 5,45
Sion 9,98 6,98 10,15 3,10 16,65 6,78

7) note : 5, 3

8) environ 22′211′538 femmes

10) Moyenne arithmétique : 119, 51, moyenne géométrique : 119, 26, moyenne harmo-
nique : 119, 00, moyenne quadratique : 119, 76

11) b) mode = 4475, x̃ = 4′525, isi ∼= 260 c) x ∼= 4′559, σ = 393, 6

12) c) mode = 123, 6, x̃ = 122, 2, isi = 9, 4 d) x = 121, 7, σ = 14, 5

13) c) 1) x = 10, 938, σ = 0, 530 2) x = 10, 944, σ = 0, 545 d) non

14) a) x = 41, 9, x̃ = 42, 2, σ = 23, 4, Q1 = 22, 0, Q3 = 59, 7

b) x = 22, 9, x̃ = 18, 7, σ = 18, 3, Q1 = 8, 20, Q3 = 33, 2

15) a) x = 55, 37 b) 68, 52% des écoles

16) l’écart-type
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Chapitre 24

Ajustements

Dans beaucoup de recherches statistiques, on ne s’intéresse pas qu’à un seul caractère
mais à plusieurs en même temps. On s’occupe alors fréquemment de leur dépendance les
uns avec les autres.

Quand on considère deux caractères x et y, un couple de valeurs (xi; yi) (i = 1, 2, . . . , n)
correspond à chacun des n individus de la population. L’ensemble des couples obtenus
est appelé série statistique double.

On représente généralement cette série dans un repère cartésien. Cette représentation
graphique de tous les couples (xi; yi) de la série est appelée nuage de points. Quand il
existe une relation entre les deux caractères, on peut résumer le nuage de points par une
courbe telle que le nuage de points a une forte densité au voisinage de la courbe et faible
ailleurs.

Définition 24.1
La démarche d’ajustement consiste à déterminer une courbe C qui résume un nuage de
points.

La courbe C permet d’estimer les valeurs d’un caractère en fonction de valeurs de l’autre
caractère. Les valeurs ainsi estimées sont des approximations.

Lorsque cette courbe est une droite, on parle d’ajustement linéaire.

24.1 Ajustements linéaires

On considère ici les n points d’un nuage représentant la série des n couples de valeurs
(xi, yi) de deux caractères x et y déterminés à partir d’une population de n individus.
L’ajustement d’une droite D à ce nuage de points consiste à remplacer chaque point
(xi; yi) par un point de même abscisse et d’ordonné ŷi, les points (xi, ŷi) étant alignés sur
la droite D.

Il existe plusieurs possibilités d’effectuer ceci. Le problème qu’on peut se poser est de
trouver la ”meilleure” droite qui résume le nuage de points.

Une fois l’équation de la droite D déterminée, on pourra l’utiliser pour faire des in-
terpolations (calculs de valeurs intermédiaires) et des extrapolations (calculs de valeurs
futures).
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24.1.1 Ajustement linéaire graphique

Nous allons travailler sur un exemple pour donner l’idée de la démarche à mettre en
oeuvre.

Lors d’une expérience, on a étudié les caractères taille (caractère x) en cm et masse
(caractère y) en kg de 9 personnes (expérience fictive). On a obtenu les résultats suivants :

Taille (xi) 155 158 160 161 164 167 169 170 172

Masse (yi) 60 58 62 64 62 70 71 68 72

La méthode graphique consiste à tracer, à l’œil, à l’aide d’une règle transparente, une
droite y = mx+ h s’ajustant le mieux possible au nuage de points.

y

b

b

b

b

b

b
b

b

b

b

b

B

A

52
148

56

58

60

62

64

66

68

70

72

74

152 154 156 158 160 162 164 166 168 170 172 174
x

Une fois la droite tracée, on choisit sur le dessin deux points A et B quelconques de
la droite pour en déterminer l’équation. Ces points ne doivent pas obligatoirement faire
partie du nuage de points.

L’équation de la droite passant par les points A(xA; yA) et B(xB ; yB) est donnée par :

y − yB =
yB − yA
xB − xA

(x− xB)

Les points A et B choisis dans notre exemple ont comme coordonnées (152; 56) et
(166; 67). La droite passant par ces deux points est :

y − 67 =
67− 56

166− 152
(x− 166)

On obtient après simplification : y = 0, 78x− 63, 43.

L’équation de la droite étant déterminée et les valeurs de x étant fixées, on peut en
déduire les valeurs ajustées correspondantes du caractère y et extrapoler la masse
d’une personne mesurant 180 cm.

Taille (xi) 155 158 160 161 164 167 169 170 172 180

Masse (ŷi) 58,4 60,7 62,3 63,1 65,4 67,8 69,4 70,1 71,7 78,0
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24.1.2 Ajustement linéaire par la méthode de Mayer

Remarque préliminaire

On considère à nouveau les n points Mi(xi; yi) d’un nuage de points. Soit maintenant
une droite D quelconque d’équation y = mx+ h. On appelle ei l’écart du point Mi à la
droite D :

ei =M ′
iMi = yi − (mxi + h)

y

b

b

ŷi = mxi + h

yi

xi

Mi

M ′
i

ei
D

: y
= mx+ h

x

A quelle condition doit satisfaire la droite D pour que la somme des écarts des points Mi

à la droite soit nulle :
n∑

i=1

ei = 0 ? Cette relation s’écrit :

n∑

i=1

(yi −mxi − h) = 0

ou :
n∑

i=1

yi −m ·
n∑

i=1

xi − n · h = 0

ou enfin :
1

n
·

n∑

i=1

yi

︸ ︷︷ ︸
y

−m · 1
n
·

n∑

i=1

xi

︸ ︷︷ ︸
x

−h = 0

Elle signifie donc que la droite D passe par le point moyen ω, ayant pour abscisse la
moyenne x des abscisses et pour ordonnée la moyenne y des ordonnées.

Ainsi la condition
n∑

i=1

ei = 0 ne suffit pas à déterminer la droite D, puisqu’elle lui im-

pose uniquement de passer par un point. De plus, cette condition n’est pas satisfai-
sante du point de vue de l’ajustement : elle exige seulement que les écarts s’équilibrent
algébriquement (les écarts peuvent être grands en valeur absolue).

Droite de Mayer

Une droite étant déterminée par deux points, le résultat ci-dessus conduit au procédé
suivant.

On divise l’ensemble des points Mi en 2 sous-ensembles , à peu près d’égale importance,
et tels que l’abscisse de tout point du premier soit inférieure à l’abscisse de tout point du
second. On les appelle sous-ensemble de gauche et sous-ensemble de droite.

La droite D d’ajustement de Mayer doit alors vérifier les deux conditions :
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– la somme des écarts des points du sous-ensemble de gauche est nulle ⇒ D passe par
le point moyen ωg du sous-ensemble de gauche,

– la somme des écarts des points du sous-ensemble de droite est nulle ⇒ D passe par le
point moyen ωd du sous-ensemble de droite.

Remarques

1) Comme la somme des écarts pour l’ensemble total est nulle, la droite de Mayer passe
par le point moyen ω de l’ensemble total.

2) On sépare l’ensemble de points en sous-ensemble de gauche et sous-ensemble de droite
pour que les points moyens de ces sous-ensembles soient les plus éloignés possible, de
façon à augmenter la précision dans la détermination de la droite.

Exemple

On reprend ici les données du paragraphe précédent sur la taille et la masse de 9
personnes. On divise tout d’abord l’ensemble des couple en deux sous-ensembles :
– sous-ensemble de gauche : longueur de 155 cm à 164 cm,
– sous-ensemble de droite : longueur de 167 cm à 172cm.
On calcule ensuite les points moyens de ces deux sous-ensembles :

ωg(159, 6; 61, 2) et ωd(169, 5; 70, 25)

La droite de Mayer cherchée passe par ces deux points :

y − 61, 2 =
70, 25− 61, 2

169, 5− 159, 6
(x− 159, 6)

On obtient après simplification : y = 0.91x− 84, 70.

Graphiquement, on obtient l’ajustement suivant :

y

b

b

b

b

b

b
b

b

b

b

b
ωd

ωg

52
148

56

58

60

62

64

66

68

70

72

74

152 154 156 158 160 162 164 166 168 170 172 174
x

24.1.3 Ajustement linéaire par la méthode des moindres carrés

On considère toujours les n points Mi(xi; yi) d’un nuage de points. L’ajustement linéaire
par la méthode des moindres carrés consiste à déterminer la droite (que l’on appelle
aussi droite de régression) telle que la somme des carrés des n écarts ei = yi − ŷi soit
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minimale (ce qui explique le nom de la méthode), où ŷi est l’ordonnée du point de la
droite de régression d’abscisse xi. On veut donc minimiser la quantité

q =
n∑

i=1

e2i =
n∑

i=1

(yi − ŷi)2

Mise en place de la méthode

1) On s’intéresse d’abord au problème restreint suivant.

Parmi toutes les droites de pente donnée m0, trouver celle pour laquelle la somme des
carrés des écarts est minimum.

Pour commencer, on pose que l’équation de la droite cherchée est :

y = m0x+ h

où h est le coefficient à déterminer. A partir de ceci, on peut poser que, pour tout i,
l’écart ei est donné par ei = yi − (m0xi + h). La somme des carrés de ces écarts est
donc :

n∑

i=1

e2i =
n∑

i=1

((yi −m0xi)− h)2

=

n∑

i=1

(yi −m0xi)
2 − 2h ·

n∑

i=1

(yi −m0xi) + n · h2

Cette expression est un trinôme du second degré en b. Il est représenté par une parabole
ouverte vers le haut car le coefficient b2 est multiplié par n, un nombre positif. Ce
trinôme est donc minimal pour 1 :

hmin = −−2
∑n

i=1(yi −m0xi)

2n
=

1

n
·

n∑

i=1

yi −m0 ·
1

n
·

n∑

i=1

xi = y −m0x

Cette relation signifie que parmi toutes les droites de pente m0, celle d’équation y =
m0x + hmin, pour laquelle la somme des carrés des écarts est minimum, est celle qui
passe par le point moyen ω(x; y). En effet, ce dernier vérifie l’équation de la droite
comme y = m0x+hmin. On en déduit que la droite de régression passe nécessairement

par le point moyen ω.

2) Nous sommes donc ramenés au problème : parmi toutes les droites qui passent par ω,
trouver celle pour laquelle la somme des carrés des écarts est minimum.

Pour ceci, on réalise une translation du système d’axe (ou un changement de variables)
de manière à obtenir un nouveau système de coordonnées tel que l’origine de ce dernier
corresponde au point ω. On note (Xi, Yi) les coordonnées des n points du nuage dans
ce nouveau système d’axes. Ainsi, pour i = 1, 2, . . . , n, on a la relation suivante entre
anciennes et nouvelles coordonnées :

xi = x+Xi et yi = y + Yi

1. Le trinôme ax2 + bx+ c, avec a > 0, est minimum pour x0 = − b

2a qui correspond à l’abscisse du
sommet de la parabole
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Dans ce nouveau système d’axes, la droite recherchée passe donc par l’origine et admet
une équation de la forme :

Y = mX

où m est le coefficient à déterminer. Les écarts ei sont donc donné par ei = Yi−mXi.
La somme des carrés de ces écarts est :

n∑

i=1

e2i =
n∑

i=1

(Yi −mXi)
2

=

n∑

i=1

Y 2
i − 2m ·

n∑

i=1

YiXi +m2 ·
n∑

i=1

X2
i

Cette expression est encore un trinôme du second degré en m. Comme le coefficient
de a2 est positif, ce trinôme est minimum pour

mmin = −
−2

n∑
i=1

XiYi

2
n∑

i=1

X2
i

=

n∑
i=1

XiYi

n∑
i=1

X2
i

En revenant aux coordonnées (xi; yi) (voir exercices pour la démonstration), la droite
Dy/x d’ajustement de y par rapport à x passe par le point ω(x; y) et a pour pente

m =

1
n

n∑
i=1

xiyi − x̄ȳ

1
n

n∑
i=1

x2i − x̄2
=
σxy
σ2
x

On appelle le nombre σxy la covariance de x et y. Le nombre σ2
x correspond lui à la

varaince de x.

Méthode de calcul et représentation graphique

1. Dans un tableau, on effectue le calcul des moyennes :

x̄ =
1

n

n∑

i=1

xi et ȳ =
1

n

n∑

i=1

yi

2. On calcule :

σxy =
1

n

n∑

i=1

xiyi − x̄ȳ et σ2
x =

1

n

n∑

i=1

x2i − x̄2

ce qui nécessite, dans le tableau, le calcul des valeurs xiyi et x
2
i .

On en déduit :
m =

σxy
σ2
x

qui est la pente de la droite.

3. On écrit l’équation de la droite Dy/x d’ajustement de y par rapport à x (elle passe par
le point ω(x; y)) :

y − ȳ = m(x− x̄)
4. On trace cette droite sur le graphique. Pour cela, Dy/x passant par ω(x̄, ȳ), il suffit de

trouver un autre point de cette droite.
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Remarques

1) Certaines calculatrices ont des fonctions statistiques qui fournissent ces valeurs très
rapidement. Consultez le mode d’emploi de votre machine !

2) On pourrait également calculer la pentem en utilisant lesXi et Yi définis dans la partie
mise en place de la méthode. Cette démarche peut être intéressante si les valeurs des
xi et yi sont ”grandes”, mais regroupées autour des moyennes, afin d’obtenir obtenir
des produits et des carrés, dans le tableau, moins ”grands”.

Exemple

On reprend l’exemple sur la taille (caractère x) et la masse (caractère y) de 9
personnes. On complète tout d’bord le tableau suivant :

i xi yi xiyi x2i

1 155 60 9′300 24′025
2 158 58 9′164 24′964
3 160 62 9′920 25′600
4 161 64 10′304 25′921
5 164 62 10′168 26′896
6 167 70 11′690 27′889
7 169 71 11′857 27′889
8 170 68 11′560 28′900
9 172 72 12′384 29′584

∑
1′476 587 96′489 242′340

D’après ce tableau, on peut calculer :

– x̄ =
1′476

9
= 164 et ȳ =

587

9
= 65, 22

– σxy =
96′489

9
− 164 · 65, 22 = 24, 55 et σ2

x =
242′340

9
− 1642 = 30, 66

– D’où m =
σxy
σ2
x

= 0, 80.

Équation de Dy/x : y − 65, 22 = 0, 80 · (x− 164), d’où y = 0, 80x− 66, 10 .

Graphiquement, on obtient l’ajustement suivant :

y

b

b

b

b

b

b
b

b

b

52
148

56

58

60

62

64

66

68

70

72

74

152 154 156 158 160 162 164 166 168 170 172 174

b
ω

x
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24.2 Coefficient de corrélation linéaire

Jusqu’à maintenant, nous avons vu comment ajuster une droite à un nuage constitué
de n points (xi; yi). Par contre, nous ne nous sommes pas demandé si les points était
”suffisamment” alignés pour que cette démarche ait un sens ou, de manière équivalente,
si la relation qui lie chaque xi et yi est bien linéaire (du type yi = mxi + h).

Le coefficient de corrélation linéaire est une mesure possible de ce lien. Il détermine s’il
existe une relation linéaire entre les deux caractères et donne également une indication
sur la valeur de l’ajustement linéaire.

Définition 24.2
On appelle coefficient de corrélation linéaire relatif aux caractères x et y, le nombre
réel :

r =
σxy
σxσy

avec σxy =
1

n

n∑

i=1

xiyi − x̄ȳ, σx =

√√√√ 1

n

n∑

i=1

x2i − x̄2, σy =

√√√√ 1

n

n∑

i=1

y2i − ȳ2.

Propriétés du coefficient de corrélation

1. r est un nombre réel compris entre −1 et 1.

2. Quand |r| = 1, tous les points sont alignés.

Remarques

1. Si |r| est voisin de 1, la corrélation entre les caractères x et y est forte. Ainsi, si x
augmente y va également augmenter, si r est positif, ou diminuer, si r est négatif.
Les points (xi, yi), représentés dans un graphique, seront pratiquement alignés.

2. Si |r| est voisin de 0, la corrélation entre les caractères x et y est faible. On ne pourra
pas dégager une relation linéaire entre les caractères x et y.

3. r > 0 indique une corrélation positive, r < 0 indique une corrélation négative.

Méthode de calcul

1. Dans un tableau, on effectue le calcul des moyennes arithmétiques :

x̄ =
1

n

n∑

i=1

xi et ȳ =
1

n

n∑

i=1

yi

2. On calcule :
σxy, σx, σy

ce qui nécessite, dans le tableau, le calcul des valeurs xiyi, x
2
i et y2i .

3. On en déduit le coefficient de corrélation r =
σxy
σxσy

.
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Exemples

1. Les criquets ont un organe spécial sur leurs ailes qui produit un son lors-
qu’ils frottent leurs ailes les unes contre les autres. En règle générale, plus la
température est élevée, plus ils frottent leurs ailes rapidement. On a relevé les
mesures suivantes :

Température (◦C) (xi) 15 17 20 23 27

Nbre de pulsations par sec. (yi) 13, 5 14, 1 14, 5 16, 3 17, 1

On utilise le tableau de calcul suivant :

i xi yi xiyi x2i y2i

1 15 13, 5 202, 5 225 182, 3
2 17 14, 1 239, 7 289 198, 8
3 20 14, 5 290, 0 400 210, 3
4 23 16, 3 374, 9 529 265, 7
5 27 17, 1 461, 7 729 292, 4

∑
102 75, 5 1′568, 8 2′172 1′149, 5

D’après ce tableau, on peut calculer :

– x̄ =
102

5
= 20, 4 et ȳ =

75, 5

5
= 15, 1

– σxy =
1′568, 8

5
− 20, 4 · 15, 1 = 5, 72, σ2

x =
2′172

5
− 20, 42 = 18, 24 et σ2

y =

1149, 5

5
− 15, 12 = 1, 87

– D’où r =
σxy
σxσy

= 0, 98.

On donne ci-dessous, la représentation graphique du nuage de points considéré
dans cet exemple.

y

b
bb

b
b

8
−2

12

14

16

18

2 4 6 8 10 12 14 16 18 20 22 24 26 28
x

2. On a représenté deux jeux de données dans les graphiques ci-dessous.
– Le coefficient de corrélation entre les caractères x et y est de −0.98. Les
points sont pratiquement alignés. On peut supposer qu’il existe une dépendance
linéaire entre les caractères x et y.
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– Le coefficient de corrélation entre les caractères x et y est de 0.53. Il est difficile
de conclure à une dépendance linéaire entre les caractères x et y.

24.3 Ajustements non-linéaires

Lorsque le nuage de points manifeste en tendance courbe et que le coefficient de corrélation
linéaire n’est pas proche de 1 en valeur absolue, l’ajustement de ce nuage par une droite
est hasardeux et aboutira à des estimations de mauvaise qualité. Dans ce cas, on peut
tenter d’utiliser un des modèles proposés dans ce chapitre.

En fait, chacun de ces modèles utilise le principe d’ajustement par la méthode des
moindres carrés (donc ils utilisent tous une droite) mais en ”transformant” au préalable
les données pour obtenir un modèle linéaire à partir du modèle non-linéaire considéré.

24.3.1 Ajustement par une fonction homographique

Les n points (xi; yi) ne sont pas alignés, mais plutôt proches d’une certaine hyperbole de

la forme y =
1

ax+ b
.

Pour utiliser la méthode des moindres carrés, on doit transformer cette expression pour
obtenir une expression de la forme v = A · u+B. On réalise ceci de la manière suivante :

1

y︸︷︷︸
v

= a︸︷︷︸
A

· x︸︷︷︸
u

+ b︸︷︷︸
B

Méthode de calcul

1. Calculer ui = xi et vi =
1
yi
.

2. Déterminer l’équation de la droite de régression de v par rapport à u par la méthode
des moindres carrés.
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3. De l’équation v = Au + B, déduire l’équation de l’hyperbole d’ajustement y = 1
ax+b

,
en utilisant que a = A et b = B.

Par exemple, on obtient l’ajustement ci-dessous si on applique cette méthode aux données
de l’exercice 6.

y

1

2

1 2 3 4 5 6 7 8 9 10

b

b
b b b b b b b b b x

24.3.2 Ajustement par une fonction puissance

Les n points (xi; yi) ne sont pas alignés, mais plutôt proches d’une courbe représentant
une fonction puissance de la forme y = b · xa.
On transforme cette expression pour obtenir une expression de la forme v = A · u+B de
la manière suivante :

ln(y) = ln(b · xa)
ln(y) = ln(xa) + ln(b)

ln(y)︸ ︷︷ ︸
v

= a︸︷︷︸
A

· ln(x)︸ ︷︷ ︸
u

+ ln(b)︸︷︷︸
B

Méthode de calcul

1. Calculer ui = ln(xi) et vi = ln(yi).

2. Déterminer l’équation de la droite de régression de v par rapport à u par la méthode
des moindres carrés.

3. De l’équation v = Au+B, déduire l’équation de la courbe d’ajustement y = b · xa, en
utilisant que a = A et b = eB.

Par exemple, on obtient l’ajustement ci-dessous si on applique cette méthode aux données
de l’exercice 7.

y

2

4

6

8

10

12

14

16

18

20

22

1 2 3 4

b b
b

b

b

b

b

b

b

x
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24.3.3 Ajustement par une fonction exponentielle

Les n points (xi; yi) ne sont pas alignés, mais plutôt proches d’une courbe représentant
une fonction exponentielle de la forme y = b · ax.
On transforme cette expression pour obtenir une expression de la forme v = A · u+B de
la manière suivante :

ln(y) = ln(b · ax)
ln(y) = ln(ax) + ln(b)

ln(y)︸ ︷︷ ︸
v

= ln(a)︸ ︷︷ ︸
A

· x︸︷︷︸
u

+ ln(b)︸︷︷︸
B

Méthode de calcul

1. Calculer ui = xi et vi = ln(yi).

2. Déterminer l’équation de la droite de régression de v par rapport à u par la méthode
des moindres carrés.

3. De l’équation v = Au+B, déduire l’équation de la courbe d’ajustement y = b · ax, en
utilisant que a = eA et b = eB.

Par exemple, on obtient l’ajustement ci-dessous si on applique cette méthode aux données
de l’exercice 8.

y

1

2

3

1 2 3 4 5

b b
b b b

b

b

b

b

x

24.3.4 Ajustement par une fonction logarithme

Les n points (xi; yi) ne sont pas alignés, mais plutôt proches d’une courbe représentant
une fonction logarithme de la forme y = a ln(x) + b.

On transforme cette expression pour obtenir une expression de la forme v = A · u+B de
la manière suivante :

y︸︷︷︸
v

= a︸︷︷︸
A

· ln(x)︸ ︷︷ ︸
u

+ b︸︷︷︸
B

Méthode de calcul

1. Calculer ui = ln(xi) et vi = yi.

2. Déterminer l’équation de la droite de régression de v par rapport à u par la méthode
des moindres carrés.

3. De l’équation v = Au+B, déduire l’équation de la courbe d’ajustement y = a ln(x)+b,
en utilisant que a = A et b = B.
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Par exemple, on obtient l’ajustement ci-dessous si on applique cette méthode aux données
de l’exercice 9.

y

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9

b

b

b

b

b

b
b

b
b b

x
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24.4 Exercices

1) Lors d’une expérience, on a relevé les valeurs suivantes :

xi 1 2 3 4 5 6 7 8 9 10

yi 1,1 3,1 4,7 7,3 9,2 11,1 12,9 15,4 17 18,8

a) Donner l’équation d’une droite ajustant ces valeurs

1) à l’œil ;

2) par la méthode Mayer ;

3) par la méthode des moindres carrés.

b) Dessiner les droites obtenues en 2 et en 3.

c) Interpoler la valeur de ŷ pour x = 6, 3 grâce aux droites obtenues en 2 et en 3.

2) Le tableau ci-dessous compare des voitures de même catégorie. Il met en rapport la
cylindrée (en pouces) et le nombre de miles parcourus avec un gallon d’essence (3, 78
litres aux USA).

Voiture Cylindrée Miles par gallon

VW Rabbit 97 24

Datsun 210 85 29

Chevette 98 26

Dodge Omni 105 24

Mazda 626 120 24

Oldsmobile Starfire 151 22

Mercury Capri 140 23

Toyota Celica 134 23

Datsun 810 146 21

a) Donner l’équation d’une droite ajustant ces valeurs

1) à l’œil ;

2) par la méthode des moindres carrés.

b) Dessiner la droite obtenue en 2.

c) Estimer le nombre de miles par gallon d’une voiture ayant une cylindrée de 125
grâce à la droite obtenue en 2.

3) Le tableau de la page suivante montre l’évolution des temps olympiques du 200 m
plat, en secondes, pour les hommes et pour les femmes.

a) Donner l’équation des droites (celle des performances des hommes et celle des
performances des femmes) ajustant ces valeurs

1) à l’œil ;

2) par la méthode des moindres carrés.
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b) Dessiner les droites obtenues en 2.

c) Estimer les temps olympiques de 2004 et 2008 puis les comparer aux valeurs réelles.
Constats ?

d) D’après les droites obtenues en 2, en quelle année les femmes courront-elles le 200
m plat aussi vite que les hommes ?

e) Ces ajustements affines sont-ils adéquats ?

200 m hommes 200 m femmes

Londres 1948 21,1 24,4

Helsinki 1952 20,7 23,7

Melbourne 1956 20,6 23,4

Rome 1960 20,5 24,0

Tokyo 1964 20,3 23,0

Mexico 1968 19,83 22,5

Munich 1972 20,00 22,40

Montréal 1976 20,23 22,37

Moscou 1980 20,19 22,03

Los Angeles 1984 19,80 21,81

Séoul 1988 19,75 21,34

Barcelone 1992 19,73 21,72

Atlanta 1996 19,32 22,12

Sydney 2000 20,09 21,84

Athènes 2004

Pékin 2008

4) Rendre à chacun des nuages de points ci-dessous sons coefficient de corrélation linéaire :
−0, 98, −0, 50, 0, 53 et 0, 94
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5) Dans une entreprise qui fabrique et vend un seul produit, le relevé des ventes men-
suelles et des charges mensuelles correspondantes (en milliers de francs) donne le
tableau suivant :

Ventes 18 16 21 22 29 28 10 11 27 25 26 19

Charges 20 16 18 21 25 24 12 12 22 20 22 16

a) Donner l’équation de la droite ajustant ces valeurs par la méthode des moindres
carrés.

b) Calculer le coefficient de corrélation linéaire.

6) Ajuster ce nuage de points par une hyperbole de la forme y =
1

ax+ b
.

xi 0 1 2 3 4 5 6 7 8 9 10

yi 1,1 0,43 0,19 0,15 0,08 0,05 0,06 0,05 0,04 0,04 0,03

7) Ajuster ce nuage de points par une fonction puissance de la forme y = bxa.

xi 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0

yi 0,1 0,5 1,4 2,7 5,1 7,6 11,2 15,9 22,3 28,1

8) Ajuster ce nuage de points par une fonction exponentielle de la forme y = bax.

xi 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0

yi 0,2 0,3 0,5 0,6 0,7 1,1 1,6 2,4 3,3

9) Ajuster ce nuage de points par une fonction logarithme de la forme y = a ln(x) + b.

xi 1 2 3 4 5 6 7 8 9 10

yi 1,1 2,9 4,4 5,1 5,8 6,5 6,8 7,3 7,7 7,8
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24.5 Solutions des exercices

1) a) 1) y = 1, 99x−0, 9 2) y = 1.992x−0896 c) 1) ŷ = 11.64 2) ŷ = 11.65

2) a) 2) y = −0.08x+ 34.01 c) 2) ŷ = 23, 54

3) hommes : a) 2) y = 66.34− 0.02x c) 19.44 et 19.35

femmes : a) 2) y = 122.17− 0.05x c) 21.17 et 20.97

d) en 2068

4) a) −0.50 b) 0.94 c) −0.98 d) 0.53

5) a) y = 0, 64x+ 5, 61 b) 0, 95

6) y =
1

3, 1x− 0, 33

7) y = 0, 52x2,45

8) y = 0, 11 · 1, 97x

9) y = 3 ln(x) + 0, 99
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Symboles
=, 228
⊂, 228
⊃, 228

A
abscisse, 202, 233
actualisation, 126, 128
ajustement, 402

exponentielle, 413
homographique, 411
linéaire, 402
logarithme, 413
non-linéaires, 411
puissance, 412

algèbre de Boole, 231
alphabet grec, 141
amplification, 11
amplitude, 329, 377
analogue, 150
angle

aigu, 161
au centre, 150
droit, 161
inscrit, 149
mesure, 160
obtu, 161
plat, 161

angles
alternes-externes, 148
alternes-internes, 148
correspondants, 148
opposés, 148
supplémentaires, 148

application, 252
application linéaire, 104
associativité, 9, 187, 231, 263
asymptote, 296

horizontale, 297, 298
verticale, 297, 298

axe
des x, 234

des y, 234

B
barycentre, 153
base, 191

associée, 201
bipoint, 184

extrémité, 184
origine, 184

bissectrice, 143
bôıte à moustaches, 394
bord, 350
box plot, 394

C
capital, 125
capitalisation, 126
caractère, 375

continu, 375
discret, 375

carré, 145
cathète, 144, 166
centre, 146

de gravité, 153, 203
cercle, 146

circonscrit, 151
de Thalès, 152
inscrit, 154
trigonométrique, 162

classe, 377
d’équivalence, 238
modale, 390

coefficient, 14, 292
de corrélation linéaire, 409
dominant, 292

cofacteur, 68
combinaison linéaire, 189
commutativité, 9, 187
composante scalaire, 191
concourant, 151–154
coordonnée, 201
corps, 103
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correspondant, 150
cosinus, 167
côté, 142
couple, 233, 402

symétrique, 236
transposé, 236

courbe, 255
covariance, 407

D
degré, 160
dénominateur, 5, 11, 20
déphasage, 329
déterminant

d’ordre n, 68
d’ordre 2, 64
d’ordre 3, 65
rangée, 66
transposé, 66

diagramme
circulaire, 382
en bandes, 382
en bâtons, 379
figuratif, 383
polaire, 383
sagittal, 253

diamètre, 146
dimension, 103, 191
direction, 185
discriminant, 46
distributivité, 10, 231
dividende, 51
diviseur, 8, 51
divisible, 52
division euclidienne, 51
droite, 141, 208

à l’œil, 403
de Mayer, 404
de régression, 405
des moindres carrés, 407
équation cartésienne, 210
équation cartésienne résolue, 211
équations paramétriques, 209
intersection, 212
ordonnée à l’origine, 211
parallèle, 149, 212, 280
pente, 74, 211, 276, 277
position relative, 212
réelle, 6

sécante, 212, 280

E
écart-type, 375, 392
écriture de nombres

chiffres significatifs, 7
décimale, 7
notation scientifique, 7

effectif, 377
total, 378

élément
inverse, 9
neutre, 9, 187, 231
opposé, 9, 187

ensemble, 3, 227
=, 4, 228
∈, 3, 227
/∈, 3, 227
⊂, 4, 228
⊃, 4, 228
∅, 4, 228
cardinal, 228
complémentaire , 230
d’arrivée, 252
de définition, 254, 258
de départ, 252
différence, 229
différence symétrique, 229
disjoint, 230
élément, 3, 227
ensemble des parties, 231
image, 252
intersection, 229
partition, 230
réunion, 229
sous-ensemble, 4, 228

ensemble-quotient, 238
équation, 41

bicarrée, 49
deuxième degré, 44
ensemble des solutions, 41
équivalente, 42
exponentielle, 312, 321
indépendante, 81
irrationnelle, 59
linéaire, 73
logarithmique, 319
polynomiale, 50
premier degré, 43

page 422
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racine, 41
rationnelle, 57
résolution, 41
solution, 41
trigonométrique, 335

équipollent, 185
espace

vectoriel, 103, 190
expression fonctionnelle, 252
extrapolation, 402

F
facteur de capitalisation, 127
figure

plane, 142
flèche, 184
fonction, 251, 252

affine, 276
bijective, 261
composée, 262
constante, 269, 282
cosinus, 163, 325
cotangente, 164, 327
croissante, 268
décroissante, 268
définie par morceaux, 99
exponentielle, 306, 308
exponentielle naturelle, 310
expression mathématique, 257
homographique, 297
impaire, 267
injective, 260
linéaire, 280
logarithme, 315
paire, 266
périodique, 329
polynôme, 292
puissance, 300
quadratique, 283
racine, 303
rationnelle, 295
réciproque, 264, 302, 314, 330
réelle, 254
représentation graphique, 255, 257, 266–

269, 276, 278, 283, 286, 292–294, 296,
298, 300, 301, 304, 311, 316, 325–
327

signe, 100
sinus, 163, 326

sinusöıdale, 329
surjective, 259
tableau de valeurs, 254
tangente, 164, 327
valeur absolue, 99
zéro, 254, 277, 284, 293, 296, 298

formule
d’addition, 332
de bissection, 335
de Cramer, 81, 83
de duplication, 334
de Moivre, 112
de soustraction, 332
de symétrie, 331

fraction, 11
équivalentes, 21
amplifier, 21
différence, 23
inverse, 24
irréductible, 11, 21
opposé, 23
produit, 23
quotient, 24
rationnelle, 20
simplifier, 21
somme, 22

fréquence, 381
cumulée, 381

G
graphe, 236, 253, 255

intersection, 279
graphique, 375, 377
groupe

abélien, 102

H
hauteur, 143
histogramme, 380
hyperbole, 298
hypothénuse, 144, 166

I
identité remarquable, 14
image, 236, 252
inconnue, 41
inéquation, 88

deuxième degré, 93
polynomiale, 94
premier degré, 91
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rationnelle, 97
résolution, 88
solution, 88

intérêt, 125
composé, 127
simple, 126

interpolation, 402
intervalle, 232

fermé, 232
ouvert, 232
semi-interquartile, 393, 395
semi-ouvert, 232

isométrique, 144
isomorphisme, 104

L
lieu géométrique, 156
ligne, 141
limite, 350, 351, 364

à droite, 352, 360
à gauche, 352, 360
à l’infini, 362
forme indéterminée, 356, 361
infinie, 359

logarithme, 315
décimale, 315
formule de changement de base, 318
naturel, 315

lois de De Morgan, 231
longueur, 185
losange, 145

M
maximum, 287
médiane, 143, 375, 388, 389
médiatrice, 143
mesure

de dispersion, 375, 391
de tendance centrale, 375, 385

milieu d’un segment, 203
mineur, 68
minimum, 287
mode, 375, 390
monôme, 15

coefficient, 15
degré, 15
indéterminée, 15
partie littérale, 15
semblable, 15

moyenne, 375

arithmétique, 155, 385
géométrique, 155, 386
harmonique, 387
pondérée, 388
quadratique, 387

multiple, 8

N
nombre

e, 310, 363
complexe, 101
entier, 5
irrationnel, 5
naturel, 5
premier, 8
rationnel, 5
réel, 5

nombre complexe, 102
argument, 109
conjugué, 106
forme cartésienne, 105
forme trigonométrique, 109
module, 109
partie imaginaire, 105
partie réelle, 105

norme, 110
nuage de points, 402
numérateur, 5, 11, 20

O
ordonnée, 202, 233

à l’origine, 74, 276, 284, 294
origine, 201
orthocentre, 152

P
parabole, 283
parallélogramme, 144
paramètre, 78
période, 329
pgdc, 8
pied, 143
plan affine, 201
plan de Gauss, 108

axe des imaginaires, 108
axe des réels, 108

plan vectoriel, 186
point, 141

d’ancrage, 208
polygone, 142
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des effectifs, 380
des fréquences cumulées, 381

polynôme, 16
=, 17
coefficient, 16
coefficient dominant, 16
degré, 16
différence, 17
évaluer, 17
factorisation, 18, 45
irréductible, 55
mise en évidence, 18
opposé, 17
produit, 17
racine, 43
somme, 17
zéro, 43

population, 375
ppmc, 8
préimage, 236
priorité des opérations, 11
produit cartésien, 233
progression

arithmétique, 119
géométrique, 122
géométrique illimitée, 124
raison, 119, 122

propriétés
addition, 9
fraction, 11
limites, 353, 359, 362
logarithme, 317
multiplication, 9
nombre opposé, 10
puissance, 12, 302
racine, 13, 305

puissance, 12, 300
base, 12, 300
exposant, 12, 300

pyramide des âges, 384

Q
quadrant, 234
quadrilatère, 144
quartile, 395

deuxième, 394
premier, 394
troisième, 394

quotient, 51

R
racine, 13, 303

carrée, 13, 303
indice, 13, 303
radical, 13, 303
radicande, 13, 303

radian, 161
rayon, 146
rectangle, 145
récurrence, 118
règle

de Sarrus, 65
des signes, 12

relation
antisymétrique, 237
binaire, 236
connexe, 237
d’équivalence, 186, 237
d’ordre, 237
d’ordre total, 237
de Chasles, 187
réciproque, 237
réflexive, 237
symétrique, 237
transitive, 237

repère, 201
représentation graphique, 235
résolution

graphiquement, 76
par combinaisons linéaires, 80
par les formules de Cramer, 81
par substitution, 78

résoudre un triangle, 168, 172
reste, 51
rhomböıde, 145

S
saut, 350
scalaire, 183
schéma de Horner, 53
sens, 185

trigonométrique, 160
série statistique double, 402
simplification, 11
sinus, 167
sommet, 142, 285
statistique

descriptive, 375
inférentielle, 376
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suite, 117
bornée, 118
convergente, 364
croissante, 119
décroissante, 119
divergente, 364
majorée, 118
minorée, 118
monotone, 119

symbole de sommation, 24, 376
système

d’équations, 74, 75
équivalent, 76
homogène, 83
résolution, 74
solution, 74–76

système de coordonnées, 234

T
tableau, 375, 377
tangente, 167
taux

d’intérêt, 125
équivalent, 128
proportionnel, 128

terme, 117
test

de la droite horizontale, 259–261
de la droite verticale, 256

théorème
d’Euclide, 155
de l’Hospital, 357
de la hauteur, 155
de Pythagore, 155
de Thales, 148
des deux gendarmes, 357
du cosinus, 170
du sinus, 169
fondamental de l’arithmétique, 9

trajectoire, 184
trapèze, 144
triangle, 143

équilatéral, 144
isocèle, 144
rectangle, 166
scalène, 144
semblable, 150

triangle
de Pascal, 14

trou, 350

V
variable, 252
variance, 392
vecteur, 183, 186

colinéaire, 190
de base, 201
différence, 187
directeur, 208
direction, 186
force, 183
linéairement dépendant, 189
linéairement indépendant, 190
longueur, 186
nul, 186
opposé, 186
produit par un nombre réel, 188
représentant, 186
sens, 186
somme, 187
vitesse, 183

voisinage, 350

Z
zéro

multiplicité, 57
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