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Chapitre 1

Notions fondamentales

1.1 Ensembles et sous-ensembles

Définition 1.1
Une collection d’objets est un ensemble lorsqu’on peut dire avec certitude si un objet
donné appartient ou non a la collection. Ces objets sont les éléments de I'ensemble.

N’importe quel objet (mathématique ou non) peut étre considéré comme un élément d’un
ensemble (y compris un ensemble!).

Notation

1. On représente généralement un ensemble par une lettre latine majuscule : E.

2. Les éléments d'un ensemble sont notés entre accolades et séparés par des points-
virgules.

3. Si I’élément = appartient a I’ensemble F, on écrit x € E.

4. Si I'élément x n’appartient pas a I'ensemble F, on écrit = ¢ E.

Exemples

— L’ensemble des nombre de 0 a 6 y compris : E={0;1;2;3;4;5;6}.
Ici, on a :
0€E, 4€Fk, 10 ¢ F.

— L’ensemble des éléves d’'une classe : F'= {Aline; Bernard;. . .}.

On peut définir un ensemble de deux manieres différentes :
1. en énumérant ses éléments, G = {5;10; 15;20; 25; .. .}.

2. en donnant une condition d’appartenance. La notation est alors légerement plus
sophistiquée. Par exemple, on traduit la phrase

7 H est 'ensemble des ¢léments de E tels que leur carré est plus grand ou égal a 15”7
S ——— N———— , _

~
= {3 on don?lggn nom I n?>15
on écrit la condition & ’aide d’une formule

général aux éléments ~ . ) L i
de I’ensemble grace au fait qu’on a donné un nom aux éléments

par
H={ne E|n*>15}
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Cas particulier

Si un ensemble F ne contient aucun élément, on 'appelle ensemble vide et on le note
{} ou @.

Définition 1.2
Si tous les éléments de I’ensemble A appartiennent a I’ensemble B, on dit que A est un
sous-ensemble de B.

Exemple
A={1;2:3;4}, B={1;2;3;4;5;6} et C={3;4;5;6}

L’ensemble A est un sous-ensemble de B, mais A n’est pas un sous-ensemble de C.

Définition 1.3
Soit A et B des sous-ensembles d’un ensemble E. On dit que

1. A est inclus dans B si tout élément de A appartient a B. On note A C B. Dans
ce cas, A est un sous-ensemble de B.

2. A contient B, lorsque tout élément de B appartient a A. On note A O B. Dans ce
cas, B est un sous-ensemble de A.

3. A est égal a B, lorsque tout élément de A appartient a B et que tout élément de B
appartient a A. On note A = B.

Syntaxe

Nous venons de rencontrer deux signes mathématiques qu’il s’agit de ne pas confondre :

Nom Terme de gauche | Symbole | Terme de droite
Appartenir a Elément € Ensemble
Etre inclus dans Ensemble - Ensemble
Etre égal a Elément = Elément
Etre égal a Ensemble = Ensemble
Contenir Ensemble > Elément
Contenir Ensemble D Ensemble

On a I’équivalence suivante lorsque A est un ensemble.

reAs{z}CA

Remarques

1. A ¢ B signifie qu'il existe au moins un élément de A qui n’appartient pas a B.

2. Soit un ensemble E = {a;b; c}.
a € Eet {a} C E sont des notations correctes, a C E ne 'est pas.
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1.2 Les ensembles de nombres

Les mathématiciens ont classé les nombres dans des ensembles, appelés ensembles de
nombres. Ces derniers sont désignés par des symboles universellement adoptés :

1. IN=1{0;1;2;3;4;5;6...}|: 'ensemble des nombres naturels.

C’est cet ensemble de nombres que nous utilisons la plupart du temps pour compter
(des objets, de I'argent, etc.). Historiquement, le zéro n’est pas apparu en méme
temps que les autres nombres. On le rencontre pour la premiere fois en Inde. Les
Hindous (sanscrit) I'ont désigné par le mot "sunya” qui signifie : vide ou nul. Les
Arabes l'ont repris en le transformant quelque peu pour donner ”sifr”. Le zéro n’a
été importé en Furope qu’au début du XIII® siecle par Fibonacci. Les Européens
(en latin) ont transformé ”sifr” en ”zephirum” qui donnera zéro et en ”cifra” qui
donnera chiffre.

2. |Z={...;-3;,—-2;—-1;0;1;2;3...}| : 'ensemble des nombres entiers (relatifs).

Ensuite, les nombres négatifs sont apparus et, mis ensemble avec les nombres na-
turels, ont formé ’ensemble des nombres entiers. Moins utilisés que les nombres
naturels dans la vie de tous les jours, on les trouve notamment dans I'expression de
la température. Leur présence permet a la soustraction d’exister quels que soient
les nombres que 1’on soustrait : sans eux, 2 — 3 n’existerait pas.

3. Q= {]—) | p,q €Z,q # O} : ensemble des nombres rationnels (fractions).
q

Tous les nombres pouvant se mettre sous forme de fraction sont des nombres ra-
tionnels. On en utilise tous les jours lorsqu’on parle de centimetres, de décilitres,
de centiemes de seconde, de moitié, de tiers, etc.

Exemples

— Les nombres entiers (v = 7).
— Les nombres a virgules ayant un développement décimal limité ou périodique

(125=213=3)

En termes mathématiques, p est le numérateur (vient du mot numéro ou nombre,
car il compte) et ¢ est le dénominateur (vient de dénommer, car il correspond a
un nom comme demi, tiers, dixieme, etc.).

4. : ’ensemble des nombres réels.

Finalement, il y a des nombres qui ne sont pas des fractions. Ils sont appelés les
nombres irrationnels (les nombres a virgule ayant un développement décimal
illimité non périodique). Ils ont été découverts par les Grecs (qui ont eu de la peine
a en accepter 'existence). Ils apparaissent par exemple lorsqu’on étudie la longueur
des cotés d'un triangle, le périmetre d’un cercle, etc.

L’ensemble des nombres réels est constitué des nombres rationnels et des nombres
irrationnels.

On a les inclusions

NCZCQCR‘
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Proposition 1.1
Le nombre v/2 est un nombre réel irrationnel (il n’est pas un nombre rationnel).

Démonstration. Nous allons effectuer une démonstration par l'absurde. Principe d'un
telle démonstration : supposer le contraire de ce que 'on désire démontrer et montrer
que cette supposition est impossible (en exhibant une contradiction).

Supposons que v/2 est un nombre rationnel.
= il existe a,b € Z, b # 0 et a, b premiers entre eux (c’est-a-dire ¢ irréductible) tel
que V2 = 7

= 2= ‘Z—j et donc a? = 2b%. On en conclut que a?

un nombre pair.
= q est pair. En effet, élever au carré conserve la parité :
- si m est pair, m = 2n, m* = 4n? = 2(2n?), m? est pair.

- si m est impair, m = 2n + 1, m? = 4n? +4n + 1 = 2(2n* + 2n) + 1, m? est

impair.
= il existe a’ tel que a = 2a’. On obtient que a®> = 4(a’)? = 2b® et donc que
b = 2(a')?.

= b? est pair. Par la méme réflexion que ci-dessus, il existe b tel que b = 2V'.
_a __2d __da
=>V2=5=%=7

= La fraction § n’est pas irréductible. Ceci est en totale contradiction avec notre

supposition de départ.

Il découle de cette remarque que v/2 n’est pas un nombre rationnel. O

Conventions complémentaires

On introduit encore les conventions d’écriture suivantes :
-R'={zxeR|z#0}
-Ry={zxeR|z>0}

-R_o={zxeR|z<0}

Les combinaisons de ces conventions sont possibles : R’ ...

Ces combinaisons s’appliquent par analogie aux autres ensembles de nombres (natu-
rels,. .. ).

1.2.1 La droite réelle

On représente les nombres réels par une droite, appelée la droite réelle.
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1.2.2 Ecriture décimale

L’écriture décimale permet de représenter TOUS les nombres réels d'une fagon agréable,
mais qui n’est en général PAS EXACTE. Cette écriture permet de placer avec une précision
relative n’importe quel nombre réel sur la droite réelle.
Voici quelques nombres écrits sous forme décimale.

2 1 2 5

- =04 —=0.125 - =056 — =
3 8 3 13

2=120

0.384615 V2 =1.414213. ..

Les nombres rationnels peuvent s’écrire sous forme de nombres décimaux limités (comme
2 et 3) ou périodiques (comme 2 et =), contrairement aux nombres irrationnels dont
le développement décimal est TOUJOURS infini et non-périodique (comme /2 et 7 =

3.14159265 . . .).

1.2.3 Notation scientifique

La notation scientifique permet d’écrire des nombres "tres grands” ou "tres petits”.

Si on se donne un nombre a € R, on I’écrira de la maniere suivante en notation scientifique
a=*tx-10"

avec 1 <z < 10 (x € R) et n € Z. En d’autres termes, on écrit le premier chiffre non
nul du nombre suivi d'une virgule et des chiffres suivants. On multiplie ensuite par la
puissance de 10 adéquate pour retrouver le nombre de départ (on doit avoir une égalité!).
Le nombre de chiffres écrits est appelé le nombre de chiffres significatifs. Il est en

général fixé par le contexte. Afin de raccourcir I'écriture la plupart des calculatrices
écrivent :

+xEn aulieude £z-10"
Exemples
nombre décimal notation nb de chiffres
nombre exact arrondi scientifique significatifs

2 2 2-10° 1

: 0.5 5-107" 1

3 0.50 5.0-107" 2

= 1.3 1.3-10° 2

-3 —0.333 -3.33-107* 3
V119 10.9087 1.09087 - 10! 6

220 1048576 1.048576 - 10° 7
(—2)% —5629499534 - - -7 | —5.629 - 101° 4
3100 5153775207 -- -7 | 5.1537752 - 10%7 8
(1™ 0.0000000---? | 1.9403-10~% 5

page 7




Mathématiques, MAP 197 année 1. Notions fondamentales

La notation scientifique permet de se donner un ordre de grandeur du nombre en question.
Plutot superflue dans les premiers exemples, elle est ESSENTIELLE dans les deux derniers
exemples !

1.2.4 PPMC, PGDC et nombres premiers

Définition 1.4 (Rappel)
Soit a et b deux nombres naturels non nuls (a,b € N*), alors :

1. a est un multiple de b s’il existe un nombre naturel ¢ tel que a =b- c.

2. b est un diviseur de a s’il existe un nombre naturel c tel que a = b - c.

Exemples

1. 32 est un multiple de 8, car 32 =4 - 8.
2. 7 est un diviseur de 21, car 21 =17 - 3.

Définition 1.5 (Rappel)

1. Un multiple commun de plusieurs nombres naturels est un nombre naturel qui est
multiple de chacun d’eux. Le plus petit multiple commun de plusieurs nombres
est appelé le ppmc de ces nombres.

2. Un diviseur commun de plusieurs nombres naturels est un nombre naturel qui est
diviseur de chacun d’eux. Le plus grand diviseur commun de plusieurs nombres
est appelé le pgdc de ces nombres.

Exemples

1. 36 est le ppme de 3, 9 et 12.
2. 8 est le pgdc de 16, 24 et 40.

Définition 1.6
Un nombre entier naturel p est premier s’il admet exactement deux diviseurs, 1 et lui-

meme.
Propriétés
1. Tout entier naturel supérieur ou égal a 2 admet au moins un diviseur premier.

2. Il existe une infinité de nombres premiers.

Démonstration. Nous allons démontrer la seconde propriété. On doit cette preuve a Eu-
clide.

Supposons que cet ensemble soit fini. Il contient n nombres pi, ps, ..., py.

Posons N = p; -py-...-p,+ 1. N n’est pas premier par hypothese. N admet donc au
moins un diviseur premier p; qui doit étre py, ps, ...ou p, : N = ¢ - p;. Ainsi,

I = N—=pi"p2-eo o Pn=q"Pi—pP1-D2"---"Dn
1 = pz‘(q—Pl'p2'---'pi_1-p,-+1-...-pn)

Del=pi(g—p1-pa--.. Pi—1-Piz1-----Pn), o0 tire que p; divise 1, ce qui est impossible. [
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Théoréme 1.2 (Théoreme fondamental de I'arithmétique)
Tout nombre entier naturel supérieur ou égal a 2 peut s’écrire comme un produit de
nombres premiers. Cette décomposition est unique a I'ordre des facteurs pres.

On appelle cette décomposition la décomposition en facteurs premiers du nombre.
Exemples

- La décomposition de 720 en facteurs premiers est : 720 = 2* - 3% . 5.
- La décomposition de 4200 en facteurs premiers est : 4200 = 23 -3 .52 - 7.

1.3 Calcul littéral

Le calcul arithmétique consiste a prendre des nombres ”connues” et a exécuter sur ces
derniers des opérations : addition, soustraction, multiplication et division.

Le calcul littéral (ou algébrique), quant & lui, consiste & manipuler des expressions
littérales (c’est-dire avec des nombres et des lettres qui représentent des nombres). Par
rapport au calcul arithmétique, une partie des nombres ”connus” est remplacée par des
lettres désignant des nombres "inconnus”. Il y a plusieurs raisons pour lesquelles le calcul
algébrique est essentiel.

La premiere est pour éviter de faire le méme calcul un nombre important de fois en
raison du fait qu’une ou plusieurs données du probleme peuvent varier, tel que le prix
de I'essence, par exemple. Le calcul algébrique permet d’arriver a une réponse simplifiée
dépendant des (ou de la) données qui varient.

La deuxieme est que, parfois, les valeurs de certaines données d'un probléme ne seront
connues que plus tard, mais que cela ne devrait pas nous empécher d’avancer dans la
résolution du probleme.

La regle d’or est la suivante :

LA PRESENCE DE LETTRES DANS UN CALCUL NE CHANGE RIEN A LA FACON DE
CALCULER. UNE LETTRE NE FAIT QUE REPRESENTER UN NOMBRE QUELCONQUE !

1.3.1 Propriétés des opérations

Propriétés de ’addition

1) L’addition est commutative : a+b=b+a (B+4=7=4+3)

2) L’addition est associative : a+(b+c)=(a+b)+c (2+4(3+4) = (24+3)+4)
3) 0 est 'élément neutre : at+0=a (24+0=2)

4) —a est 'élément opposé dea: a+ (—a) =0 (34 (=3) =0)

Propriétés de la multiplication

1) La multiplication est commutative : a-b=b-a (3-4=12=4-3)
2) La multiplication est associative : a-(b-c)=(a-b)-c (2:(34)=(23)49)
3) 1 est 'élément neutre : l-a=a (1-2=2)
4) Sia#0, é est I’élément inverse de a : «a - é =1 (3- é =1)
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La multiplication est distributive par rapport a I’addition

a-(b+c)=a-b+a-c (1.1)

Pour réaliser le produit de deux sommes, on utilise plusieurs fois la distributivité de la
multiplication par rapport a l'addition :

(a+b)(c+d)=alc+d)+blc+d) = ac+ ad+ bc + bd

Exemples
1) Distributivité : 2- (34+4)=14=2-3+2-4

2) Produit de deur sommes : (2+3)-(4+5)=2-(4+5)+3-(44+5)=2-442-
0+3-443-5=45

Définition 1.7
Deux termes techniques sont liés a la distributivité.

Développer : C’est 'opération qui consiste a passer du membre de gauche de 1'égalité
(1.1) au membre de droite de la méme égalité. Elle consiste donc & transformer
un produit en une somme en ”effectuant” la multiplication selon la regle de
distributivité.

Mettre en évidence : C’est 'opération qui consiste a passer du membre de droite de
I'égalité (1.1) au membre de gauche de la méme égalité. Elle consiste donc a repérer
dans une somme de termes le facteur qui est commun a tous les termes de la somme
et a transformer cette somme en le produit du terme commun et de la
somme (entre parenthéses) des termes restant selon la régle de distributivité.

Exemples
1) Pour développer l’expression 2-(5+8) on effectue la multiplication pour obtenir :
2.(5+8) =2-5+2-8

2) Dans la somme 2 -5+ 2 -8, on peult mettre le facteur 2 en évidence car il est
commun aux deux termes de la somme :

2.5+2-8=2-(5+8)

On réalise donc lopération inverse de celle effectuée en 1.
Il est possible de montrer que ces propriétés impliquent :
a-b=0=a=00ub=20

C’est une relation nous utiliserons tres fréquemment.

Propriétés des nombres opposés

1) —(-a)=a (—(~4) = 14)

2) (-a)-b=—(a b)za (=b)  ((~4)5 = —(20) = 4:(-5))
3) (=a)- (= b) b ((~3) - (~4) = 12)

4) (-1)-a=- ((-1) 4= —4)
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Propriétés des fractions
Rappel

Une fraction représente le quotient (= division) de deux nombres a et b. Elle est un

nombre qu’on note
a

b

ol a est le numérateur (ou dividende), b le dénominateur (ou diviseur) et — la barre
de fraction.

2
Ezxemple : R est un fraction qui correspond au nombre 0,4. Elle se lit "deux cinquieme”.

Plusieurs fractions peuvent représenter le méme nombre (penser a 3 = g = __—155 = % =

On peut utiliser le produit en croix pour vérifier si deux fractions sont égales.

%:g,si a-d=b-c
Exemple.%:}—gcar2-15:3-10
Les opérations sur les fractions suivent les regles ci-dessous :
o - a c¢_a-d+tb-c 2 4 25434
Clieation - L _a-c 2 1 2.1
2)  Multiplication : A Rl (5 . ﬁ)
vision - p_a.c_ad 5 _2.3_24
3) Division : A <§:3_4:.3>
;. _e_—e_ @ 222
4)  Opposé : ; 5 — (3_ . __3>

On transforme une fraction en une autre fraction équivalente par la suite d’opérations :

a a a-m
I
b b

a m
b m b-m

En lisant de gauche a droite, on amplifie la fraction. En lisant de droite a gauche,
on simplifie la fraction. On dit qu’une fraction est irréductible si on ne peut pas la

simplifier (comme pour 2).

Nous reviendrons plus en détails sur ces concepts au paragraphe (1.5).

Priorité des opérations

L’ordre de priorité des opérations s’établit ainsi (plus le numéro est élevé, plus la priorité
est grande) :

Priorité 4 - les parentheses ()
Priorité 3 - l'exponentiation y” et les fonctions (sinus, cosinus, etc.)
Priorité 2 - la multiplication et la division

Priorité 1 - l'addition et la soustraction
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La regle de priorité est la suivante :

1. en lisant de gauche a droite, quand un nombre se trouve entre deux signes opéra-
toires, c’est 'opération prioritaire qui est effectuée en premier.

2. si les deux opérations ont le méme niveau de priorité, elles sont effectuées dans
lordre d’écriture.
Regle des signes

Lorsqu’on a une multiplication ou une division entre deux nombres, la régle des signes
s’applique.

nombre multipli@tion nombre || nombre
ou division
+ - ou + + +
+ - ou + — —
- ou -+ + -
— - ou -+ — +

On peut aussi utiliser des phrases mnémotechniques du style : les amis de mes amis sont mes amis ; les amis de mes ennemis

sont mes ennemis ; les ennemis de mes amis sont mes ennemis ; les ennemis de mes ennemis sont mes amis.

1.3.2 Les puissances et les exposants

Définition 1.8
Un nombre a multiplié n fois par lui-méme, a-a-...-q, est appelé puissance n-eéme
———

a apparait n fois

de a et est noté a. On dit également “a élevé a la puissance n” ou plus rapidement "a
puissance n”. Dans I’écriture a™, on appelle a la base et n 'exposant.

Ezemple : 3-3-3-3-3-3 =3°

P
3 apparait 6 fois

Propriétés

— Pour multiplier 2 puissances de méme base, on additionne les exposants :

‘an.am:an+m‘

Exemple : 2° -2 =(2-2-2-2-2)-(2-2-2-2) = 2°

Pourn=0:a"-a°=a" =

De plus :

sin > m.
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— Pour multiplier 2 puissances de méme exposant, on multiplie les bases :

a-b" = (a-b)"

Exemple : 2833 = (2-2-2)-(3-3-3)=(2-3)-(2-3)- (2-3) = 6°

— Pour élever a des puissances successives, on multiplie les exposants :

Ezemple : (3%2)> =(3-3)-(3-3)-(3-3) =3¢

Ces formules ne sont valables, pour 'instant, que pour a et b des nombres réels (a,b € R)
et n et m des nombres naturels (n,m € N). On les généralisera dans la suite du cours.

1.3.3 Les racines

Définition 1.9

L’opération prendre la racine d’'un nombre est l'inverse de 1’élévation d'un nombre a
une certaine puissance. On définit la racine n-éme (n € N*) d’'un nombre a (avec
a € Ret a>0), notée {/a, comme I'unique nombre réel x > 0 qui satisfait

" =a
Le symbole o/ est appelé radical , I’expression sous le radical est appelé radicande et
n l'indice.

Si n = 2, on écrit simplement \/a et on lit racine carrée de a.

Exemples

1. V0 =0 (car 02 =0)

2. VA =2 (car 2 est l'unique nombre réel positif tel que 2° = 4. Remarque :
(—2)? = 4 également, mais —2 est un nombre réel négatif!)

3. V/8=2 (car 2’ =38)

Si a et b sont des nombres réels strictement positifs (a,b € R%) et n, m, p des nombres
naturels strictement positifs (n,m,p € N*), on a les propriétés suivantes :

Ja=Vb<=a=b

(%)n:a \7@_:%% \

nam:(%)m n %:n% npamp:nam

Attention!
~ Va2t #a+b eneffet : V32 +42=/25=5#43+4=7T
- \/a+b7é\/5+\/5,eneffet:\/4+ =V13#V4+v/9=5
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1.3.4 Identités remarquables

Les identités remarquables sont des formules qu’il est bon de reconnaitre en toute
circonstance. Elles vont revenir dans tous les chapitres. Pour la plupart ce n’est quun
rappel.

a+b)* = a® + 2ab + b (a —b)? =a*—2ab+V?
# = a® + 3a%b + 3ab® + b® (a —b)* = a® — 3a®b + 3ab® — b*
Y= a4+ 4a’b + 6a*b* + 4ab® + b* (a —b)* = a* — 4a’b + 6a°b* — 4ab® + b*

Ces égalités se lisent dans les DEUX sens (comme toute égalité). Il est facile de les retrouver
en développant le terme de gauche. Par contre, il est important de les connaitre afin de
pouvoir les reconnaitre lorsque seul le terme de droite est présent.

Reprenons la premiere de ces formules. On peut écrire : (a +0)>=1-a*>+2-ab+ 1V
On appelle le 71”7 devant a? le coefficient de a?; le coefficient de ab est 2, celui de b? est
1.

Dans les formules de la premiere colonne, la puissance a laquelle on a élevé (a + b) est
chaque fois augmentée de 1. Observez ce qui se passe :

- A chaque puissance correspond une suite de coefficients.
Ezemples : a la puissance 2 correspond : (1;2;1), a celle de 8 correspond : (1;3;3;1).

- En lisant de gauche a droite, les exposants de a sont décroissants par pas de 1, ceux
de b croissants par le méme pas.

Pour le cas général (a + b)", les coefficients sont donnés par le triangle de Pascal.

n
0| 1

17 1 1

211 2 1

3] 1 3 3 1
411 4 6 4 1
5/ 1 5 10 10 5 1
6| 1 6 15 20 15 6 1

Le triangle de Pascal

D’autre identités sont également tres utiles

(a+b)-(a—0b)=a*—b
(a+0b)(a* —ab+b?*) = a® + b
(a—b)(a®+ ab+V?*) = a® — b*

(a+b+c)* =a*+ b+ + 2ab + 2ac + 2be
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Applications

1. 38-42 = (40 — 2) - (40 + 2) = 40% — 22 = 1600 — 4 = 1596
2.212=(20+1)2=202+2-20+1 =400+ 40 + 1 = 441
3. 352 = (30 + 5)% = 30% 4+ 2 - 150 + 52 = 900 + 300 + 25 = 1225

Démonstration. Nous allons démontrer quelques-unes des identitées proposés ci-dessus.
Les autres démonstrations sont laissées au lecteur.

. (a+b)2=(a+b)-(a+b) =ala+b)+bla+b) = a®+ab+ba+b* = a? 4 2ab + b?

—_

U = W N
A/g?/—\/—\

+
\_/E\_/\_/
A/Q—J\/—\

N

|

Qo

o

_|._

o

L~

I

Q

w

|

Q

no

S

_|._

Q

S

[N}

+

S

Q

[N}

|

=)

S

no

+

S

w

I

V]

«w

+

T

«w

1.4 Polynomes

1.4.1 Monomes

Définition 1.10

On appelle monéme les nombres réels, les lettres, qui sont appelées indéterminées ou
les expressions qui peuvent étre obtenues par la multiplication a partir des nombres réels
et des lettres.

Un monoéme en une indéterminée est le produit d’'un nombre réel, a, et d’'une puis-
sance d'une indéterminée, généralement noté x, :

a-x"

Le nombre réel a est le coefficient du monome.

La puissance de I'indéterminée, x", est la partie littérale du monome et son exposant,
n € N, est le degré du monome.

Deux mondmes sont semblables si et seulement si leurs parties littérales sont égales.

Exemples

1) 4z%y, xy’z, —2x, 5, 0 sont des mondmes.

2) x 4+ x + x est un monome, forme réduite : 3x.
1+ 3z n’est pas un monome car cette expression n’est pas le produit de nombres
et/ou de lettres.

3)

Monéme 5o | —3a2% | Iat x? —V22% | 7,8
- 7
Coefficient 5 -3 3 1 —V2 7,8
Partie littérale | =« x? x? x? 3 =1
Degré 1 2 4 2 3 0

4) 2% et —32% sont deuz monomes semblables.
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Opérations sur les monomes

Somme : On obtient la somme de monomes semblables en conservant la partie littérale
commune et en additionnant les coefficients. On utilise la distributivité de la mul-
tiplication sur I'addition.

Produit : On obtient le produit de deux monomes en multipliant leurs coefficients entre
eux et leurs parties littérales entre elles (addition des puissances). On utilise la
commutativité et ’associativité de la multiplication.

Exemples

1) Somme : 5z* + 8x° s (5+8) - 2% = 1322

2) Produit : 5% - 82° ‘2" 5.8 - 22 - 3 “Z 4022+3 = 402°

1.4.2 Polynoémes

Définition 1.11
On appelle polynéme tout monome et toute somme de monomes.

Exemples

1) T2%y + 8xyz — 3y323 et —4a® + Sxy — x + 2y — 4 sont des polynomes.

2) % + 3z, 52152 et 3z + 2/ ne sont pas des polynomes.

Pour la suite de ce cours nous considérerons uniquement des polynoémes formés de mono-
mes en une indéterminée, que nous noterons .

On polynome est sous forme réduite si ses monomes semblables sont regroupés en
un seul terme. Pour obtenir un polynome sous forme réduite, on somme ses mondmes
semblables en utilisant la regle d’addition ci-dessus.

Exemples

1) 22% — 3z + 2 est un polynéme sous forme réduite. Il a trois termes.

2) Ta? — 3z + 22% — 4 n’est pas un polynome sous forme réduite, puisqu’il contient
les deuz termes semblables Tx? et 2x2. Forme réduite : 92> — 3x — 4

Définition 1.12
Un polynéme (en une indéterminée), nommé p(x), s’écrit de maniere ”générale”

p(T) = apa" + ap_1 2"+ ap 12" P 4+ apr® + T+ ag

avec ay € R, a, #0et n € N.
La valeur de 'exposant le plus grand, n, est appelée le degré de p(z), noté deg(p(x)).

Le nombre a; est appelé le coefficient de rang ¢ de p(x) et a, le coefficient dominant.

On écrira généralement un polyndéme de maniere ordonnée, c’est-a-dire en écrivant ses
termes dans l'ordres des degrés décroissants.
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Exemples
Polynome Degré | Coeff. dom. | a5 | as | ag | as | a1 | ag
p(r) =525 + 22* + 322 + 5 5 51210 1]3]1]0
p(z)=—-23+2*+5 3 —1 —|=|=111]0]5
plx) = 52 +2 1 3 — =] =] =132
p(z) =6 0 6 — |- —=-|=-1]1-16

Evaluation d’un polynome

On peut évaluer un polynome p(z) en n’importe quel nombre réel a en remplacant
I'indéterminée x par le nombre a et en évaluant la valeur de ’expression ainsi obtenue.
On note cette valeur p(a).

Exemple

Soit le polynome p(x) = —a® + 22* —x — 7
Sia=2:p2)=-23+2-22-2-7=-8+8-2—-7=-9
Sia=—5:p(—5)=—(=5)3+2-(=5)% —1-(=5)—T=125+50+5—7=173

Opérations sur les polynomes

Egalité : Deux polynomes sont dit égaux s’ils sont de méme degré et si tous leurs
coefficients de rang ¢ correspondants sont égaux.

Somme : On additionne deux polynomes en regroupant les termes semblables, méme
puissance de I'indéterminée, et en les additionnant (équivalent a réduire la somme
des deux polynomes).

Opposé : On obtient 'opposé d'un polynome en changeant le signe de chacun de ses
termes. (Cela revient a le multiplier par —1.)

Différence : On soustrait un polynome d’un autre polynome en y additionnant son
OppOSeE.

Produit : On multiplie deux polynomes en multipliant chaque monome du premier par
chaque monome du second et on réduit la somme de monomes obtenue. (On ap-
plique & plusieurs reprises la distributivité.)

Exemples
Soit les polynomes p(x) = 22* — 4z + 6 et q(x) = 2* + 3z — 5.
1) Egalité :

p(x) =222 — 4z + 6 =6 — 4o + 20> = —dv + 6+ 22° = 2(2® — 20 +3) = ...
2) Somme :

p(z) +q(z) = (22% -4z +6) + (2? + 3z — 5)

(222 + 2?) + (—4a + 32) + (6 — 5)
= 3?—z+1
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3) Opposé :
—p(z)=—-1-(222 — 4+ 6) = —22° + 42 — 6
4) Différence :
p(z) —q(z) = (22% — 42 +6) — (2*> + 3z —5)
(2:62 4z +6) + (—2* — 3z +5)
202 — %) + (—4x — 3z) + (6 + 5)

5) Produit :
p(x)-qlx) = (22% —4x +6) - (2® + 32— 5)
= 222 (22 + 32 —5) + (—4x) - (2> + 32 —5) +6 - (22 + 3z — 5)
= 2% 2%+ 227 3z + 22 - (—H)+
(—4x) - 2? + (—4x) - 3z + (—4z) - (—5)+
6-2>+6-3x+6-(—H)
= 2zt + 623 — 1022 — 42 — 1222 + 20z + 622 + 18z — 30
= 22 + 223 — 162% + 38z — 30
On peut remarquer que : 4 = deg(p(x) - q(x)) = deg(p(x)) + deg(q(z)) = 2 + 2.

Formule des degrés

Soit p(z) et g(z) deux polyndémes. On a la formule suivante :

deg(p(x) - q(v)) = deg(p(z)) + deg(q(z))

Cette formule se démontre facilement en utilisant la définition du produit de deux po-
lynomes.

1.4.3 Factorisation d’un polynome

La factorisation ou décomposition en facteurs consiste a trouver, pour un polynéome
p(z) de degré supérieur ou égal a 2 donné, un produit de polynomes de degré supérieur
a 0 qui lui soit égal et dont les facteurs ne peuvent plus étre décomposés.

La factorisation est le processus inverse du développement. Ainsi, pour controler si une
factorisation est correcte, il suffit de développer le produit obtenu et voir s’il correspond
au polynome de départ.

Exemple

Le polynome x* — 9 peut se décomposer ainsi : 2> — 9 = (x + 3)(z — 3).

On donne ci-dessous quelques procédés permettant d’effectuer cette transformation tres
importante et parfois difficile. D’autres technique seront données dans la suite du cours.

Mise en évidence

On repere d’abord dans la somme de termes a décomposer le facteur qui est commun a
tous les termes de la somme et on utilise ensuite la distributivité pour écrire un produit.
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Exemples

1) 2 —8x = x(x — 8) — On a mis x en évidence.

2) 6ax + 6a = 6a(x + 1) — On a mis 6a en évidence (ne pas oublier le +1 dans
la parenthése).

3) a(x+y)+bx+y) = (a+b)(xr+y) — Le facteur x +y est commun auz deux
termes de la somme.

4) —1223y + 242%y* + 62y = 62y(—222 + 4oy + y?)

Utilisation des identités remarquables

On peut utiliser les identités remarquables vues au paragraphe (1.3.4) pour factoriser un
polynome.

Exemples

1) 92% — 25y = (3z — 5y)(3z + 5y)
2) da? —4x +1= (22 — 1)?
3) a® — 6a*b + 12ab® — 8b% = (a — 2b)3

Décomposition d’un trinéme du second degré

Essayons de déterminer « et 5 de manieére a pouvoir écrire :
2+ 70+ 12 = (x+a)(z+ )
La forme réduite du membre de droite de cette égalité est égale a
2° + (a+ B)z + af
Pour que les deux membres soient égaux, il faut donc que
a+pB="7 af =12

Ces deux égalités sont vraies si « = 3 et § = 4. On obtient ainsi la décomposition du
trinome du second degré donné en un produit de deux facteurs du premier degré :

2+ T+ 12 = (v +3)(x +4)

La décomposition d'un trindme du second degré dont le coefficient dominant est 1 est
ainsi ramenée a la recherche de deux nombres dont

— la somme est égale au coefficient de rang 1,

— le produit est égal au coefficient de rang 0.

Méthode des groupements

Elle consiste a former plusieurs groupes de termes (dans les exemples les plus courants 2
groupes), de telle maniére que 1'on puisse

— soit utiliser une identité remarquable,

— soit mettre en évidence un facteur commun auz différents groupes.
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Exemples

1) 22 -2zy+vy* -1 = (22 —2zy+y?) -1 ass. addition
= (z—y)?-1 identité remarquable
= [(x—y)+1][(zx —y)—1] identité remarquable
= (z—y+)(z—y-—1) ass. addition

2) ar+br—ay—by = (ax—ay)+ (bx —by) ass. et comm. addition
= a(r—y)+b(r—vy) mise en évidence
= (r—vy)la+b) mise en évidence

Méthode de factorisation

Pour décomposer un polynome, il faut souvent appliquer plusieurs des méthodes décrites
ci-dessus. On procede dans l'ordre suivant :

1. mise en évidence des facteurs communs a tous les termes,
utilisation d’une identité remarquable,

2.
3. méthode de décomposition pour les trinomes du second degré,
4.

méthode des groupements.

Exemples

1) 3622 —100 = 4(92* —25) mise en évidence
= 43z —5)(3z+5) identité remarquable
2) 5a* —5b* — 5a*c? 4+ 5b*c* = 5[(a® —b?) — *(a® — b?)]
= 5(a*-0*)(1-c?)
5(a—"0b)(a+b)(1 —c)(1+c¢)

1.5 Fractions rationnelles

Définition 1.13
On appelle fraction rationnelle le quotient de deux polynomes en une indéterminée,
p(x) et q(z) :

ou ¢(x) n’est pas le polynéme nul (¢(z) # 0).
p(z) est appelé le numérateur de la fraction et ¢(x) le dénominateur.

Exemple
2 8x2 —3 2 1
. —xi_ 1’ x_gx j_;r R sont des fractions rationnelles.

Pour travailler avec ces fractions rationnelles, il est nécessaires de définir des opérations
entre ces fractions. Ces dernieres devront étre des prolongements des définitions des
opérations sur les polynomes, et donc concorder avec celles-ci, car tout polynome p(z) # 0

p(x)

peut étre vu comme la fraction rationnelle : —=. La méme remarque est valable pour

les nombres réels.
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1.5.1 Opérations sur les fractions rationnelles

Convention d’écriture : Dans ce paragraphe, les lettres A, B, C' et D représenteront
des polynomes (en une indéterminée). En particulier, on pourrait voir ces lettres comme
représentant des nombres réels (qui sont des polynomes de degré 0) et retrouver ainsi les
opérations décrites au paragraphe (1.3.1).

Simplification d’une fraction rationnelle

On simplifie une fraction rationnelle en remplagant dans le numérateur et le dénomina-
teur un facteur (polynéme) qui leur est commun par 1 (= on divise le numérateur et le
dénominateur par un méme facteur).

AC A1 A

B-C B-1 B

Une fraction rationnelle simplifiée au maximum est dans sa forme irréductible.

Remarque

Pour simplifier une fraction rationnelle, on factorise d’abord son numérateur et son
dénominateur, puis on simplifie par les facteurs communs.

Exemples
21 . -1
p2_ 37 313
14 2.7 2.1 2

On a simplifié la fraction % par 7.

2) > =3c+2 (z-2)(z—-1) (z—2)-1 -2
2—-1 (a+1)(x—-1) (z+1)-1 a+1
On a stmplifié la fraction par x — 1.
24+ 6x+9 (z + 3)? (z + 3)? r+3

5 :173+x2—69::x(x2—|—x—6) :x(a?—l—?))(x—Q) ::1:(:17—2)

322 -3  3(x*-1) 1-(z+1(x—-1) =x-1

4)12x+12:12(x+1): Az+1) 4

Amplification d’une fraction rationnelle

On amplifie une fraction rationnelle en multipliant son numérateur et son dénominateur
par un méme polynéme (non nul).

A-C
B-C

C’est donc la transformation inverse de la simplification.

A
B

Deux fractions rationnelles sont alors équivalentes si on peut passer de I'une a 'autre
par simplifications et/ou amplifications.
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Exemples
4 4.7 28
] —_ = — = —
) 5 5.7 35

On a amplifié % par 7

r—2 (z—-2)(x—1) 2°>—-3r+2

r—5 (z—5)(zx—1) 22—-6x+5

On a amplifié la fraction par x — 1. Il suffit de simplifier la fraction du milieu
par x — 1 pour obtenir l’égalité.

2)

Somme de deux fractions rationnelles

Pour additionner deux fractions rationnelles, on procede de la maniere suivante :

1) déterminer un multiple commun aux dénominateurs des deux fractions — un
polynome qu’on peut obtenir par multiplication a partir des dénominateurs des deux
fractions,

2) amplifier les deux fractions pour obtenir aux dénominateurs le polynome déterminé
en 1 — on dit qu'on met les fractions au méme dénominateur,

3) additionner les numérateurs en conservant le dénominateur commun.

A+C’_A-D+B-C’_A-D+B-C’
B D B-D B-D  B-D
Cette méthode fonctionne aussi quand on veut additionner un polynome et une fraction

rationnelle. Il suffit d’écrire le polynéme p(x) sous la forme @ et d’appliquer la méthode
ci-dessus.

Remarque

Le dénominateur ”préféré” (parce qu’il rend les calculs plus simples!) est le multiple
commun des deux dénominateurs du plus petit degré possible.
On l'appelle le ppmc des deux dénominateurs.

Exemples
1)3+5—9+10—9+10—19
4 6 12 12 12 12

Dénominateur commun : 12 — ppmec de 4 et 6.

a’> —a a—2_a2—a+a—2_a2—2

2 = -
) a+1+a+1 a+1 a+1
Addition directe car les deux fractions sont déja au méme dénominateur.
2 -7 2(z +2) (=7)(z —3) 2r+4—Tr+21
r—3 z+2 (x=3)(z+2) (x—3)(z+2) (x —3)(z+2)
—bx + 25 (=5)(x —5)

(x=3)(z+2) (z—-3)(x+2)
Dénominateur commun : (x — 3)(x +2) — produit de v — 3 et x + 2.
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p 2 LT 2 (-T)(x—3)  2-Tz+21
(z—-3)(x+2) z+2 (z-3)(z+2) (r=3)(z+2) (z-3)(xz+2)
—Tx + 23
(x —3)(x +2)

Dénominateur commun : (x — 3)(x +2) — ppme de (x — 3)(z + 2) et x + 2.

Opposé d’une fraction rationnelle

L’opposé d’une fraction rationnelle s’obtient en prenant I’opposé soit de son numérateur,
soit de son dénominateur.

Exemples

3 =3 3
1 _, = — = —
/ 4 4 —4

) 5 3
est l'opposé de .
> —3x+2 —a*+3rx—-2 2 —3r+2
-1  z2-1 2241
22 — 3z + 2
x? —1

2)

est 'opposé de la fraction rationnelle

Différence de deux fractions rationnelles

Pour soustraire une fraction rationnelle d’une premiere fraction rationnelle, on addi-
tionne a la premiere 'opposé de la seconde.

A C_A —C_AD B(C)_AD-BC
B D B D B-D B-D B-D
Exemples
1)3 1_3+—1_3+—2_3—2_1
4 2 4 2 4 4 4 4
Q)az—a a—2_a2—a+(—1)(a—2)_a2—a—a+2_a2—2a+2
a+1 a+1 a+1 at+1 a+1  a+1

Produit de deux fractions rationnelles

Pour multiplier deux fractions rationnelles, on multiplie leurs numérateurs entre eux et
leurs dénominateurs entre eux.

A C A-C
B D B-D
Pour multiplier un polynome par une fraction rationnelle, il suffit, comme pour ’addition,
d’écrire le polynome p(x) sous la forme @ et d’appliquer la regle ci-dessus.
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Exemples
2 4 2-4 8

3'5 3.5 15
r—3 -2 (z—=3)(x—2) a*—5x+6
z+1 z+1 (z+D(@+1) 22+22+1

2)

Inverse d’une fraction rationnelle

L’'inverse d’une fraction rationnelle est obtenue en inversant son numérateur et son
dénominateur (si le numérateur et le dénominateur sont différents de zéro).

A inverse B
B A
Exemples
3
1) 1 est l'inverse de 3
22 — 31+ 2 2 -1

2)

est linverse de la fraction rationnelle

2 —1 22 —3r+2°

Quotient de deux fractions rationnelles

Pour diviser une fraction rationnelle par une seconde fraction rationnelle, on multiplie
la premiere par I'inverse de la seconde.

3_A.C_AD_AD
& B'D B C B-C
Exemples
i3 1 3.7 2
2 45 5 20
2)i—j_x—?)‘x%—l_(x—?))(x—l—l)_x—?)
22 o+l x—-2 (e+D)(x—2) z-2

1.6 Symbole de sommation

Définition 1.14
Le symbole de sommation, noté a ’aide de la lettre grec 3, s’utilise pour désigner de
maniere générale la somme de plusieurs termes.

Soit n termes aq, as, ..., a,. La somme de ces n termes s’écrit de la maniere suivante a
I’aide du symbole de sommation :

a1+a2+...+an:Zak
k=1
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On appelle k£ l'indice de la somme. Il permet de décrire la maniere dont on somme les
éléments.

Le nombre se trouvant a droite de 1’égalité sous le symbole de sommation est la valeur
de départ de I'indice de sommation, ici 1, et le nombre au-dessus du symbole la valeur
finale de I'indice, ici n. La somme porte sur toutes les valeurs de k comprises entre ces
deux bornes (bornes comprises).

Le symbole de sommation permet donc d’écrire des sommes d’un nombre important de
termes de maniere précise et condensée sans utiliser les points de suspension.

L’indice de sommation peut étre utilisé pour décrire les termes de la somme de maniere
directe et les bornes sur I'indice de sommation peuvent avoir d’autre valeurs que 1 et n.

Par exemple, la somme des puissance de 2 comprises entre 6 et 27 peut s’écrire
27
> 2
k=6

au lieu de 2° 4+ 27 + ... 4+ 220 4+ 2%7,

Donnons d’autres exemples pour bien comprendre cette notation.

Exemples

~

8
. Zk:3+4+5+6+7+8:33
k=3

4
2. sz:21+22+23+24:30
k=1

Y (K-1)=1 -1+ -1+ -1)+#-1)=0+3+8+15=26

k=1
4> (B =1)=0+3+8+15+...+(n’ 1)
k=1
4
5. ) (k—1P=02-1P +3B-1°+(4-1°=1"+2°+3" =36

k=2

Proposition 1.3
Soient n € N*; zy,....2, €ER; y1,...,y, ERet a € R.

Le symbole de sommation possede les propriétés suivantes :

LY (@ntye) =Y a+ Yt
k=1 k=1 k=1
2. Za-xk:a-Zxk
k=1 k=1
3. Za:n~a
k=1

Ces propriétés du symbole de sommation découlent directement de 'associativité et de
la commutativité de ’addition ainsi que de la distributivité de la multiplication sur 1’ad-
dition.
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1.7 Principe de récurrence

Nous allons décrire ci-apres un principe qui nous permettra de démontrer certaines rela-
tions utiles pour la progression du cours.

Proposition 1.4 (Principe de récurrence)
Soit P(n) une propriété de l'entier n € N. On suppose qu’on a les deux assertions sui-
vantes :

1. P(0) est vraie (ancrage);
2. pour tout n € N, P(n) implique P(n + 1) (hérédité).
Alors P(n) est vraie pour tout n € N.

L’hypothese d’hérédité signifie que si P(n) est vraie alors P(n + 1) l'est aussi. Dans ces
conditions, on comprend bien que P(n) est vraie pour tout n. En effet, P(0) est vraie
par 'hypothese d’ancrage, donc P(1) 'est par hérédité, donc P(2) aussi pour la méme
raison, etc.

Exemple

A laide du principe de récurrence, nous allons démontrer la relation :
. n-(n+1)
1+2+3+... = E k= ——
+2+3+...+n 2 5

pour tout n € N*. Cette propriété dépend donc de n et pourrait étre désignée par
P(n), pour reprendre la notation proposé ci-dessus. On procéde en deux étapes :

1. Ancrage : La formule est vraie pour n = 1 :

212

1= — = OK.
2

Cette égalité est vraie et la relation est donc vraie pour n = 1 (autrement

dit : P(1) est vérifiée).
2. Hérédité On suppose que la formule est vraie pour n quelconque. On montre

alors qu’elle est vraie pour n+1.

n-(n+1

Hypothese : 1 +24+3+...+n = %

n+1)-(n+2)
2

On doit donc montrer la seconde égalité en s’appuyant sur la premiére. Pour
cela, on part du terme de gauche de la seconde éqalité et par une suite
d’égalités on essaie d’obtenir le terme de droite :

Conclusion : 1+2+3+...+n+(n+1)=
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“(n+1
1+243+...+n+(n+1) = %jL(nle)

Hyp::%m
n-(n+1)+2-(n+1)
2
(n+1)-(n+2)

2

Nous venons de prouver l’hérédité de notre formule : P(n) = P(n+1).

La formule :

N n-(n+1)
Zk_f
k=1

est donc vraie pour tout nombre naturel positif n par le principe de récurrence.

Remarque

Cette formule est a connaltre par coeur !
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1.8 Exercices

1) Placer chacun des nombres suivants dans la bonne ”"plage” (ne reporter que la lettre
correspondante) :

a=0 b=—1,2

c:% d:g

e=3,48 f=m

g="2 h=+/36 <:>Z Q|R]|C
i=vT =2

b= =2 I= 8

m = 2,999 n = 2,999

2) Ecrire en notation scientifique :

a) 14000000 b) 1,004 c) 0,000004
d) 0,00081 e) 143 f) 23,090

3) Indiquer la décomposition en facteurs premiers de 14’520, 10’725 et 9’126 ; déterminer
ensuite leur pgdc et ppme.

4) Supprimer les parentheéses inutiles :

a) (§)+2+(4~3)—1 b) (4-2)+5-(2+x)

i

¢) (+2)-(z—1)+@Bz2)—(x+2) d) (=372 (x—4)+(x+2)3

5) Simplifier les quotients suivants :
55 24 + 18 24 + 18 8+ 12
2 33 b5 ) —7 U 158

6) Additionner les fractions suivantes et simplifier :

4 1 4 9 6 3 1 3
242 b) =42 e 4 -+ 2
) 373 ) 5+3 ) svit3 ) 3+
3 4 4 9 3 5 4 11
2 4= ) 242 v 2 h) =4 =
) nts ) 5t 15 8 173 ) 57 12
)2 3 1 )6+ L2, 1 k)7+3 19
714 2 Vg T T3 o 8 42476
1) §+l_|_g H’l) l+2+§+1 Il) E+4_5+@+§
5710 3 16 378" 6 84 54 45 ' 56
) 54 140 65 119 ) 242 ) 243
O [— [ [ [
72733 117 189 V21 Vo
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7) Effectuer les multiplications suivantes :

o 495 475 s s ) 161 676 615 686
125 304 405 363 368 343 624 819
o 883 192 527 216 o (o). (1,7
279 289 882 128 6 10 11 4
8) Effectuer les divisions suivantes :
3 15 1212 60 30
— = — b) — =+ — — = —
RESYI ) 917 13 ©) 397 13
) 3600 | 2772 e) 9251 | 783 f) 9.7
4225 © 4433 5819 ~ 621 11~ 132
9) Effectuer les calculs suivants :
i 90 14 25 16
e y BE
140 T 245 72 360 175
T =T
225 616 1439
) %_3%0 f) % + % 1- 1;41
€) 10 100 — - T R
E 243 Ft%
53 125 35 203 204 255 252
) B0 .3 by 213 200 . 28 515 _
& "1T_1 T3 T 00 418 - 1173 813
273 3 1071 ~ 1197 1058 1334
1 1
i) —— = ... ) 3+ ——F=...
) 57 e 3% T
1+T’§ T 8 ' 40

10) Effectuer les opérations suivantes sans machine et donner les résultats sous forme de
puissances entieres positives. (m,n € N et a,b,c € RY)

a) 3*.37 b) 2°.7° c) (3%)*

d) 5%.5° e) 27427 f) 3%+43%+43°
g) 4°.8° h) 3°.2° i) 5-25°

j) 9-(3%)3 k) (9-3°%)° 1) 4%+ 43

m) 97+ 9 n) 8% +4° 0) a’-a°

p) b’ ¢ q (8™)* r) a®+a?

s) a-b”-(a-b)P° t) 2(ab®) - (3a%D) u) 2(ab®)? - (3a%b)
v) (2ab%)? - (3a%b) w) 2m.2" X) 2™+ 2" (3 cas)
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11) Effectuer les opérations suivantes sans machine et donner les résultats sous forme de
puissance entieres positives. (m,n,p € N% et a,b,c,z,y,z € R%)

a) 22"y’ Sry"z’ b) x?y(3x"y*" PP c) [(2%y) - (3z™y* 2P T3))?
d) (—ab™)* e) (—a)"™ (2 cas) f) Bamb"( )3

g) ((2a™)%a*)? h) (=22%°) - (2* +9°) 1) (=22°9°)° (2% + %)’
j) (2" T3a™) + 2"t k) a® = (a®™ +a™) ) (a®™ = a®™) +a™

12) Calculer mentalement : 322, 282, 21 - 19, 352, 65°.

13) Quel terme faut-il ajouter aux bindmes suivants pour les transformer en carrés par-

faits ?
a) 1+ 6z b) 4a*b* + 9 c) 16a* — 8a’y?
d) 2%+ bz e) 4b* + 922 f) 4a*b* — ab?

14) Développer et réduire le plus possible. Indiquer le degré du polynéme obtenu.
a) —xr’r? + 22° + 8% — 3xa? b) (z—2)-3x
c) (2% —3)(a? +4) d) (z—D(2*+z+1)

15) Compléter :

a) 2a(a+0b) —3b(a—10b) = b) 1—(x—1)+2Bzx—-1) =
¢) (x+2)(z+7)= d) (z—6)(z+38)=
e) (Bz+2)°= f) (52* —2)* =
g) (a*—3a)? = h) (—=7a®b+ 3ab*c)* =
i) ((a+b)—(c+d)*= i) (bx — Tay +3y)* =
k) (a®b*+c)- (a®b* —¢) = ) (2 —=b5x+1)*=
m) (a+a*) - (a—a®)-(a*+a°) = n) (z*—1)- (22 -1) (2 +1) =

16) A T'aide du triangle de Pascal établir la formule générale de (a + b)", n € N*,

Montrer que le nombre de grilles différentes possibles au jeu de la Loterie a numéros
est donné par le coefficient de a®*® du développement de (a + b)*.

Plus généralement, le nombre de sous-ensemble de k objets choisis parmi n est donné
par le coefficient de a*b"~* du développement de (a + b)™.

Montrer que le nombre de sous-ensembles d'un ensemble a n objet est 2.

17) Mettre en évidence le facteur commun :

a) 21st + Tt b) 5m + 15mn ¢) 22z — 33xy

d) 6ab — 12b+ 6bc e) 2ab + 4b* + 6bc f) 15a*b — 10ab + 5a
g) 152%y — 5xy + 102y h) 162%yz + 24zy2? i) a(c+d)+b(c+d)
) alz—y)—(z—y) k) r(a+2ab)—s(a+2ab) 1) z(z+y) -y —y*
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18) Décomposer en produits de facteurs irréductibles :

a) y°2° — 3yz b) 1—8z+ 1627 c) 4x* — 9y?

d) 92° — 362 e) wy*+ 2y +x f) 5y° — 5y

g) 2* + 31 +2 h) y* 4 15y + 56 i) y*— 15y + 56

j) 2* — 21 —35 k) 22° + 14z + 24 1) 52%+ 152 — 50

m) z°+ xy + 22 + 2y n) 12y —16x+27y—36 o) 8z —4ay — 6 + 3y
p) 3z%y? —542® — 92%y  q) 366> — 100 r) b — bc?

19) Décomposer en produits de facteurs irréductibles :

a) Ta+ Tab— Ta® b) 4a* -1 c) a®—8

d) xz(a—1b)+3(a—0b) e) a®—3a*>+ 27— 9a f) 2°+52+6

g) a®—a+2a* -2 h) (22 —1)2=3(x*—1) i) a* +0b* — 24%°

i) (ma—=0+4(a+b) k) 1—2a%° ) a'+1-2a?

m) a®+a*+1+a n) 2a® —6a* + 6a — 2 o) a*+2ab— z*+b?
p) 2+ 2% — 6z q) a®—b° r) 2t — 22%°% 4+t
s) 2a* —4a—6 t) a®+1—-0b*—2a u) ax® —a

v) 2a+2b— (a+b)? w) 22% — Tz +3 x) (a* +b%)? — 4a?

20) Ecrire I'inverse des expressions suivantes :

1
a) x b) x—2 c) 3z d) g
3 ) 1
— f — h) 0
) ) 9 )
21) Simplifier :
4m3n? 5a + 5b b —b)?
2) 84m>n’p b) a+ ) a+a Q) (a—10)
35minp? Ta+ T 2ab b—a
22 +4x — 21 4a® — 9 522 + bry 8a’b — 16ab?
©) —=— b . 8) 55 5.2 h) oo —asp
x+7 10a — 15 3z? — 3y 12a%x — 48b%x

22) Simplifier le plus possible et effectuer :

2) xirx;l b) I1_03'x1—53

°) 7'I1+4y 4 (I+5)'x2+1gx+25
e) 2?53_% f) _%2+%

&) 21;+(e+12)2 b) 7x17y+7
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23) Effectuer et simplifier, s’il y a lieu :
a a a 2a
2.2 | e ——
a) 2+3 ) 5T F +a
2 a 1 1
£_2 d) =+ =
°) a 2 )a+b
4 1 20  4da
= .- F P
R v ) 3+3
1 1 rT+y xT—y
h _
8 31T o1 ) = 2
N 1 . 1
V3 1 V=i
2 3 1 2a
k 1 —
) x+2+x—3 ) a+b a®—b?
2 1 4 3r—2y 4dy+2x 22y —9x
R s R it ) 5 15
o) 6 5 2 ) 2c 8 +§
rx(3x—2) 3x—-2 a? P2 @t a
24) Effectuer et simplifier, s’il y a lieu :
) 4z n 8 +2 b) 122 3 +5
a — J— —
3r—4 322 —4x =z 20 +1 22242 «x
3a+2b 2a®—20* 2a+3b a—>b 3a? a
c) + - d) - +
a ab b az—b B+ a?—ab+ b?
x(14+y) z—y 1 x—y 1 xy
— f
°) o gl g ):):2—:):y+y2 x+y+x3+y3
) 20+ 1 6z n 3 ) 2 1 4
& 2 +4r+4 22-4 -2 r—2 x+2 122-4
) 2x + 6 n 5%5 L 7 i 3z T 4z
1 J— —
21 62+9 22-9 13 Y 9 5 2x+5 412—_25
K) 16x n 5 _x—4 ) 3—617_ 2+ 5z
20 +8 224+ x—-12 x-—3 A2 — 1 42?2+ 42+ 1
dx? —4x 2?2+ 32— 10 81 —54x 4+ 922 222 —6x+4
m) - n) -
2+ —2 3 — 4x 322 — 152+ 18 422 — 8z +4
1 5 2
) a3 3 ) o1 T 243
i_ P T
T z+1 +3
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25) Simplifier le plus possible et effectuer :

3(a2—b?)  10c
5bc 9(a + b)
a’® —4r*  a® = 2ax
a? +4ax ~ ax + 422
3a’b? — 6b%c
— 4a?c + 4¢?

a)

c)

)

26) Simplifier :
Tty _ z—y
Y Tty
a) m
T4y T—Yy
a—1 + m
4
a—2 + a8
23443
z2—y2
e) x2—xy+y2
Ty

c)

27) Lequel de ces calculs est correct ?
a) 6+3-2=9-2=18
b) 4+5-(6+3)=4+45=49
c) 13-44+5=9+5=14

d) 2+10-17—-7=12-10 =120

e) 6+5=2=8
)

f

5:249—4(2+5)=19—28 = —

a> — x> a®>—b N ax
a+b ax -+ x? “ a—x

(2723 — 8y%) (x — 4y)

22(3x — 2y?)
a?+ab+b* -0
a® + b3 a? —ab + b?
x+y+%
.CB2
x+y+7
2 z3
14 -
T —a
=
abe azl 4 b1 el

bc 4+ ac — ab

6+3-2=6+6=12
445-(6+3)=9-9=281
13-44+5=13-9=4
2410-17—-7=2+4170— 7 = 165
6+45 =6+5=11
5:2+9—4(2+5)=55—-28=27

28) Ecrire les expressions suivantes en termes algébriques :

a) l'entier suivant le nombre entier n

le triple du nombre n

I'inverse de

b)
)
)
) un nombre pair
)
)
) T'opposé de x

c
d
e
f) une puissance de 2
g
h

le double de 'entier précédant le nombre entier n
le produit de deux nombres entiers consécutifs

i) le double du carré de l'inverse de 'opposé de l'entier précédant le quadruple du

nombre entier n
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29) Associer la bonne description aux expressions algébriques :

rT+y est un produit

2 —y? est le double du carré d'une somme

2(x +y)? est le carré du double d'une somme
(r —y)? est la somme des carrés

xy est le carré d’'une somme
(z +y)? est une somme
(x —y)(z+vy) est le carré d’une différence
2xy est la différence des carrés
(2(x +y))? est un double produit

2?2 + 12 est le produit d’'une somme par une différence

30) Rendre rationnel le dénominateur des fractions suivantes :

o) VE+5 b) Vt—4 0 81x2 — 16y> Q) 1622 — 3
Vt—5 Vi+4 3VE — 2y 2V —\/J
31) On donne les valeurs de z1,...,x7 et ny,...,ny dans le tableau ci-dessous.
Indice ¢ | Valeur de z; | Valeur de n;

1 0 1

2 1 1

3 2 2

4 3 )

5 4 7

6 5 8

7 6 2

Avec des données ci-dessus, calculez les expressions suivantes :
5 6 4 4 4
i=2 k=1 i=1 '

32) Démontrer :

a) 1+4+49+.. . +n°=) k=

k=1
1 1 1 "1 1
l+=-+=-+... +—= — =2 —
c) totgtetm o7 5

1 n
d -
) ;4/&—1 2n—+1

(k+1)(k+2)—4 n?
°) Z (k+1)(k+2)  n+2

k=1
n

1 n
b Z(Sk—2)(3k+1) T 3n+1

k=1

page 34



Mathématiques, MAP 197 année 1. Notions fondamentales

g) n(n+1)(n+ 2) est divisible par 6 ¥n € N.

h) 7" 4+ 2 est divisible par 3 Vn € N.
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1.9 Solutions des exercices

2) i) 1,4-107
1) 8,1-1074

3) 14’520 =23-3-5-11%2, 10’725 = 3 - 52
pgdc = 3, ppme = 23 - 33 - 52 . 112 . 132

3
4) a) S 424431

¢) (x4+2)-(z—1)+3-z—(x+2)

5
5 — b) 7
) a) 5 )
5 8
2 ° 2
6) a) 3 b) 3 c)
19 49 4
g) 3—2 ) % ) ;
N
g D °) 54
3 3
7) a) 3 b) 1
1 1
8) a) R b) -
29 108
T =
9 7
1 = !
9) a) b) 50 c) 3
513 2
g) 3 h) 230 i) -

i) 1,004
m) 1,43

10°
102

k) 4-107°
n) 2,3090 - 10!

11-13, 9126 = 2 - 33 . 132

b) 4-2+5-(2+x)
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10) a) 3" b) 14° c) 38 d) 5° e) 2° f) 3°
g> 221 h) 66 23 1) 513 J) 317 k) 321 1) 218
m) 3° n) 28 o) a! p) (b-c)® q) 2™ r) a®
s) a®- b t) 6a’b u) 6a°0Y  v) 24a°0Y  w) 2™t
om=n sim>n
X) 1 sim=n
127" sim<n
11) a) 10xn+1yn+3z5 b) 9x2n+2y4n+lz2p+6 C) 9$2n+4y4n+222p+6
d) a4b4n e) a” si n pair f) 3ambn+15c3m
—a sl n impair
g> 64a6m+8 h) _2x7y3 1) _8x19y12
,]) xn+2 k) aﬁm 1) a4m
12) 322 =1024, 28% =784, 21-19=1399, 35%=1225, 65%=4225
13) a) 2 +62+9 b) 4a’b* + 9+12ab? c¢) 16a* — 8a’y*+y*
b? 1
d) 2%+ but—- e) 4b* + 92'24+12b%z° f) 4a?b* — ab2+1—6
14) a) 2%+ 52°, deg=6 b) 32 — 67, deg= 2
¢) x4+ 2% — 12, deg=4 d) z° -1, deg=3
15) a) 2a® — ab + 3b* b) bx
¢) x*+9x+14 d) 2?42z —48
e) 92°+ 12z +4 f) 252% — 202% + 4
g) a® — 6a® + 9a* h) 49a*V? — 42a3b*c + 9ab°c?
i) a®+b* + 4 d* 4 2ab + 2cd — 2ac — 2ad — 2bc — 2bd
j) 492y — 702y + 2527 + 302y — 4227y + 9y
k) aS® — c? 1) z*—102° +272% — 102 + 1
m) a* — a*? n) o — 2z +1
17) a) Tt(3s+1) b) 5m(1+ 3n) c) 11z(2 — 3y)

d) 6b(a—2+c¢)
g) bry(3z — 1+ 2y)
i) (a=1)(z —vy)

e) 2b(a+ 2b+ 3¢)
h) 8zyz(2x + 32)
k) a(1+2b)(r—s)
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18) a) yz(y?z* —3) b) (1 —4z2)? c) (2 + 3y)(2z — 3y)
d) 9z(x + 2)(x — 2) e) x(y+1)> f) by(y+ 1)y —1)
g) (z+1)(z+2) h) (y+7)(y+38) ) (y="7)(y—28)
i) (@=17)(z+5) k) 2(z +3)(z+4) ) 5(z+5)(x—2)
m) (x+y)(z+2) n) (4o +9)(3y —4) o) (4z —3)(2x —vy)
p) 3*(y —6)(y + 3) q) 4(3b+5)(3b—5) r) b(b+c)(b—c)
19) a) Ta-(b—a+1) b) (2a+1)-(2a—1) ¢) (a—2)-(a®+2a+4)
d) (x+3)-(a—Db) e) (a—3)*(a+3) f) (x+3)-(x+2)
g) (a+2)-(a+1)-(a—1) h) (z+1)-(z—-1)-(x4+2)(x—2)
i) (a+0)*-(a—b)? j) (a+b)-(24+a+b)-(2—a—-0)
k) (14+zy)-(1—zy) ) (a+1)*(a—1) m) (a+1)-(a*+1)
n) 2(a—1)> o) (a+b+=z)-(a+b—z) p) z-(r+3)-(x—2)
qQ) (a+0b)-(a—0b)-(a*—ab+?) - (a* +ab+ b?) 1) (z+y)? (z—y)?
s) 2-(a—3)-(a+1) t) (a+b—1)-(a—b—1)
w a-('+1)-(@*+1) - (z+1)-(z—1) v) (a+b)-(2—a—b)
w) (22 —1)(z — 3) x) (a+0b)*(a—b)?
1 1 ,
20) a) - b) o c) 3 d) z
) 2 n L 5 — h) —-
12n 5) 1+0
21) a) S b) = c) 5 d) b—a
2a 4+ 3 5% 2ab
¢) ¢-3 h = T pr— b St
1 3 T+y T
2) &) o b3 ) = ) 55
¢) 8 £ — ) (e—1)e+2) h) x‘;y
5a 14a (2+a)(2—a) a+b
23) a) 5 b) 1 c) o d) 7
7 T
°) 3 ) 2 ® Grne-n MY
N1 L 2—x S5z 1
U 15 i b eoe-y Y.
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) 1 ) 1 ) 52° + 4 ) 2z —1
m n) —r—- 0)
a+2 T 3Y 22(3z — 2) P x
2(2z + 3) 23z +1) b—a
24 b 0 d
) 2 3r—4 ) x °) ) a? —ab+ b2
1 22 r+5 1
f e h
e) 1 ) 23+ 43 8) (x 4+ 2)? ) x—2
, 14z + 15 . dx(x +4)
i) j)
(x+3)(x—3) (2z —5)(2z +5)
Tr? — 247 + 21 —1lz -5
k) ) ——
(x+4)(x —3) (2z +1)2
4a? —x —5 5% — 20z + 14
m) ——— n)
z(r +2) 2(x —2)(x —1)
0) z(3z + 5) ) 222 + Tx + 15
(z +2)%(z — 2) P 10+ 7
2(a — b) a*(a —b) z(a + 2x)
25 h) —— T
) a) — ) — ) —
) (z — 4y) (922 + 6xy? + 4y*) 0 302 f) 1
2z a? —2c a? — b?
2y Y a’ —9a + 16 r—1
26 — b) = —_—
) ) x? 4+ y? ) x °) a? — 10a + 20 ) x2
2? — a? 1+a?
1 f) —— h) 1
°) ) 2ax + br — ab &) 1+a )
i) a j) 1
28) a) n+1 b) 3n c) 2(n—1) d) n-(n+1)
1
e) 2n f) 27 g) — h) —=x
x
1 2
2
2 <1 — 4n)
29) r+y —> estune somme
22 —y? —  est la différence des carrés
2(x +y)? — est le double du carré d'une somme
(r —y)? — estle carré d'une différence
ry —> est un produit
(r+y)? — estle carré d'une somme
(x —y)(x+y) — estle produit d'une somme par une différence
2xy —  est un double produit
(2(z +y))*> — estle carré du double d'une somme
22 +y?> — est la somme des carrés
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30) a) t+i5_+2;)0\/% b) t+t1€i—168\/z_f
) (97 +4y) - (3vx +2/y) d) (4z+y)- (2Ve+/Yy)
31) a) 10 b) 24 c¢) 20 d) 54
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Chapitre 2

Equations

2.1 Généralités

Définition 2.1
Une équation est une égalité dont I'un ou les deux membres sont des expressions littérales
contenant une ou plusieurs lettres et des nombres.

Une lettre utilisée dans Iécriture d’une équation est une inconnue (ou une variable) des
le moment ol on s’intéresse a en déterminer la valeur pour que 1’égalité soit vérifiée. La
ou les inconnues sont généralement désignées par les lettres z, y ou z.

Exemple
1) 2> —5 = 4z : équation a une inconnue x.
S—— ~~
membre de gauche membre de droite

2) 4y — 1 =z : équation a deux inconnues x ety si on cherche a déterminer leur
valeur.

3) x+y =0b: équation a deux inconnues x ety si on cherche a déterminer leur
valeur et la lettre b représente une valeur fize.

Définition 2.2
Pour les définitions suivantes, on considere le cas d'une équation en une inconnue notée
x.

1) Un nombre a qui vérifie I’égalité quand il est substitué a l'inconnue z est appelé
solution ou racine de I’équation. On dit alors que a vérifie ou satisfait I’équation.

2) Une équation est résolue lorsqu’on a déterminé toutes ses solutions. La recherche de
ses solutions se nomme la résolution de 1’équation (on dira généralement ”résoudre
une équation”).

3) Toutes les solutions d'une équation forme ’ensemble des solutions, généralement
noté S. On énumérera parfois ces solutions en écrivant x; = ..., 1o = ..., T3 = ...,

Ces définitions peuvent s’étendre aux cas d’équations a plusieurs inconnues.

Exemple
5 est solution de l’équation x* —5=4x car 5> —5=20 et 4-5=20 .

Une autre solution de cette équation est —1 car (—=1)>—5=—4 et 4-(—=1) = —4 .

L’ensemble des solutions de cette équation est : S = {—1;5}.
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Définition 2.3
Deux équations équivalentes sont deux équations qui ont exactement le méme ensemble
de solutions.

Exemples
1) Les équations x —5 =8 —x et bxr = 32,5 sont équivalentes. Leur
ensemble de solutions est S = {%}

2) Les équations 10 —2y=vy>+y et 3> +3y—10=0 sont équivalentes.
Leur ensemble de solutions est S = {—5;2}.

3) Les équations Hxr =15 et 5x*> =15z ne sont pas équivalentes car 0 est
une solution de la deuziéme équation sans en étre une de la premiére.

Regles d’équivalence

Les regles suivantes permettent de transformer une équation en une équation équiva-
lente :

permuter les deux membres de 1’équation,
- effectuer du calcul littéral dans I’'un ou 'autre de ses membres,

- additionner (ou soustraire) un méme nombre, un méme monéme ou un méme
polynome aux deux membres de I’équation,

- multiplier (ou diviser) les deux membres de ’équation par un méme nombre
non nul.

Dans la pratique, on utilisera souvent une suite de transformations équivalentes sur
I’équation a résoudre afin d’obtenir une équation équivalente ou I’ensemble des solutions
est plus facile a déterminer.

Exemple

Pour résoudre l’équation 4(x + 2) = 9z — 12 + x, on peut procéder comme suit :

4(x+2) = 92 —12+ x| calcul littéral (CL)
dr+8 = 10z —12 +12 (ajouter 12 auzx deux membres)

4r 420 = 10z —4z (soustraire 4x auzr deur membres)
20 = 6bx permuter les deur membres
6x = 20 +6 (diviser les deuxr membres par 6)
r = Y

3

L’ensemble des solutions de toutes ces équations équivalentes (en particulier de
Iéquation de départ) est donc : S = {%}
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Remarques

Attention! Si on multiplie ou on divise les deux membres d’une équation par I'inconnue
ou par un polyndome, on peut obtenir une équation non équivalente a la premiere. On
peut supprimer ou ajouter des solutions.

— Si on multiplie les deux membres de I'équation —*5 = ﬁ par le polynéme x — 2, on
trouve I’équation x = 2. La deuxieme équation admet comme ensemble de solutions
S = {2} et la premiére S = () — En substituant 2 & = dans la premiere équation, on
obtient une division par 0. On a donc ajouté la solution égale a 2.

— Si on divise les deux membres de I’équation z?> = z par le monéme z, on trouve
I'équations x = 1. La deuxiéme équation a comme ensemble de solutions S = {1} et la
premiére S = {0; 1}. On a perdu une solution égale a 0.

Dans la pratique, on se permettra tout de méme de réaliser ces transformations dans

certaines résolutions mais il sera alors nécessaire de tester les solutions obtenues dans

I’équation de départ (en substituant ces solutions a l'inconnue, voir exemple au para-

graphe a complter).

Définition 2.4
On appelle zéros ou racines d’un polynéme p(x) les solutions de I’équation : p(z) = 0.

Si le nombre réel a est un zéro du polynéme p(z) alors p(a) = 0.

Exemple

2 est un zéro du polynéme p(x) = x2 —4 car 2 est solution de I’équation z* —4 = 0.
De plus, p(2) = 2% —4=0.

Dans la suite de ce chapitre, nous ne traiterons que des équations a une inconnue. On
désignera cette inconnue par la lettre x.

2.2 Equations du premier degré

Définition 2.5
Une équation du premier degré a une inconnue est une équation équivalente (qui
peut étre mise sous la forme) a I’équation :

ar+b=0 (2.1)

oua,beRetas#0.

Remarque

Dans une équation du premier degré, I'inconnue apparait seulement a la puissance 1. On
utilisera cette caractéristique pour identifier une telle équation.

Exemples
1)3x—2=0
2) 4 —3=8r—T7+2zx—1
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Solution

L’équation (2.1) possede une unique solution : z = ——.
a

Une équation du premier degré est rarement donnée sous la forme (2.1) et sa solution ne
peut donc pas étre donnée immédiatement comme ci-dessus. On utilisera alors les regles
d’équivalence pour résoudre une telle équation.

2.2.1 Principe de résolution

Marche a suivre pour résoudre une équation du premier degré :

1. réduire les polynomes figurant dans chacun des deux membres,

2. 7passer” les termes en z dans un des membres et les termes constants dans
lautre en utilisant la regle d’addition — obtenir une équation de la forme
axr = b,

3. isoler (on dit aussi expliciter) x en divisant les deux membres par a — obtenir
rT=...

Il arrive qu’une, ou plusieurs, de ces étapes soient inutiles ou que d’autres méthodes soient
plus avantageuses, selon les cas.

Exemple

Résoudre : dx +2 — (1 —z) =3z +4 — x.

dr+2—-(1—2) = 3x+4—a|CL (réduire les deux polynomes)
bx+1 = 2x+4 —1
Sr = 2x+3 —2x
dr = 3 =3
r =1

L’ensemble des solutions est : S = {1}.

2.3 Equations du deuxieme degré

Définition 2.6
Une équation du deuxiéme degré a une inconnue est une équation équivalente a
I’équation :

az® +br+c=0 (2.2)

oua,b,ceRetas#0.

Remarque

Dans une équation du deuxieme degré, I'inconnue apparait a la puissance 2 et éventu-
ellement a la puissance 1. On utilisera cette caractéristique pour identifier une telle
équation.
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Exemples

1) 322 —=2r+1=0
2) 4lx —2)? =22 —1

2.3.1 Résolution par factorisation

Proposition 2.1

Soit p(z) un polynéme et a(x), b(x), ..., m(z) des polyndmes tels que p(z) = a(z) - b(x) -
-m(x) : une factorisation de p(x).

L’ensemble des solutions de 1’équation

p(z) =0 ou (équivalent) a(xz)-b(zx)-...-m(x) =0

est égal a la réunion des ensembles de solutions des équations :

a(x) = 0,
b(z) = 0,
m(x) = 0.

Cette proposition découle immédiatement du fait qu’un produit de plusieurs facteurs est
nul si et seulement si au moins un de ces facteurs est nul.

En se fondant sur cette proposition, on peut résoudre certaines équations du deuxieme
degré en devinant une factorisation du membre de droite ou de gauche de 1’équation
(un polynome de degré 2) si le membre de gauche, respectivement de droite, est égal a
0. On utilise les techniques vues au chapitre (1.4.3) pour déterminer une factorisation :
mise en évidence, identité remarquable, ...

Exemples
1) Résoudre : x> 4+ 5x = 0.

En mettant x en évidence, on obtient [’équation équivalente :
z(x+5)=0

D’ou les 2 équations a résoudre :
* 1 =0
*x+5=0— 129 =-5
En conséquence : S = {0; -5}
2) Résoudre : x? — 2x — 24 = 0.
En devinant une factorisation du membre de gauche, on obtient [’équation
équivalente :
(x+4)(x—6)=0
D’ou les 2 équations a résoudre :
*r+4=0—72 =—4
¥ —6=0—22=0

En conséquence : S = {—4;6}
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3) Résoudre : x* = 3.

Cette équation est équivalente a l'équation x° —3 = 0. En utilisant une identité
remarquable, on devine une factorisation du membre de gauche :

(+v3)(x—v3) =0

D’ou les 2 équations a résoudre :
*r4+V3=0—1z=—-V3
*1—V3=0—19=13

En conséquence : S = {—\/g; \/g}

Remarque

Attention! L’équation de I'exemple 3) possede deux solutions : #+/3. Ce résultat est
vrai pour toutes les équations du type 22 = a avec a > 0, qui admettent comme solutions
les nombres ++/a. Il faut prendre garde a ne pas oublier la solution —/a!!!

2.3.2 Résolution a ’aide d’une formule

Proposition 2.2
Soit I’équation du deuxiéme degré az? +bx +c = 0 avec a # 0. On appelle discriminant
de cette équation le nombre :

A = b — dac

Le nombre de solutions de I’équation dépend du signe de A :

—b+ VA —b— VA

et Ty = ——7——)|

- si A > 0 : deux solutions distinctes : |xz; =
2a 2a

—b

- si A =0 : une solution double : T = 5 |
a

- si A <0 : pas de solution réelle (S = 0).

Démonstration. Soit I'équation ax? + bz + ¢ = 0 avec a # 0. On transforme le membre
de gauche par une suite d’égalités :

ax® + bx + ¢ = a-<x2+—x+—)

id. rem.

Comme a # 0, ’équation
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est équivalente a I’équation de départ. La suite de la résolution dépend du signe de btfzac.

Le dénominateur, 4a?, est toujours positif et le signe du numérateur, A = b —4ac, dépend
des valeurs de a, b et c.

Si A>0: ily a deux nombres dont le carré est %.
o\ . Vb2 — dac —b+ VA
* Premiere solution: 2 + — = ——— — 1 = —.
2a 2a 2a
) Vb2 — dac —b— VA
* Seconde solution : vt + — = ————— — By = ————.
2a 2a 2a

Si A=0: le membre de droite de I’équation vaut 0.

b
* Une solution double : v + — =0 — 21 = —.
2a 2a
b2—4

Si A <0: le membre de droite de I’équation est négatif : *—5* < 0.

b 2
* Pas de solution réelle : <x + 2—) < 0.
a

Principe de résolution

Marche a suivre pour résoudre une équation du deuxieme degré :

1. réduire les polynomes figurant dans chacun des deux membres,

2. 7passer” tous les termes en x dans un des membres en utilisant la regle d’ad-
dition — obtenir une équation de la forme ax? + bz + ¢ = 0,

3. appliquer la formule de résolution ou deviner une factorisation pour obtenir la
ou les solutions.

Exemple
Résoudre : 2+ (x — 3)*> =2? —3- (3z — 5) + 1.

2-(x—3)* = 22—3-(3x—5)+ 1| CL (réduire les deuz polynomes)
202 — 12x +18 = 22 —9x+ 16 —(2? — 92 + 16)
?*—=3z+2 = 0

On applique la formule de résolution des équations du deuxieme degré avec a = 1,
b=—-3etc=2.

— Calcul du discriminant : A = (=3)2 —4-1-2=1.

- A >0 : 2 solutions distinctes :

—(=3) + V1 _

* = 2
o 21
—(=3) = V1
:—:1
* 2 2.1

— Ensemble des solutions : S = {1;2}.
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2.3.3 Factorisation d’un polynéme de degré 2

Il est possible de factoriser directement un polynome de degré 2 si on connait ses zéros,
sans devoir tatonner.

Proposition 2.3
Soit p(x) = ax? + bx + ¢ un polynome de degré 2 avec a # 0 et le nombre A = b? — 4ac,
le discriminant de 'équation p(x) = 0.

Si A >0 : le polynéme p(x) possede deux zéros distincts z; et xo et on peut écrire :

p(r) = a(z — 1) (x — x5)

Si A =0 : le polynome p(x) possede un zéro double z; et on peut écrire :

2

p(r) = a(z — 1)

Si A <0 : le polynéme p(z) ne possede pas de zéro et on ne peut pas le décomposer en
un produit de deux facteurs du premier degré.

Remarque

Attention! Lorsqu’on utilise cette proposition pour factoriser un polynome de degré 2,
il ne faut pas oublier le coefficient dominant comme premier facteur!!!

Démonstration. Soit p(x) = ax?+bx+c un polynome de degré 2 avec a # 0. On considere
ici uniquement le cas A = b?> — 4ac > 0. La démonstration des autres cas est laissée au
lecteur.

Lors de la démonstration de la formule de résolution des équations du deuxieéme degré,

on a vu que ax’ +br+c=a-

b\? b —dac .
r+— ) ————|. Comme A > 0, on peut utiliser
2a 4a?

les identités remarquables et obtenir :

b\> b —dac b A b A
a- (x—l-%) —T] = a- <m+%—%> : <x+%+2—\/a_>
. _<$_ —b+\/K> _ ( - —b—\/K>_
2a 2a
= a (_:c—xl)-(x—xg) _
U
Exemple
Le polynome de degré 2, p(x) = 22 + bx — 3, posséde deux zéros : v, = % et

To = —3. On peut donc écrire la factorisation :

p(x):2~($—%)~($+3):(2x—1)($+3)
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2.3.4 Formules de Viete

Théoreme 2.4
Si p(z) = az® + bx + ¢ est un polynoéme du deuxieme degré avec a # 0 qui admet deux
zéros distincts x; et x4 alors :

1+ = —
Formules de Viete

Ty - T2 =

Q|0 Qo

Démonstration. Soit p(x) = ax? + bx + ¢ (a # 0) un polynéme du deuxieme degré avec
deux zéros distincts x; et x9. On peut écrire que

ar’ +br+c=a-(x— 1) (x—29) = ar® — a(xy + 22)2 + az 29

Par identification des coefficients :

— z* . a = a ,
— x b = —a-(r1+x2) (1),
— 1 ¢ = a- 1129 (2).
De I’équation (1), on tire que x1 4+ x5 = —g et, de I'équation (2), que zyz9 = g. O

On pourra utiliser ces formules de Viete pour deviner les zéros d’un polynome du deuxieme
degré et ainsi déterminer une factorisation de ce polynome.

Exemple

Les racines de x> — 5x + 6 sont, d’apres les formules de Viéte, deux nombres dont

-5
la somme est ——— =5 et le produit 1= 6. En tatonnant, on trouve que ces deux
nombres sont 2 et 3.
On peut donc écrire que : 2> —bx +6=1-(x —2) - (x —3) = (x — 2) - (x — 3).

2.4 Equations bicarrées

Il existe un type particulier d’équations de degré différent de 2 qu’on peut résoudre a
I’aide de la formule vue au paragraphe précédent.

Définition 2.7

Une équation bicarrée a une inconnue est une équation équivalente a I’équation :
az® +bx" +c=0 (2.3)

oua,b,c e R, a+#0etneN.

Exemples

1) 42° +22% — 6 = 0 : équation bicarrée avec n = 3.

2) =221 —72° + 1 =0 : équation bicarrée avec n = 5.
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2.4.1 Principe de résolution

Marche & suivre pour résoudre une équation bicarrée (équation 2.3) :

1. poser t = a" et substituer — on obtient I’équation du deuxieme degré
at?> + bt +c =0,

2. trouver les solutions t; et ty (si elles existent) de cette équation a I'aide de la
formule de résolution ou d’une factorisation,

3. résoudre les équations z" = t; et " = t5 (inconnue : x).

Exemple

Résoudre : 4a* 4+ 1122 — 3 = 0. On reconnait une équation bicarrée avec n = 2. On
pose alors t = 2% et on substitue pour obtenir :

42 +11t—-3=0

On peut résoudre cette équation a l’aide de la formule de résolution des équations
du second degré avec a =4, b= 11 et c = —3.
— Calcul du discriminant : A =112 —4 -4 - (=3) = 169 = 132,
- A >0 :2 solutions distinctes :
—11+169 —11+13 1

x t — —_ —
! 24 8 4
—-11—-+v169 —11-13
* t2 = = = -3
2-4 8
Pour la derniére étape, on utilise la relation entre x et t pour poser les équations :
1 1 1 1 1
* 22 =t — 2> =-.D lutions : 11 =/~ = = et Ty = —/ ~ = —=
x 1 x 1 Deus solutions : z, 1= et 1 5
* 12 =ty — 12 = —3. Pas de solution : un nombre élevé au carré ne peut pas

étre négatif.

L’ensemble des solutions est : S = {—1:1}.

2.5 Equations polynomiales

Définition 2.8
Une équation polynomiale de degré n a une inconnue est une équation équivalente a
I’équation :

p(x) =0 (2.4)
oll p(T) = apx™ + ap 12" + ap_22™ 2 + ... + ax? + a7 + ag est polyndome de degré n
(avec a, # 0).

Remarque

Dans une équation polynomiale, I'inconnue apparait élevée a une ou plusieurs puissances.
La puissance la plus élevée nous donne, en principe, le degré du polynome p(x). On
utilisera ces caractéristiques pour identifier une telle équation.
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Exemples

1) 22% — 42 +2 = 0 : équation polynomiale de degré 3.
2) 8zt — 322 4+ 2 = 72 + 92 — 2x : équation polynomiale de degré 5.
3) bad —22% —x + 1 =53 — 3 : équation polynomiale de degré 2.

2.5.1 Division euclidienne
Rappel

La dwision euclidienne d’un nombre naturel ¢ par un nombre naturel b a été étudiée a
I’école secondaire. Par exemple, pour diviser 535 par 6, on suit le schéma suivant :

) 6

89

=~ ot
co W

©
©

O‘lO‘l‘
= o

ol 89 est le quotient de la division et 1 le reste. Plus généralement, pour a et b, on
obtient :
a=0b-q+r

ou a est appelé le dividende, b le diviseur, q le quotient et r le reste qui doit étre le plus
petit nombre positif ou nul possible.

A partir de la "méme” idée, on va pouvoir diviser deux polynomes en faisant apparaitre
un reste et un quotient.

Définition 2.9
Diviser un polynoéme p(z) par un polynéome d(x) a l'aide d’une division euclidienne
revient a chercher des polynomes ¢(z) et r(x) tels que

p(x) = d(z) - q(z) + r(z)
avec deg(r(z)) < deg(d(x)).
On appelle p(z) le dividende, d(z) le diviseur, ¢(z) le quotient et r(z) le reste.

Pour réaliser cette division, nous allons utiliser ’algorithme de division ci-dessous
illustré par un exemple.

Pour diviser p(z) = 6x* + 42® — 72? + 3 par le polynéme d(x) = 22? — 1, on part du
tableau suivant :
6zt + 43 — Ta? + 3| 222 -1

On place a gauche le dividende en laissant un espace vide pour les puissances de x
"absentes” dans le polynome et a droite le diviseur.

On suit ensuite les pas de ’algorithme :
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1) Déterminer le monoéme m(z) par lequel il faut multiplier le terme de plus haut degré
du diviseur, ici 222, pour obtenir le terme de plus haut degré du dividende, ici 6%
— Réponse : m(z) = 322

2) Reporter m(x) dans la partie réservée au quotient (sous le diviseur).

3) Multiplier d(x) par m(z) et reporter le résultat sous le dividende en respectant les
puissances de x —» Produit : 322 - (222 — 1) = 62? — 322

4) Soustraire ce produit du dividende pour trouver un polynéme s(z) — Différence :
s(x) = (62 + 42 — T2 + 3) — (62" — 322) = 4a® — 422 + 3.

5) - Si deg(s(x)) < deg(d(x)) : stop!

- Sinon : recommencer en 1 en prenant s(z) comme "nouveau” dividende.

On obtient alors :

62t + 43 — Ta? + 3| 222 -1
e 62* — 3a? 322 + 21 — 2
43 — 4x? + 3
e 428 — 2x
— 42% + 22 + 3
O — 4a? + 2
2 + 1

La derniere ligne de gauche fournit le reste et la ligne sous le diviseur le quotient. On a
ainsi :
62! +42° —72* +3= (20" —1)- (32® + 20 — 2) + 2z + 1)
—_———— — N —

~
dividende diviseur quotient reste

Définition 2.10
Un polynéme p(x) est dit divisible par un polynéme d(z) si le reste de la division de
p(z) par d(z) vaut zéro.

Remarque

Si le polynome p(x) est divisible par le polynéme d(z), il existe un polynoéme ¢(z) tel
que :

p(z) = d(z) - q(x)
On peut donc écrire p(x) comme le produit de 2 polynéme. On obtient alors une facto-
risation de p(x).

Proposition 2.5

Si p(z) est un polynéme de degré n et d(x) un polynome de degré m, le quotient de la
division de p(z) par d(x) est un polynome de degré n — m et le reste un polynéme de
degré inférieur a m.

Il découle de cette proposition que le reste de la division d'un polynome de degré quel-
conque par un polynome de degré 1 est de degré 0, donc un nombre réel.
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Théoreme 2.6
Le reste de la division d’un polynéme p(z) par le polynéome x — a vaut p(a), avec a € R.

Démonstration. Si q(x) est le quotient et r (un nombre réel!) le reste de la division de
p(z) par x —a, on a :
p(x) = (x —a)-q(z) +r
En remplagant x par a, on obtient p(a) = (a — a) -q(a) +r = r. O
T

I1 découle du théoreme précédent et de la définition de la divisibilité le théoréeme suivant :

Théoreme 2.7
Soit p(z) = apx™ + ap_12""
équivalentes

L4 ..+ a1z + ag. Les trois propositions suivantes sont
1. a est une solution de I’équation p(z) = 0,

2. a est une racine de p(x),

3. p(x) est divisible par x — a.

avec a € R.

Exemple
Divisons p(x) = x* — 32% 4+ 222 — x + 2 par d(z) = x — 2 a Uaide de lalgorithme de
diwvision.
ot — 323 + 222 —x + 2 | x—2
e 2t — 223 2 —a? -1
— 2+ 22 — x4+ 2
O - 23 + 222

—x + 2
O —-—x+ 2

On obtient alors :
vt =323+ 22 —x+2=(2—2)- (2* — 2% - 1)

Ainsi, p(x) est divisible par x —2 car le reste est nul. 2 est donc une racine de p(z),
ce qu’on peut facilement vérifier : p(2) =21 —-3-23+2-22 -2+ 2 =0.

2.5.2 Schéma de Horner

Le schéma de Horner s’avere souvent tres utile lorsqu’on désire :
— diviser un polynome p(x) par le polynome x — a,

— évaluer un polynome p(x) en a.

avec a € R.

Nous allons illustrer I'utilisation de ce schéma de Horner par un exemple.

On désire diviser le polynome p(x) = 22* — 323 — 222 —5x+4 par le polynéme d(z) = z—2.
On pourrait utiliser ’algorithme de division et trouver que :

20t — 323 — 22 —Sr+4=(r—-2)-(22° +2°—-5) -6 (2.5)
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On peut également partir du tableau suivant (schéma de Horner) :
2 -3 —2 -5 4

2

Les nombres de la premiere ligne sont les coefficients du polynome, y compris ceux valant
0! Le @ de la deuxiéme ligne du tableau est le zéro du diviseur d(z) = = — 2.

On construit ensuite, en partant du coin inférieur gauche, le schéma suivant :

-5 4
@ @

WS 0@
ST

2 -3
@

4
I

+/@/+/@/
2 1

ot P [|\3

La derniere ligne fournit les coefficients du quotient ¢(z) = 223 +2? —5 et le reste r = —6.
On retrouve donc bien I’équation (2.5).

De plus, la valeur de p(x) en 2 est égale au reste r = —6 donnée par le schéma de Horner :
p(2)=2-21-3.23-2.22-5.2+4=—6.

2.5.3 Principe de résolution

Pour les équations de degrés 3 et 4, il existe des formules du méme type que celles que
nous avons rencontrées pour le degré 2. Elles sont cependant relativement compliquées et
on ne les utilisera pas dans ce cours. En 1826, Abel, mathématicien norvégien, a montré
qu'une équation du cinquieme degré ou plus ne peut se résoudre par radicaux (pas de
solutions générales comme pour les équations du second degré).

Dans ce cours, nous allons utiliser une technique qui permet de résoudre un petit nombre
d’équations polynomiales de degré supérieur a 2 et qui se base sur les techniques de
division de polynomes.

Soit p(z) un polynome de degré supérieur a 2. Marche a suivre pour résoudre 1’équation
p(z) =0:

1. chercher par tatonnement une solution, a, de ’équation,

2. diviser le polynome p(z) par le bindbme x — a, — on obtient une polynome
q(z) tel que p(z) = (z —a) - q(z),

3. - sideg(q(z)) > 2 : recommencer en 1 en considérant 1'équation ¢(z) = 0,

- si deg(q(z)) < 2 : résoudre I'équation ¢(z) = 0 a 'aide des techniques vues
dans les chapitres précédents.

Remarques

1) Pour résoudre une équation polynomiale quelconque, il faut, avant de pouvoir débuter
la procédure décrite ci-dessus, se ramener a une équation équivalente avec un des deux
membres égal a zéro.
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2) La solution a obtenue par tatonnement est une racine de p(x) car p(a) = 0.

3) D’une maniére générale, on cherche tout d’abord des racines entiéres proches de zéro
en testant dans 'ordre les nombres : 0, 1, —1, 2, —2, 3, =3, ...

4) Le degré de g(z) est strictement inférieur a celui de p(x) ce qui permet de ”simplifier”
le probléme (on ne peut pas itérer les opérations sans fin).

Exemple

Résoudre : x® + 2% — 4o — 4 = 0.

Essais successifs pour découvrir une solution :
~w=0-—0"4+0°-4-0-4=0: Non
~2x=1—13412-4-1—-4=0 : Non

—a=—1— (134 (=1)2—4. (1) =40 :0.K

= 11 = —1 est solution de [’équation.
On divise alors le polynéome x® + x* —4x —4 par le bindme v+ 1 a laide du schéma
de Horner.
1 1 —4 —4
~1 0 4 )
1 0 -4 o

On obtient I’égalité 3 + 2* — 4z — 4 = (z + 1)(2* — 4).
On résout alors I’équation x> —4 = 0. Cette équation est une équation du deuzicéme

degré qu’on peut résoudre par factorisation en utilisant une identité remarquable.
On trouve l’équation équivalente

(x—=2)(z+2)=0

qui admet comme solution xo = 2 et x3 = —2.

L’ensemble des solutions de [’équation de départ est : S = {—2; —1;2}.

2.5.4 Factorisation d’un polynéme de degré supérieur a 2

Définition 2.11
Rappel : factoriser un polynome de degré n consiste a écrire ce polynéme sous forme
d’un produit de polynomes de degré plus petit que n.

Un polynome est dit irréductible s’il ne peut pas étre écrit comme un produit de deux
polynome de degré > 1.

Exemples

1) Le polynome x* + 4 est irréductible.
2) Le polynéme x? — 4 n’est pas irréductible, car x> —4 = (x — 2) - (v + 2)

Théoréme 2.8
Les seuls polynomes irréductibles sont les polynomes de degré 1 et les polynomes de degré
2 dont le discriminant est négatif.

page 55



Mathématiques, MAP 197 année 2. Equations

Ainsi, tout polynome peut s’écrire sous la forme d’un produit de polynomes irréductibles
de degré 1 ou 2.

Pour factoriser un polynome p(z) de degré n avec n > 2 sous cette forme, on va procéder
comme si on voulait résoudre 'équation p(z) =0 :

1. trouver une racine a de p(x),

2. diviser p(z) par x — a pour obtenir

p(z) = (x —a) - q(x),
ce qui permet d’effectuer une étape de la factorisation complete du polynome,

3. factoriser g(x) en partant de 1 si deg(q(z)) = n — 1 > 2 ou en utilisant les
résultats de la section (2.3.3) si deg(q(z)) = 2.

Remarques

1) Cette méthode ne permet pas de trouver la factorisation d’un polynome p(z) qui n’ad-
met pas de polynome de degré 1 dans sa factorisation. Ainsi, elle n’est pas utilisable
pour le polynome suivant qui se factorise pourtant facilement a I'aide d’une identité
remarquable : z* + 222 + 1 = (22 4+ 1)%

2) Cette procédure a une fin car le degré du quotient est toujours inférieur de 1 au degré
du polynéme de départ (dividende).

Théoréme 2.9
Un polynome de degré n a au plus n zéros.

En se basant sur ce théoreme et sur la procédure de factorisation ci-dessus, on peut,
comme pour les polynomes de degré 2, donner immédiatement la factorisation d’un po-
lynéme p(z) de degré n si on connait exactement les n zéros de celui-ci (donc I'ensemble
de ses zéros d’apres le théoreme).

Proposition 2.10
Soit p(x) = @™ +an_ 12" 4.+ arzt +ag et x1, To, ..., T, les n zéros de ce polynome.
On peut écrire :

plx)=ay, - (x—x1) - (r—x2) ...  (x — 1)

Remarque

Attention! Lorsqu’on utilise cette proposition pour factoriser un polynome de degré n,
il ne faut pas oublier le coefficient dominant comme premier facteur!!!

Exemple

Soit le polynome p(z) = 32> + 222 — Tx + 2. Ses 3 zéros sont : 1y =1, 1y = —2 et
1
T3 = 3-

Une factorisation de ce polynome en un produit de facteurs irréductibles est :

pa) =3 (1) (@ +2) (- 3)
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Les zéros dans la proposition ci-dessus ne sont pas nécessairement tous différents. Par
exemple, p(z) = z° + 2% — 5z + 3 se factorise

p(z) =(z+3)-(z-1)-(z-1)

Si un facteur x — a apparait m fois, alors a est un zéro de multiplicité m du polynome
p(z). Dans I'exemple ci-dessus, 1 est un zéro de multiplicité 2, et —3 un zéro de multiplicité
1.

A Tinverse, si a est un zéro de p(z) de multiplicité m, alors p(x) admet le facteur (z —a)™
dans sa factorisation.

Le théoreme suivant permet de ”"deviner” plus facilement un zéro de certains polynome
qu’en testant tous les nombres entiers proche de zéro.

Théoréeme 2.11
Soit p(r) = apx™ + ap_12"* + ... + a1z + ap un polynome a coefficients entiers.

1) Sia est un zéro entier de p(x), alors a est un diviseur de ay.

2) Sia = % est un zéro rationnel de p(z), avec u et v premiers entre eux, alors u est un
diviseur de aq et v un diviseur de a,,

Exemple

Déterminer les zéros rationnels de p(x) = 323 + 22 — Tw + 2.
Les zéros entiers possibles sont £1, £2, car les diviseurs de 2 sont £1 et +2.

Les zéros rationnels possibles sont +1, £2, ﬂ:%, ﬂ:%, car les diviseurs de 3 sont £1
et £3 et les diviseurs de 2 sont £1 et £2.

On obtient ici les trois zéros du polynéome car p(1) =0, p(—2) =0 et p(z) = 0.

1
3

2.6 Equations rationnelles

Définition 2.12
Une équation rationnelle a une inconnue est une équation équivalente a 1’équation :

p(x) _
o =" (2.6)

ou p(z) et g(z) sont des polynomes.

Remarque

Dans une équation rationnelle, I'inconnue apparait au dénominateur d’une (ou plusieurs)
fractions. On utilisera cette caractéristique pour identifier une telle équation.

Exemples
3r — 2
1 =0
/ 4—x
1 2
r—2 = 3z
3 7 39

3) 2 - _—

x x—1 x(z —1)
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Solutions

Les solutions de ’équation (2.6) sont les solutions de 1'équation p(z) = 0 qui ne sont
pas solution de I'équation ¢(z) = 0. L’ensemble des solutions est donc donné par :

S={a€eR|pla)=0et g(a) #0}.

Une équation rationnelle est rarement donnée sous la forme (2.6). Il faudrait donc trou-
ver, par une suite d’opérations, une équation équivalente de la forme souhaitée pour
pouvoir ”calculer” ses solutions comme proposé ci-dessus. Dans la pratique, on procédera
généralement un peu différemment.

2.6.1 Principe de résolution

Marche a suivre pour résoudre une équation rationnelle :

1. déterminer le polynome de plus petit degré possible multiple de chaque
dénominateur — on appelle ce polynome le " ppmc” des dénominateurs,

2. multiplier chaque membre de 1’équation par ce "ppmc” et simplifier — les
dénominateurs ”disparaissent”,

3. résoudre I’équation ainsi obtenue,

4. vérifier les solutions obtenues dans 1’équation de départ !

Remarque

Attention! Le fait de multiplier les deux membres d’une équation par un polynome
peut introduire des solutions qui ne satisfont pas I’équation initiale. C’est pourquoi il est
nécessaire de tester les solutions trouvées dans I’équation de départ.

Exemples

1. Le "ppmc” des polynomes x* - (x —2) et x - (x —2)*- (x +4) est le polynome
23 (x—2)% (v +4).
Pour construire ce "ppmc”, on multiplie chacun des facteurs différents appa-
raissant dans les polynomes initiaux. Si un méme facteur élevé a différentes
puissances est présent dans plusieurs polynomes, on ne considere que la puis-
sance la plus grande pour la construction du "ppmc”.
1 32

-2 x+2 5x-10

On détermine d’abord le "ppmc” des dénominateurs qui est le polynome 5 -

(x —2) - (x +2). Ensuite, on procéde comme décrit ci-dessus :

2. Résoudre :

m_i2 — mi—|—2 = ﬁ 5(x —2)(z +2) (multiplier par
le 77ppmc77)
26t 3-5(x;i>2gx+2> = 2R | simplifier
5(r+2)—3-5(x—2) = 2(x+2) CL
—10x +40 = 2x+14 —40
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—10z = 2z —-36| -2z
—12z = —-36 +(—12)
r = 3
Important! Il faut maintenant vérifier la solution obtenue en substituant 3 a
x dans [’équation de départ.
Vérification
1 3 2

2

- — O.K.
3—2 3+2 5 o
—_——

L’ensemble des solutions, apres vérification, est : S = {3}.

2.7 Equations irrationnelles

Définition 2.13
Une équation irrationnelle a une inconnue est une équation ou l'inconnue figure sous

un radical o/ .-

Exemples
1) V3r—2=28

2) V24+x+4—+v10—-3x =0
3) Vaxr —3 = /522 —To +2+23x —4

2.7.1 Principe de résolution

Marche a suivre pour résoudre une équation irrationnelle :

1. isoler un radical p/77 dans un des membres de I'équation a ’aide des regles
d’équivalence,

2. élever les deux membres de I’équation a la puissance n — le radical isolé
disparait,

3. répéter les points 1 et 2 afin de faire disparaitre l’ensemble des radicauz,
4. résoudre I'équation a une inconnue obtenue,

5. wvérifier les solutions obtenues dans 1’équation de départ !

Remarque

Attention! Le fait d’élever a la puissance n les deux membres d’une équation peut
introduire des solutions qui ne satisfont pas 1’équation initiale. C’est pourquoi il est
nécessaire de tester les solutions trouvées dans I’équation de départ.
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Exemple

Résoudre : /x+5+x—1=0.

Ve+5+z—-1 = 0 —(x — 1) (isoler le radical)
Vr+5 = —xz+1 (...)% (élever au carré)

r+5 = (—x+1)* | développer
r+5 = 22 —2x+1|—(z+5)
0 = 22 -3z —4

On résout alors I'équation du deuziéme degré 2 —3x —4 = 0 a laide de la formule
de résolution avec a =1, b= —3 et c = —4.

— Calcul du discriminant : A = (=3)2 —4-1-(—4) = 25 = 52

- A >0 : 2 solutions distinctes :
 —(3)+V25 345

- 4
0 2.1 2
—(=3)—v25 3-5
2.1 2

Important! Il faut maintenant vérifier les solutions obtenues en les substituant a
x dans ’équation de départ.

Vérification
* VI+5+44—1=0— Non
=3

¥ V-1+5+(-1)—1=0 — O.K.
=2

L’ensemble des solutions, apres vérification, est : S = {—1}.
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2.8 Exercices

1) Dans chacune des formules physiques suivantes, exprimer chaque lettre au moyen des
autres.

M1y [ 1, 1 1 1
a) F=G = b)T:27T\/; c) xziat + xg d)ﬁzﬁljt§2

2) Résoudre les équations suivantes.

a) 10xr —38+5x=20r — 18+ 42z — 11 b) 4x+ 7+ 20z — 17 = 24z — 10

c) —z+8=—-1+2x d) ©—10=-9+ 3z
e) de+12—(1—z)=bx+2 f) de+12—(1—2)=5zx+11
g) dxr+3=2(Tx—1) h) 7(z+2)—2=2(z—-1)
i) dv—(z+3)=5—(1-3z) i) (B3x—2)*=(z —5)(97 +4)
K) Gr—T) 2 +1)—10x(z —4)=0 1) 3;x—927$
m) 1;1:3232 n) ng%E—i—%—x:lS
o) -5 =1+3 p) %x+2:3—%:ﬂ
3) Résoudre les équations suivantes.
a) (r—2)(z+3)=0 b) 3z —1)(3—4z)=0
c) x(2x+7)=0 d) 2z +1)?=0
e) > +4x =0 f) x =32
g) 22 —-9=0 h) (z—2)?=9
i) (x+5)*=-5 j) 1—(4z+11)*=0
4) Résoudre les équations suivantes.
a) 32°+T7r—-3=0 b) 222 —2—1=0
¢) V3z® —4x+2V3=0 d) z(r+V2) = V2(z — V?2)
e) 22— (3—V2)r+v2=0 f) 22 —V3(2 - V3)x =6V3
g) x(z+V5) =2z h) 2% — 22 +22 =0
i) 2° 4 62° + 52 =0 j) 2t —2* 622 =0
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5) Résoudre les équations suivantes.
r—3 r—3
=5 b =0
5 3 1 1 1
C) = a d) =
r+1 z+1 2 r—4 2z+4+1
-5 -7 1 —1
e) x @ _ f) x x _1
r—3 x—1 2x-2 r—1 x
1 4 8 x 2z
s R R e
i 1 1 4 i 5 n 4 1
i) =+ === =
xr 2 9 I R |
6) Résoudre les équations suivantes.
a) 2+ vV1—-5t=0 b) V222 -1=2
c) Vi—z+b==x d) 3v2z —3+2y7T—z=11

e) v=44++4x—19

g) VT—-2r—+V5+z=+4+3z

i) 2Wr+1=+3x—-5

f) v+ vVbr+19=—1
h) vV11+8r+1=+v9+4x
i) V1+4vr=vr+1
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2.9 Solutions des exercices

2) a) S={-1} b) S=R c) S={3}
e) S=10 f)y S=R g)S:{%}
i) S=10 ) S={-% k) S={f}
m) S = {6} n) S = {54} o) S ={24}

3) a) S={-32} b) S={52} c) S={-%0}
e) S={-4;0} f) S={0;3} g) S=1{-3;3}
i) S=10 j) S={-3-3}

1) a) §={T2B) b) §={-%1} c) S
d) S=0 e) S=0 f) S
g) S={0;2—+5} h) S = {0} i S
i) S=1{-20;3}

5 a) S={4} b) S ={3} c) S={3}
e)S:{z—;’} f) S=0 g) S=10
i) S={-%3} j) S={0;5}

6) a) S={2} b) §={1} c) S={6}
e) S={5T7} f) §={-3} g) S={-1}
i) S={3} j) S={0;4}
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d) §={-3}
h) S = {4}
D S = {0}
p) S={%

d) S={-0,5}
h) §={-1;5}

d) §={-5}
h) S ={-3:0}

d) 5= {6}
W §={-3



Chapitre 3

Déterminants

3.1 Déterminants d’ordre 2

Définition 3.1
On appelle déterminant d’ordre 2, et on note

a; by
as by

le nombre a1by — a9b;.

Exemple
5 2

1) 14 =5-4—-1-2=18
2 5

2) 41 =2-1-5-4=-18

3.1.1 Aire d’un parallélogramme

On peut utiliser un déterminant d’ordre 2 pour calculer 'aire d’un parallélogramme.
Considérons un plan muni d’un repere orthonormé d’origine O, et deux points A et B
de coordonnées (ay;az) et (by;be). L'aire du parallélogramme construit sur OAB (voir le

dessin ci-dessous) vaut exactement :

a; by
A= = a1by — a9b
as bz 102 — G201
Yy
bot
’ B(by; b2)
a2}
A(al;a2)
O 'bll all ]
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Démonstration. On peut se convaincre de ce résultat en remarquant que a;by est 'aire
d’un rectangle de largeur a; et de hauteur by auquel on soustrait asb; qui est ’aire d’'un
rectangle de hauteur as et de largeur b;.

Or, sur le dessin ci-dessous, en déplagant les parties hachurées du rectangle O PQR (d’aire
a1by) et en éliminant les deux parties foncées (d’aire totale agby), on retrouve le pa-
rallélogramme de départ dont 1’aire vaut donc bien a1by — asb;.

On peut également se persuader de ceci en utilisant du papier et des ciseaux.

Remarques

— On constate qu’en inversant les deux colonnes du déterminant, on trouve le résultat
opposé. Le déterminant peut donc étre interprété comme une aire signée.

— On peut facilement voir que le déterminant est nul si les trois points O, A et B sont
alignés.

3.2 Déterminants d’ordre 3

Définition 3.2
On appelle déterminant d’ordre 3, et on note

a; by
as by ¢
az bs c3

le nombre &1[)203 + agblcz + &2[)301 - agbgcl — a1b302 — &26103.

Pour calculer un tel déterminant, on utilise le tableau suivant :

a1 by &1 ai by
\ N N
as bg Co as b2
> N \
as b3 C3 a3 b3
NN\
+ + +

On effectue le produit des éléments sur les diagonales puis on somme ces produits; les
diagonales descendantes sont affectées du signe +, les diagonales montantes du signe —.
Ce procédé est appelé regle de Sarrus.
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Remarque

Attention! La regle de Sarrus ne marche que pour des déterminants d’ordre trois.

Exemple
1 2 —4
La valeur du déterminant| 2 0 4| est donnée par
-3 1 0
1 2 —4 1 2
\ N
0 Y0 427 0 =1.0.042-4-(=3)+(-4)-2-1
N
—(=3)-0-(—4)—1-4-1-0-2-2=—36
RS NP (78)-0-(=4)
NN N
+ o+

3.2.1 Volume d’un parallélépipede

On peut utiliser un déterminant d’ordre 3 pour calculer le volume d’un parallélépipede.
Considérons celui représenté ci-dessous et construit sur le tétraedre OABC. Son vo-
lume peut s’exprimer en fonction des coordonnées des points A(aq; as;as), B(by;by; b3) et
C(cq;¢9;¢3). 11 est donné par le déterminant d’ordre 3 :

a; b o
V =| as b2 (&)
as bg C3

z
B(b1; b2 b3)
Y

Aai;az;asz)

xT

3.3 Quelques propriétés des déterminants

Définition 3.3

Le transposé d’un déterminant D est un déterminant D’ obtenu en permutant, dans D,
chaque colonne avec la ligne de méme rang (premiere ligne avec premiere colonne, ... ).
Une colonne ou une ligne d'un déterminant est appelée une rangée.

Exemple

Le déterminant transposé de D =

W DN =
(@) RN QTSN
N QS
co Ot DN
O O W

7
8 | est le déterminant D' =
9
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Remarque

Si D' est le transposé de D, D est le transposé de D'.

Voici quelques propriétés des déterminants particulierement utiles. Elles s’appliquent aux
déterminants de tous les ordres, mais nous utiliserons des déterminants d’ordre trois pour
illustrer notre propos.

Propriétés
Soit a;, b; et ¢; (i =1,2,3) des nombres réels.

1. Deux déterminants transposés sont égaux.

a b o ay G2 as
Exemple D Qo bg Cy | = bl bg bg
az by c3 Ci Cy C3

2. Sil’on permute deux rangées paralleles d’un déterminant D, la valeur du déterminant
obtenu est 'opposée de celle de D.

by a1 a b o
Exemple N bg A9 Co |= —| Q2 bg Cy
b3 as c3 as bs c3

3. Si un déterminant a une rangée formée uniquement de zéros, alors il est nul.

aq bl C1
Exemple : 1 0 0 0 |=0
as bg C3

4. Si on multiplie tous les éléments d'une rangée par un nombre A, alors la valeur du
déterminant est multiplié par .

)\al bl C1 ap bl &1
Exemple N )\CLQ b2 Cy | = - (45} b2 (&)
)\&3 bg C3 as b3 C3

5. Si deux rangées paralleles d'un déterminant sont proportionnelles (donc éventuelle-
ment identiques), alors il est nul.

a; o«ap €
Exemple : | as aas co |=0 avec o € R.
a3 «oagz C3
6. Si on ajoute aux éléments d’'une méme rangée d’'un déterminant une combinaison
linéaire des éléments correspondants de rangées paralleles, alors le déterminant ne
change pas de valeur.

ap by ¢+ aa; + Bby a; by
Exemple : | as by co+ aas+ by |[=|as by ¢ avec a, 5 € R.
as bg 03+aa3+ﬁbg as bg C3
7. (Corollaire des propriétés 3 et 6) Si les éléments d'une rangée d'un déterminant
peuvent étre obtenus par une combinaison linéaire des éléments correspondants de
rangées paralleles, alors il est nul.

aq bl C1
Exemple : as by Ca =0 avecvy,0€R.
yai + das Yby 4+ dby  ycy 4 dco
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3.4 Déterminants d’ordre n

Définition 3.4
On appelle déterminant d’ordre n, et on note sous la forme d’un tableau de n lignes
et m colonnes

aix Az - Qip
ag1  A22 A2p,
Ap1 Ap2 - Ann
le nombre
n n
_ } : _ i+1
D = ai - A = E a1 - (—1) - M
i=1 i=1
ou

— a;; est I’élément situé a la i-eme ligne et a la j-eme colonne,
— M;j est le mineur de 1'élément a;; défini comme le déterminant obtenu en suppri-

mant dans le tableau représentant le nombre D les rangées (lignes et colonnes) qui
contiennent a;;,

— Ajj est le cofacteur de I'élément a;; qui est défini par : A;; = (—=1)"7 - M;;.
Un déterminant d’ordre n est donc égal a la somme des produits des éléments de la

premiere colonne par les cofacteurs correspondants. On dit dans ce cas que le déterminant
est développé par rapport a la premiere colonne.

Proposition 3.1

Un déterminant d’ordre n peut étre développé par rapport a n’importe quelle rangée
et est donc égal a la somme des produits des éléments d’une rangée par les cofacteurs
correspondants.

En développant par rapport a la i-eme ligne, on obtient :
n n
D=3 ay-Ay=y ay-(=1)" - My
j=1 j=1
En développant par rapport a la j-éme colonne, on obtient :
n n
D=3 ay Ay=) ay-(=1)7 - M.
i=1 i=1

Remarque

Pour un déterminant d’ordre n, les cofacteurs obtenus sont d’ordre n—1. On peut calculer
ces derniers en utilisant la méme définition. Le processus de calcul est donc itératif jus-
qu’au moment ol on obtient des déterminants d’ordre 2 qu’on peut facilement calculer.
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Exemples
aix G2 13
1) Soit D = 921 Q922 Q923
a31 a3z a3z

Le cofacteur de asy est :

Ay = (_1)2+1 G2 Giz | _ | d12 013
a3z a33 az2 G33
Le cofacteur de a3 est :
Ajs = (_1)1+3 (21 G2 | _ | G21 G22
’ az1 as2 az1  asz
-1 2 0 —2
2 —1 1 2
2) Calculer la valeur de D = 1 4 -3 _1
1 1 0 1

Important ! Pour réduire au maximum le nombre de calculs (et donc leffort),
on va toujours choisir de développer un déterminant selon la rangée comportant
le plus de 0 possible : ici la troisieme colonne.

-1 2 -2 -1 2 =2
D = 1-(=1)*%. 1 4 —1|=3-(=1)*3.] 2 -1 2
11 1 11 1

= <—1>'<<—1>"111 _H‘l"? ﬂ“" s :?D

(e {72 e )
= (-1)-(-5—4+46)—-3-(3—-8+2)
= 12
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3.5 Exercices

1) Calculer les déterminants :

1 2 —1 1 0 7 -7 9
D | 3‘ b)‘ 3 —2‘ C)‘ 0 3‘ d)‘ 1 —8‘
0 -1 2 0 3 2 2 —10
e>‘—1 0‘ f)‘—5 1‘ g)‘ 1 —4‘ h)‘ 3—15‘
2) Calculer les déterminants :
2 -1 =2 2 0 -5 3 7 4
Al 6 -1 1 Bl 5 3 3 Ol 0o 5 0
4 D 3 0 4 6 3 13 6
1 2 3 0 1 -1 1 0 8
d) 2 1 )| 2 4 -5 f) 1 16
1 3 2 -1 -1 1 3 0 4
3 2 1 4 =3 2
g | 1 —2 4 n| 5 9 -7
4 2 4 -1 4
3) Vérifier :
0 4 7 1 00 1 00
a) 0 0 1|=0 b) |0 a b|=|0 a ¢
0 0 0 0 ¢ d 0 b d
1 5 7 -1 3 =17
o 2 9 -5|=0 | 3 -9  51|=0
-2 —-10 —14 -8 24 -—-101
1 a b+c 0 1 1
e) |1 b atc|=0 f) 1 75 83|=0
1 ¢ a+b 0 2 2
1 21 43 0 a b 0 —a —b
g) 0 2 75|=6 h)|—a 0 c¢|=|a 0 —c
0O 0 3 b —c 0 b ¢ 0
a a d' a a a 0O a b
b b b=V U b jy|—a 0 ¢|=0
c d d e b —c 0

page 70



Mathématiques, MAP

1€ année

3. Déterminants

4) Exprimer Dy, D3, Dy, D5, Dg a I'aide de Dy :

a
D1: b
D4: C

CLI

b/

C/

b/
Cl

CLI

al/

b/l

C//

b//

Cl/

al/

D

Ds

"

a

bl/

ad a
)
cd ¢

b ¢
/!

v
vod

5) Exprimer Dy, D3, D4, D5, Dg a 'aide de D; :

a
by

&1

2(1,1

—2by

D, =
D4 =
6) Vérifier :
2
a) 3
—2
1
c) 1
1
1
e) | 15
0

1

14
-1

a2

by

C2

2(1,2
—2b,y

1
16
1

as
b3 D2
C3
2&3
—2bs Dy
0 1
=| —9 4
8§ —5
0 -1
= 0 -1
1 3
0 0
= 1 -2
1 =2

aq a9 )\0,3
by by Ab3
(&1 Co )\Cg
ay bl C1
—bg —C3
(45} bg Cy
1
by | 4
7
1
| 1
2
-3
£) | -1
4

7) Résoudre en utilisant les propriétés des déterminants :

1 a b
1 z b
1 a =z

a)

0

8) Calculer les déterminants :

a)

1

—_

=N O N

0
1
1

—1
4
1
b}

r a 1
b) |a z 1|=0
a b 1
2 2
-2 1
2 b) -1
1 2
0O 0
0 1
1 -1
-1 0
1 0
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D3 =
Dg =
D3 =
D¢ =

2 3

5 6

8 9

3 2

1 4

2 2
—1 2
3 =3
—2 1
T

c) |1

1

4 =2
-1 0
-2 1
1 -1

C

by’
a”

c

A

C

(45} as
Aby  Abs
)\02 )\03
—a bl

a9 —bg
—asg bg
1 1 2
4 1 2
7 1 2
1 0 2
1 —4 4
2 =2 2
=0
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3.6 Solutions des exercices

1)

a) b b) —1 c) 0 d) 47

e) —1 f) 2 g) —14 h) 0

a) —70 b) —88 c) 30 d) 12

e) 1 f) —20 g) —6 h) 178

Dy = —D, D3 = —D, Dy =D, Ds = —D, D¢ = D,
D2 == )\Dl D3 - )\2D1 D4 - 4D1 D5 == D1 D6 - D1
a) S ={a;b} b) S ={a;b} c) S={1;a}

a) —61 b) 0 c) —20

page 72



Chapitre 4

Systemes d’équations linéaires

4.1 Généralités

4.1.1 Systemes de deux équations linéaires & deux inconnues

Définition 4.1
Une équation linéaire & deux inconnues z et y est une condition pour (x;y) du type :

ar +by =c

ou a, b, ¢ sont des nombres réels.
Tout couple (z;y) qui vérifie ax + by = ¢ est une solution de I’équation.

Il existe une infinité de couples solutions. Dans le plan R?, I’ensemble de ces couples
définit une droite.

Exemple

L’équation

20 — 3y = —6
est une équation linéaire a deux inconnues. Quelques couples solutions de cette
équation :
17
On peut vérifier I’égalité si on substitue 3 ax etd ay :2-3—3-4=—6,; de méme

pour les autres couples de solutions.

Pour déterminer un couple de solutions, on peut isoler y par des transformations

équivalentes :
2v —3y = —6 —2x
-3y = —2z—-6|+(-3)
y = %x +2

puis choisir une valeur pour x, par exemple 3, et obtenir la valeur de y correspon-
dante en substituant 3 a x dans l’équation ci-dessus : y = % 34+2=4— on
obtient le couple solution (3;4).
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Pour dessiner la droite représentant [’ensemble des solutions de I’équation linéaire
a deuz inconnues 2x — 3y = —6 (cas général ax + by = c), on peut procéder comme
suit :

1) déterminer deux couples de solutions (x1;y1) et (z2;y2) de I'équation,

2) reporter dans le plan muni d’'un systeme d’axes (orthonormés) les points
(1;51) et (22;92) ,

3) tracer la droite passant par ces deux points.

Remarque

Une équation linéaire a deux inconnues ax + by = ¢ peut étre mise sous la forme (voir
I'exemple) :
y=mzx+h
ou m et h sont deux nombres réels. Cette équation s’appelle aussi équation réduite de la
droite formée par I’ensemble des solutions. On appelle :
— m la pente de la droite,
— h I'ordonnée a P’origine de la droite.
Nous reviendrons sur cette équation plus en détails dans la suite du cours.

Définition 4.2
Un systéme de deux équations linéaires a deux inconnues est une condition pour
(z;y) (ou de maniere plus générale (x1;z5)) du type :
ar+ by = et asT + bay = ¢
ou ay, asg, by, by, 1 et ¢y sont des nombres réels.

On convient, le plus souvent, de noter ce systeme comme suit :

amr + by =
4.1
{ asx + by = ¢ (4.1)

Une solution du systeme (4.1) est un couple de nombres réels (z;y) qui vérifie les deux
équations du systeme simultanément.

Résoudre un systeme d’équations signifie trouver toutes les solutions de celui-ci.
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Exemple
Le systeme
3r — y = 3
r 4+ 2y = 8
est un systeme de deuxr équations linéaires a deux inconnues qui admet comme

solution unique le couple (2;3). Comme pour les équations & une inconnue, on
donne l'ensemble de solutions sous la forme : S = {(2;3)}

4.1.2 Systemes de trois équations a trois inconnues

Définition 4.3
Une équation linéaire a trois inconnues x, y et z est une condition pour (z,y, z) du

type :
ar +by+cz=d
ou a, b, c et d sont des nombres réels.
Tout triplet (x;y;2) qui vérifie ax + by + cz = d est une solution de 1’équation.
Il existe une infinité de triplets solutions. Dans 'espace R?, I’ensemble de ces triplets
définit un plan.
Un systéme de trois équations a trois inconnues est une condition pour (x;y; z) du
type :
amxr + bly + ¢z = d1
o -+ bgy + oz = dg (42)
azr + bsy + c3z2 = d3
ou a;, b;, ¢; et d; (i = 1,2,3) sont des nombres réels.

Une solution du systeme (4.2) est un triplet de nombres réels (z; y; z) qui vérifie les trois
équations du systeme simultanément.

Exemple

Le systeme
2 — by + =z = -10
r + 2y + 3z = 26
-3z — 4y + 2z = 5

est un systeme de trois équations linéaires a trois inconnues qui admet comme
solution unique le triplet (—1;3;7). On note : S = {(—1;3;7)}

4.1.3 Systemes de m équations linéaires a n inconnues

Définition 4.4

Une équation linéaire a n inconnues i, xs, ..., x, est une condition du type :
a1+ asxo + ...+ apxy, =b (4.3)
ou aq, ..., a, et b sont des nombres réels. On peut remarquer que tous les x; sont a la

puissance 1, si ce n’était pas le cas, I’équation ne serait pas linéaire.

Un systeme de m équations linéaires a n inconnues x1, ..., x, est une condition composée
de m équations du type (4.3).
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Une solution d’un tel systeme est un n-uplets de nombres réels (z1; xs; . . . ; x,) qui vérifie
les m équations simultanément.

Exemple

Le systeme
rT — 42152 + r3 — 72154 = 23
—32151 + To — 95(33 56
— 4xy + 3x3 — 4x4 = 65

est un systeme de trois équations linéaires a quatre inconnues.

4.1.4 Systemes équivalents

Deux systemes sont équivalents s’ils admettent le méme ensemble de solutions. Pour
résoudre un systeme, on va transformer le systeme original en un systeme équivalent dont
les solutions peuvent étre déterminées de maniere simple.

Regles d’équivalence

Les regles suivantes permettent de transformer un systeme d’équations en un systeme
équivalent :

- permuter deux équations,
- multiplier une équation par un nombre réel non nul,

- additionner un multiple d’une équation a une autre équation.

4.2 Méthodes de résolution

Dans cette partie, nous allons décrire quatre méthodes de résolution de systemes de deux
équations linéaires a deux inconnues. On précisera a chaque fois si I'idée de la méthode
peut s’appliquer a d’autre types de systemes.

On cherchera donc a résoudre le systeme de deux équations linéaires a deux inconnues :

{alx + by = (4.4)

asx + by = ¢

ol ay, as, by, by, c1 et ¢y sont des nombres réels.

4.2.1 Graphiquement

Note : cette méthode ne s’applique qu’aux systémes de 2 équations a 2 inconnues.

Idée : La solution du systeme est l'intersection des ensembles de solutions de chaque
équation. Comme ’ensemble des solutions de chaque équation correspond a une droite,
la solution du systeme correspond au point d’intersection de ces deux droites.
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Principe de résolution

Marche a suivre pour résoudre le systeme (4.4) :

1) déterminer deux couples de solutions de la premiere équation et deux couples
de solutions de la seconde équation,

2) reporter dans un systeme d’axes (orthonormés) les points correspondant a ces
solutions,

3) tracer les deux droites passant par ces points représentant respectivement les
solutions de la premiere et de la seconde équation,

4) lire sur la représentation graphique les coordonnées du ou des (infinité) points
d’intersection — solution(s) du systeme.

Exemple
3r — y = 3
+ 2y = 8

— 2 couples solutions de 3z —y =3 : (0; =3) et (1,0).
— 2 couples solutions de x +2y =8 : (0;4) et (8,0).

Résoudre graphiquement le systeme : {

Résolution graphique :

-5 =4 43 =2 -1 2 3 4 5

Ensemble de solutions : S = {(2;3)}

Comme le graphique de toute équation linéaire ax + by = ¢ est une droite, tout systeme
de deux équations de ce type correspond a exactement un des trois cas énumérés dans le
tableau ci-dessous.
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. Coefficient . .
Graphique Nomb.re 09: clents Classification
de solutions des équations
UNE a , by systeme
seule solution as ' by déterminé
droites sécantes
/ AUCUNE e ﬁ ‘1 systeme
solution as by " oo impossible
droites paralleles
IINFINITE .
. a by _a systeme
de solutions Pl s D
(mais S 7& R x ]R) as 2 Co Indeterminé
droites confondues

Remarques

1. On note S = ) lorsqu’un systeéme n’admet pas de solution. Par exemple, le systéme

[\)

r + vy =1
r + y = 2

n’a pas de solution, car les deux équations sont contradictoires (droites paralléles).

. Avoir une infinité de couples solutions, ne signifie pas que tous les couples de

nombres réels sont solutions. Par exemple, le systeme

r + y =1
{23: + 2y = 2 (4.5)

a une infinité de solutions (droites confondues). Pour exprimer ’ensemble des so-
lutions, on peut choisir la valeur d’une variable arbitrairement, et la valeur de la
seconde variable sera déterminée d’apres la valeur de la premiere. On peut choisir
ici :

r=A avec A € R

et y est alors déterminée par :
y=1—\

A n’est pas une inconnue, mais un parametre, c¢’est-a-dire une valeur que 1’on peut
choisir arbitrairement.

On note l'ensemble de solutions ainsi : S = {(A\,1 —X) | A € R}.

4.2.2 Par substitution

Note : cette méthode peut s’appliquer a [’ensemble des systemes d’équations.

Idée : isoler une des inconnues dans une des équations puis remplacer cette inconnue par
la valeur trouvée dans les autres équations.
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Principe de résolution

Marche & suivre pour résoudre le systeme (4.4) :

1) expliciter (isoler) y dans la premiere équation — y est exprimé en fonction
de x,

2) remplacer (=substituer) y, dans la seconde équation, par son expression en
fonction de = trouvé en 1 — on obtient une équation a une inconnue, x,

3) résoudre I’équation obtenue en 2 — valeur(s) pour z,

4) substituer la (ou les) valeur(s) de x trouvée(s) en 3 dans I’équation de 1'étape
1 pour trouver les valeurs correspondantes de y — solution(s) du systeme.

Remarques

1. A T’étape 1, on peut choisir d’isoler x au lieu d’y. On modifie alors la procédure
pour étre cohérent avec ce choix.

2. A TI'étape 1, on peut choisir la seconde équation au lieu de la premiere.
3. Il n’y pas de regle pour savoir quelle équation et quelle inconnue choisir a 1’étape 1.
On effectuera cependant le choix qui "demandera” le moins de calculs et d’efforts.

Exemple

dr + y = 5

3r + 6y = —12

On exprime y en fonction de x dans la premiére équation. On écrira souvent ceci
de la maniére suivante.

Résoudre par substitution le systéeme : {

dr + y = 5 — y=5—4x (1)

3r + 6y = —12 —
On remplace alors y par 5 — 4x dans la deuxieme équation. On obtient I’équation
a une inconnue 3x + 6 (5 — 4x) = —12, qu’on résout :

=Y
3¢+ 6(5—4x) = —12| CL (réduire les deuz polynomes)
—2lz+30 = —12|-30
21z = —42]=(-21)
r = 2

On remplace ensuite x par 2 dans (1) :y=5—4-2= -3.

Pour vérifier la solution obtenue, on remplace x par 2 et y par —3 dans chaque
équation du systeme a résoudre :

1.2 +  (=3) =5  OK
3-2 + 6-(—=3) = —12 O.K.
Ensemble de solutions : S = {(2;—3)}.
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4.2.3 Par combinaisons linéaires

Note : cette méthode peut s’appliquer a [’ensemble des systémes d’équations linéaires.

Idée : on somme un multiple de la premiere équation avec un multiple de la seconde de
facon a obtenir une nouvelle équation ot au moins une inconnue a été éliminée.

Principe de résolution

Marche & suivre pour résoudre le systeme (4.4) :

Résoudre par combinaisons linéaires le systeme : {

2
S

+

3y
2y

27
1

1) choisir x comme inconnue & éliminer,

2) multiplier chaque équation par un facteur ”convenablement choisi” de maniere
a ce que x soit multiplié, dans chacune des équations, par des nombres opposés,

3) additionner les deux équations (=combinaison linéaire) — on obtient une
équation a une inconnue y,

4) résoudre I'équation obtenue en 3 — valeur(s) pour y,

5) recommencer en 1 en choisissant y comme inconnue a éliminer — solution(s)
du systeme.

Exemple

5

(=2)

27

2+ 3y
dor — 2y

-2
-3
I

Multiplication des mem-
bres de la 1°'¢ équation

par 5 et ceux de la 28me
par (—2)
10z + 15y = 135

Addition membre & mem-
bre des deux équations

19y = 133

Résolution de 1’équation a
une inconnue y (<19)

y=71

Multiplication des mem-
bres de la 1°® équation

par 2 et ceux de la 2°8me
par 3
dr + 6y = b4

Addition membre & mem-
bre des deux équations

192 = 57

Résolution de ’équation a
une inconnue z (<19)

r=3

Pour vérifier la solution obtenue, on remplace x par 3 et y par 7 dans chaque
équation du systeme a résoudre :

2:3 + 3-7
5-3
Ensemble de solutions : S = {(3;7)}.

2.7
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Remarques

1. On combinera parfois les méthodes de résolution par substitution et par combinai-

son linéaire.

. Dans un systeme d’équations, on dit qu'une équation est indépendante si elle ne
peut pas étre obtenue en combinant d’autre équations du systeme.

Dans un systeme d’équations,

— il n’y a pas de solution quand il y a plus d’équations indépendantes que d’incon-
nues,

— il y a une infinité de solutions quand il y a plus d’inconnues que d’équations
indépendantes.

. Soient n; le nombre d’inconnues et n. le nombre d’équations indépendantes d’un
systeme. Le nombre n = n; — n. est appelé nombre de degrés de liberté.

Le nombre de degrés de liberté nous indique le nombre d’inconnues dont on pourra
choisir la valeur. Par exemple, pour le systéme (4.5), on an =2 —1 =1 degré de

liberté (on a donc pu choisir la valeur de I'inconnue ).

4.2.4 Par les formules de Cramer

Note : cette méthode ne s’applique qu’aux systemes de deuxr équations linéaires a deux

inconnues et aur systemes de trois équations linéaires a trois inconnues.

Idée : on applique des formules qui donnent directement les solutions.

Théoréme 4.1

] p 4 . e s s b g
Soit le systeme d’équations linéaires : { ma A+ oy €1

aox -+ be = (9

On appelle D =

b , . o .
Zl bl ‘ le déterminant principal de ce systeme.
2 02

— Si D # 0, ce systéme admet pour solution unique le couple (z;y) tel que :

a b

T=Tp o YT

a G
Gy Co
D

Formules de Cramer

— Si D =0, ce systeme peut ne pas avoir de solution ou une infinité de solutions.

Pour démontrer ce théoreme, il suffit d’isoler y dans ’équation a,x + byy = ¢;, puis de
le substituer dans I’équation suivante. En isolant x, on trouve la premiere égalité du

théoreme ; on agit de maniere analogue pour trouver la seconde formule.

Exemples

4r — y = —6

1) Résoudre le systéme : { % + 2 = T

Le déterminant principal du systéme est :

=4.2-2.(=1)=10

4 -1
pefs 7
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Ce systeme admet donc une solution unique déterminée a ['aide des formules

de Cramer :
—6 —1
. T 2] (=6)-2-7-(-1) -5 1
- 10 N 10 10 2
4 —6‘
2 7 4.7—-2-(—6) 40
= = :—:4
y 10 10 10

L’ensemble des solutions : S = {(—1;4)}.

2) Résoudre et discuter le systéme :
m?z + y = 2
r + y = 2m
dans lequel m est un paramétre réel.

Le détermainant principal du systéeme est :
2
o[ 1|

1l s’annule pour m =1 oum = —1.

a) St D #0, c’est-a-dire si m # 1 et m # —1, le systéme admet une solution

UNIQUE !
2 1 m? 2
2m 1 —2 I 2m| 2m*+m+1)
Tr = = = =
m2—1 m+1 77 mr-1 m+ 1

Ensemble des solutions : S = {(:=4; 2(m;t:rf+1)) |meR,m#1,—1}.

r + y = 2
2

b) Sim=1,1 te t:
) Sim , le systéme es {x by =

Il admet une infinité de solutions de la forme (X\;2 — X). Ensemble des solu-
tions : S = {(N\;2—=X) | A € R}. Dans R?, I’ensemble de ces solutions forme
une droite.

.o . o +y = 2
c) Sim= 1,lesystemeest.{z by o= -2

Il n’admet aucune solution. Ensemble des solutions : S = ().

Théoreme 4.2
amr + by + cz = dy
Soit le systeme ¢ asxr + by + 2z = dy .
asr + by + c3z = d3
ap b ¢
On appelle D =|as by c¢o |le déterminant principal de ce systeme.
az b3 c3
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— Si D # 0, ce systeme admet pour solution unique le triplet (z;y; z) tel que :

d1 bl C1 aq d1 C1 aq bl d1
d2 b2 Co a9 d2 Co Qo b2 d2
ds by c¢3 az dz c3 az by ds
_ _ | _ 198 %8 98 4,

Formules de Cramer

— Si D =0, ce systeme peut ne pas avoir de solution ou avoir une infinité de solutions.

Exemple
2v + vy = 2
Résoudre le systeme : - 4y + =z 0
4o + z =6

Le déterminant principal du systéme est

2 1 0
D=0 -4 1/=-8+44+0-0-0-0=—-4
4 0 1
Ce systeme admet donc une solution unique déterminée a l'aide des formules de
Cramer :
2 1 0
0 —4 1
|6 0 1} -8+6+0-0-0-0 -2 1
T T T 4 T 12
2 20
001
1461 _O—|—8+O—O—12—O_—4_1
(I 4 i
2 1 2
0 —4 0
L 4 0 6 _—48+0—|—0—(—32)—0—0_—16_4

—4 —4 —4

L’ensemble des solutions : S = {(3;1;4)}.

4.3 Systemes linéaires homogenes

Définition 4.5

Les systemes

amxr + by + ¢z = 0
azr + by + z = 0

{alx + by = 0
azr + bsy + c3z = 0

asr + by = 0

sont appelés systémes linéaires homogenes a deux, respectivement trois inconnues.

Le couple (0;0) (respectivement le triplet (0;0;0)) est solution de tout systéeme homogene
d’ordre deux (respectivement d’ordre trois). C’est I'unique solution d’un tel systéme si et
seulement si le déterminant principal est non nul.
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4.4 Exercices

1) Résoudre les systeémes suivants :

a) {ar— y=0 ) o= fr Y=
2 4+ 2y =T 3z — 4y —3=0 rt+y=3
oYV _g Ty [ T Yy
Q{56 o) {3 15 f) 3 4
Ty z Y Y
Z _Z_91 . —— 4+ ==16
2 4 12 10 S
( x y_8
g [ z+3y=2 p 9T dy=38 ) 33T
2r + 6y = 4 24x — 25y = 148 ﬁ_g_z
(12 4

2) Résoudre et discuter les systémes suivants :

r 4+ m(m—1)y = 2m? 2mz — (m+2)y = 3m
2) {x— (m? — 1)y = m(1 —m) b){Q(m—l)x— my = 3(m —1)
{m+1:v+ —Dy=m d){(m—|—1)2x+(m2—1)y=m+1
mx + (m+ 1)y = (m—1) (m—1)2x + (m*— 1)y = (m—1)?
{m 3)z + my =5 f) {(m+2):r+( — 1)y =5m+1
mz + (m—4)y = 2 (m+1z + (m+4)y = -8
{ + (m—2)y +5m+10=0
:17+ (3m+9)y — 10=0

3) Résoudre les systemes suivants :

T+ 3y + 2z =—-13 20 — 3y +22=6

a) § 2x — 6y + 3z = 32 b) T+ 8y + 3z = 31
v — 4y — z=12 3r — 2y + z= -5
20 + y =2 r+y—2=1

c) —4y+2=0 d) dx—y—2=-1
4x +2=06 r+y—z=1

r+y+z=14
e) Sz —y+2=06
r—y—z=4

r+ y—62=9
f) r— y+4z=5
20 =3y + z=-4

page 84



Mathématiques, MAP

1°7 année 4. Systemes d’équations linéaires

20 = 3y + 52 =4
g) < 3x 42y + 2z=3
dr + y — 4z = —6
i>{

x4+ 2y +32=2
20 + 4y + 2z = —1
3r + 6y + 5z = 2

r+y+z=1
k) Sz +y+z2=1
r+y+z=1

20 — 3y+ z=0
r+ dy—3z2=3
or + 12y — 82 =9

h)

6z — 2y + z=1
r—4y +22=0
dr + 6y — 32 =10

20 + 3y — 4z =1
v — y+ 2z=-2
or — 9y + 142 =3

4) Résoudre et discuter les systemes suivants :
mr+ y+ z=m?
a) r+my+ z=3m-—2 b)
T+ y+mz=2-m

mr+ y— z=1
r+my — z=1
-+ y+mz=1

5) Résoudre les systémes homogenes suivants :
20 =3y + 32 =0

a) ¢ 3z —4y +52=0 b)
or + y+22=0

4o+ y—22=0
r—2y+ z2=0
11z =4y — 2z=0

x4+ 2y+ 2=0
c) R4+ 8y +42=0 d)
5t + 10y + 52 =10

3+ y— 92=0
dr — 3y + z2=0
6 — 11y + 212 =0

6) Résoudre et discuter les systémes homogenes suivants :

(m*+ 1)z — (m+ 1)y =0 (m—=5)r+ 2m+1)y =0
Y { br — 3320 b) {(3m+5)x+ (m—7)z:o
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4.5 Solutions des exercices

Remarque : on indique ci-dessous uniquement l’ensembles des solutions des différentes
équations sous la forme {...} sans la mention du S =....

1) a) {(—5:4)} b) {(3:3)} c) 0
d) {(60;36)} ) {(12;0)} f) {(14,4;36,8)}
g) {(XN%3) [ AeR} h) {(2;-4)} i) {(24;0)}
2) Pour tout l'exercice : m € R.
a) Sim#1etm# —% { 27;7:13 N - fr(rémlll))}
Sim=1oum= —% 0.

b) Sim#2:{(3;0)},
Sim=2:{(NZ2)|XeR}.

c) Sim#—

Sim =

{ 3m—|—17 3m+1

- 0.

d) Sim#-letm#0etm#1: {(E2;21)}
Sim=—1:{(1;A\) | e R},
Sim=20: {(A)\—l)\)\ER}
Sim=1:{(3X)|XeR}.

1.
3
1.
3

e) Sim# 2 (5 i)}
. 0 )
Sl m = - - @
. m2 m— —m2— m—
f) Sim#-3: {(5 6-:,_3_?_9 4 =2 6m1f9 17)}>
Simz—% 0
' [ /=5(3m+4) . 5(m+8
g) Sim=—getm#-1: {( 2(m+1 g 2(m+1))}’
Sim=—3:
Sim=—1:{(\>2)|eR}.

0,

{5

h) Sim#0:{(0;m?—1)},
A [ A

Sim=0:{(AA—1)| AR}
3) a) {(-2,-52)} b) {(=5;—4;2)}
) {(0,5;1; )} d) {NLA) | AeR}
e) {(94;1)} f) {(8;71)}
) {(=33:3)} h) {(¥F% 555N [ A e R}
i) {(1 2501 | A e R} j) 0
k) {spm=A—p+1) |\ peR} )
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4) Pour tout l'exercice : m € R.
a) Sim#letm#—-2:{(m;2;-2)}
Sim=1:{(Apml—=A—p)[ApeR}
Sim=-=2:{( 4+ X)) | NeR}
b) Sim#Oetm#Lletm#—1:{(L;L;1)}
Sim=20:0,
Sim=1:{(\1;\) | X € R},
Sim=—1:{(\X—-1)| A e R}.
5) a) {(0;0;0)} b) {(3;250) | AR}
c) {(=2A = Ajp) | A p R} d) {2330 2) | A e R}

6) Pour tout I'exercice : m € R.

a) Sim#2etm#—3:
Sim=2:{(\%)]|XeR},
Sim=-1:{(\2)|XeR}
Sim#1etm#—6:{(0;0)},
Sim=1:{(\%)]|XeR},
Sim=—6:{(\;—=X) | e R}

{(0;0)},
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Chapitre 5

Inéquations

5.1 Introduction

Jusqu’a présent, nous avons surtout étudié la résolution d’équations du premier degré
(comme I'équation 2z + 3 = 11), du deuxieme degré ou de degré supérieur. Le but de ce
chapitre est de résoudre des problemes du type suivant :

Pour quelles valeurs de x [’expression 2x + 3 est-elle plus grande que 11 ¢

Remplacons x par 3, 4, 5, 6 et regardons si cette comparaison est vérifiée.

X 2x+3 >11 Conclusion
3 9>11 Faux
4 11>11 Faux
5 13> 11 Vrai
6 15> 11 Vrai

Si un nombre b vérifie la relation lorsqu’on le substitue a x, alors b est une solution de
I’inéquation.

Définition 5.1

Une inéquation est une comparaison semblable a une équation, mais ou le symbole
d’égalité, =, y est remplacé par un symbole d’inégalité : > (plus grand que), < (plus
petit que), > (plus grand ou égal &) ou < (plus petit ou égal a).

Exemple

Pour linéquation 2x + 3 > 11, on voit que, grace au tableau ci-dessus, parmi les
nombres 3, 4, 5, 6, seuls 5 et 6 sont solutions de l’inéquation.

En procédant encore a quelques essais, il semble que tous les nombres supérieurs a 4

vérifient cette comparaison. Il y a donc une infinité de solutions a cette inéquation.
Comme pour les équations, résoudre une inéquation va signifier trouver toutes les solu-
tions de I'inéquation.

Que faut-il comprendre lorsque qu’on rencontre le signe >, plus grand ou égal a7
— Si la comparaison plus grand que est vérifiée, alors 'expression plus grand ou égal a
I'est aussi.
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— Si la comparaison €gal est vérifiée, alors 'expression plus grand ou égal a I'est aussi.
Pour voir la différence entre les symboles > et >, on peut reprendre 'exemple précédent
en le modifiant quelque peu :

X 2x+3 > 11 Conclusion
3 9>11 Faux
4 11>11 Vrai
) 13>11 Vrai
6 15 > 11 Vrai

Le nombre 4 est maintenant solution de 'inéquation.

Nous avons déja vu qu’il est possible de représenter les nombres réels sur une droite allant
de moins l'infini (—oo) & plus l'infini (+00).

—0 T I 400

a b

Sur la droite réelle, le nombre a est a gauche du nombre b si a est plus petit que b. On
voit immédiatement que tous les nombres a gauche de b satisfont l'inéquation = < b.
La solution d’une inéquation n’est donc pas un nombre, mais un ensemble de nombres,
qu’on nomme intervalle (consulter le chapitre sur les ensembles). Ainsi, la solution de
I'inéquation x < b est 'ensemble S = |—o0; b].

5.2 Quelques propriétés

Comme nous le verrons, les méthodes pour résoudre les inéquations sont semblables
a celles utilisées pour résoudre les équations. Les propriétés que nous allons voir sont
valables pour tous les types d’inéquations.

Pour énoncer ces propriétés, nous considérerons deux nombres réels a et b (a,b € R) tel
que a < b. Des propriétés équivalentes peuvent étre données pour a > b, a < b ou a > b.

5.2.1 Propriété d’addition

Pour tous les nombres réels a, b et ¢, avec a < b, on a :

‘a<b — at+c<b+ce a—c<b-c

Exemple

On considere les trois nombres 2, 3 et 7. Comme 2 < 7, on a alors que :
e 2+3<T7+3 oubd<10,
e 2-3<T7—-3o0u—-1<4

Cette propriété va nous permettre de passer un terme d’un membre de 'inéquation a
l'autre en I'additionnant (ou en le soustrayant) des deux cotés.

On peut ainsi transformer 'inéquation x + 2 < 0 en une inéquation équivalente :
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r+2 < 0 —2 (Soustraire 2 auzx deux membres)
r+2-2 < =2 Calcul littéral

r < =2 Inéquation équivalente

L’ensemble des solutions de I'inéquation  + 2 < 0 est donc S = |—o0; —2].

5.2.2 Propriété de multiplication

Pour tous les nombres réels a, b et ¢, avec a < b, on a :

a<bet ¢>0 = a-c<b-c et

A\

a<bet ¢c<0 = a-c>b-c et

\Y
Ol ol

ol ol

Exemples

1. On considere les trois nombres 2, 5 et 7. Comme 2 < 7, on a alors que :

e 2-5<7-50ull<35,

2 7
¢ s <cou04<ld

2. On consideére les trois nombres —5, 2 et 7. Comme 2 < 7, on a alors que :

o 2-(=5)>7-(=5) ou —10 > —35,
2

7
¢ < ou-04>-14

Remarque

La derniere propriété est source de beaucoup d’erreurs. Il faut y faire tres attention. Si
on multiplie (ou divise) une inéquation par un nombre négatif, il faut changer le signe de

I'inégalité, c’est-a-dire :

devient
devient
devient
devient

VAV A
AWV AV

Cette propriété n’a rien de comparable pour les équations.

5.2.3 Propriété d’inversion

Pour tous nombres réels a et b de méme signe (donc a-b > 0), avec a < b, on a :

ISHN
S| =

a<bet a-b>0 — >
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Exemples
1. On consideére les deux nombres 2 et 5. Comme 2 < 5, on a alors que :

1 1
e — > — ou0.5>0.2.
2 5

2. On considere les deur nombres —2 et —5. Comme —5 < —2, on a alors que :

1 1
—_— > — —0.2 > —0.5.
0_5>_20u0>05

5.3 Inéquation du premier degré

Définition 5.2
Une inéquation du premier degré est une inéquation qui peut étre ramenée a la forme
générale

a-x+b>0

oua € R* beR et le symbole > peut étre remplacé par un des symboles <, < ou >.

Exemple

Linéquation 2x + 3 > 0 est une inéquation du premier degré.

Dans la suite de ce cours, nous allons travailler sur des exemples pour donner les idées
générales de résolution de différents types d’inéquations.

5.3.1 Résolution algébrique

La résolution algébrique d’une inéquation du premier degré est analogue a celle d'une
équation du premier degré, cependant il faut changer le sens de l'inégalité lorsqu’on
multiplie ou divise les deux membres par un nombre négatif.

Exemple 1
A résoudre : -3z +4 < 11.

On peut procéder de la maniere suivante en s’inspirant de ce qu’on fait avec une équation
du premier degré et en respectant les propriétés énoncées au paragraphe précédant. Le
but est d’isoler x d'un co6té de 'inéquation.

—3r+4 < 11 —4 (Soustraire 4 auzr deur membres)

(=3z+4)—4 < 11—-4 Réduire

—3r < 7 +(=3) (Diviser par —3, changer le sens de l'inégalité)
-3 7
_—; > — Simplifier
7 . R
r > —3 Inéquation équivalente
L’ensemble des solutions de —3z +4 < 11 est S = ]—3' 400 [

7
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Exemple 2

A résoudre : —6 <2x —4 < 2.

Un nombre réel est solution de cette inéquation si et seulement s’il est solution des deux
inéquations :

a) —6 <2z —4
b) 22 —4 < 2

On résout alors chacune de ces deux inéquations séparément. Pour la premiere :

—6 < 20—4 +4 (Additionner 4 auz deuz membres)
—6+4 < (2xr—4)+4 Réduire
-2 < 2z +2 (Diviser par 2)
-1 < z Permuter les termes
xr > —1 Inéquation équivalente

Pour la seconde :

20 —4 < 2 +4 (Additionner 4 auz deuz membres)
20 < 6 +2 (Diviser par 2)

r < 3 Inéquation équivalente
Ainsi, z est solution de I'inéquation de départ si et seulement si on a a la fois
z>—1 et T <3,

c’est-a-dire —1 < x < 3. Ainsi, les solutions de I'inéquation sont tous les nombres appar-
tenant a U'intervalle |—1; 3[.

En fait, cet intervalle correspond a l'intersection des deux intervalles qui représentent la
solution de la premiere et de la seconde équation : |—1;3[ = |—1; +o00[(]—00; 3.

5.3.2 Résolution graphique

Pour résoudre une inéquation du type az 4+ b > 0 (ou avec un autre signe d’inégalité), on
peut également observer le graphe de la fonction donnée par f(x) = azx + b.

Exemple 3

A résoudre : %:c +1>0.

La fonction donnée par f(z) = 32 + 1 coupe 'axe Oz en z = —2.

On observant le graphe de f esquissé ci-dessous, on constate que

1
§x+1>0 sl x> —2
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L’ensemble des solutions de l'inéquation est donc l'intervalle S = |—2; +o0].

On peut s’inspirer de l'exemple ci-dessus pour construire un tableau qui résume la
résolution graphique des inéquations qui peuvent se ramener a la forme :

axr+b>0 ou ar+b<0 (a+#0)

a>0 a<0

Graphe de
f(z)=ax+0b

Qo
Qo

Valeur de

T

SRS
IS

Signe de 0
ar +b

Solutions de b b
ar+b>0

Solutions de b
ar+b<0

Un tableau similaire pourrait étre construit pour les inéquations pouvant se ramener a
la forme ax +b > 0 ou ax + b < 0 (a # 0). En fait, il suffit de modifier la forme des
intervalles et d’inclure & chaque fois la borne —2

a”

5.4 Inéquations de degrés égal ou supérieur a 2

Définition 5.3
Une inéquation du deuxiéme degré est une inéquation qui peut étre ramenée a la
forme générale

a-22+b-x+c>0
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oua € R* b ceR et le symbole > peut étre remplacé par un des symboles <, < ou >.

Une inéquation polynomiale de degré supérieur a 2 est une inéquation qui peut
étre ramenée a la forme générale
p(z) >0

ou p(z) est un polynoéme de degré supérieur a 2 et le symbole > peut étre remplacé par
un des symboles <, < ou >.

Exemple

Linéquation 32> +4 > 0 est une inéquation du deuziéme degré et l'inéquation
323 — 222 + 2 < 0 est une inéquation polynomiale de degré 3.

5.4.1 Résolution algébrique

La résolution algébrique d'une inéquation du deuxieéme degré du type ax? + bx +c¢ > 0
ou de degré supérieur du type p(z) > 0 utilise fortement la résolution de ’équation
du deuxieme degré correspondante az? + bx + ¢ = 0 ou, respectivement, de 1’équation
correspondante p(z) = 0. Nous allons & nouveau prendre un exemple pour comprendre
comment cela fonctionne.

Exemple 4
A résoudre : 222 — 6x +4 < 0.

1) On commence par résoudre I’équation correspondante : 22% — 6z + 4 = 0.

Le discriminant vaut A = (—6)? —4-2-4 = 4 et les deux solutions sont alors données
—(—6) £ V4
par la formule : x5 = % Apres calcul, on trouve que 7 = 1 et 29 = 2.
2) On peut factoriser notre polynéme du deuxieme degré et écrire que 2% — 6x 44 =
2(x — 1)(x —2).
Au niveau de I'inéquation, on utilise cette factorisation pour passer a une nouvelle
inéquation équivalente a la premiere.

202 —6zx+4 < 0 Factoriser

2@ —-1)(z—2) < 0 Inéquation équivalente

3) On doit maintenant étudier le signe de 2(z — 1)(z — 2) suivant les valeurs de x, afin
de déterminer celles qui le rendent positif. Pour déterminer le signe de ce produit, on
étudie le signe de chacun de ses facteurs :

a) Pour 2, on a que 2 > 0.

b) Pour z — 1, on a trois solutions possibles :
e r—1>0,six>1,
e r—1=0,six=1,
e r—1<0,siz<l.

¢) Pour z — 2, on a trois solutions possibles :
e v —2>0,s1x>2,
o r—2=0,six=2,
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e v —2<0,six<2.

Pour 2(x — 1)(z — 2), on construit un tableau de signes :

x 1 2
2 + o+ ]+
r—1 — 0 + + +
x—2 — - 0 +
2(x —1)(x —2) + 0 — 0 +

Ce tableau de signes a été construit de la maniere suivante :

1)

4)

Sur la premiere ligne, on représente les valeurs possibles de x (en fait la droite
réelle). On construit une colonne pour chacune des racines et une colonne pour
chacun des intervalles compris entre deux racines ou entre l'infini et une racine
(premiere et derniere colonne).

Important ! Dans la premiere ligne du tableau, les racines sont classées par ordre
croissant.

On construit ensuite une ligne pour chacun des facteurs qu’on a déterminés et on
étudie le signe de ces derniers. Pour chacune des colonnes construites (pour chaque
racine et chaque intervalle), on détermine si le facteur est positif (4), nul (0) ou
négatif (—) sur ceux-ci.

Sur la derniere ligne, on étudie le signe de I'expression de départ : 2(z — 1)(z — 2).
Pour cela, on résume chacune des colonnes en utilisant la régle des signes (+-+ = +,
+ . — = — ... voir page 12).

On lit sur la derniere ligne du tableau que 'inéquation proposée a comme solution
tous les  tels que 1 < x < 2. L’ensemble des solutions est donc S = ]1;2].

Méthode générale de résolution

Si 'inéquation ne se ramene pas apres simplification a une inéquation du premier degré,
on suit la démarche suivante :

1. On regroupe tous les termes dans le membre de gauche pour que celui
2. On factorise (si possible) le membre de gauche en le mettant sous la
3. On étudie le signe de chacun des facteurs dans un tableau de signes

4. On conclut en observant la derniere ligne du tableau.

de droite soit égal a zéro.
forme d’un produit (ou d'un quotient).

(voir les exemples).

Exemple 5

A résoudre : 23 > 42’ +x—4
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Pour résoudre cette inéquation, on suit la démarche proposée ci-dessus.
3 > 42’ +ax—4 | —42? —x+4 (Membre de droite = 0)
22 —42? —x+4 >
(4@ —1a—4) >

Factoriser

0
0 Inéquation équivalente

On voit immédiatement que les facteurs s’annulent en —1, 1 et 4. On construit le tableau
de signes :

T —1 1 4
r+1 — 0 + + + + +
x—1 — - - 0 + + +
x—4 — — — — — 0 +
(x+1)(z—1)(x—4) — 0 + 0 — 0 +
L’ensemble des solutions est donné par : S = [—1; 1] | [4; +o0[.

5.4.2 Résolution graphique

Pour résoudre une équation polynomiale du type p(x) > 0 (ou un autre signe d’inégalité)
de maniere graphique, on résout également ’équation p(x) = 0, puis, au lieu de construire
la tableau de signes, on observe le graphe de la fonction donnée par f(x) = p(z) afin de
déterminer les solutions de 'inéquation.

Exemple 6

A résoudre : x*+4x —5 < 0.

1) On recherche les solutions de 1’équation correspondante : 2% + 4z — 5 = 0. On trouve
$1:16t$2:—5.

2) On réalise une esquisse du graphe de la fonction donnée par f(z) = 2? + 42 — 5 (cas
ot a > 0). Celle-ci est donnée ci-dessous. On 'observant, on constate que :

2 +4r—-5<0si —H<x<l

Y
YA: ?+4r—5 4t /
2 L
: : x
—6 — —4—3—2—1_2/I 2
L’ensemble des solutions de l'inéquation est donc U'intervalle S =| — 5; 1].

On peut s’inspirer de l'exemple ci-dessus pour construire un tableau qui résume la
résolution graphique des inéquations qui peuvent se ramener a la forme :

az® +br+c¢>0 ou ar’ +br+c<0 (avec a>0)
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a>0
Graphe de 7\/ \/
f(z) = az®+br+c %
IN_ST2 x ‘

Vale;r de o s .
ax%iiandj— c O -0 + 0 + +
gmonde | el ®VG) | R
axgoiuzixo:l_scdi 0 Jo1; o pas de solution (S = 0)

Un tableau similaire pourrait étre construit pour les inéquations pouvant se ramener a
la forme az? + bz + ¢ > 0 ou ax® + bx + ¢ < 0 (a > 0). De méme, on pourrait construire
ce tableau pour a < 0 (laissé au lecteur).

5.5 Inéquations rationnelles

Définition 5.4
Une inéquation rationnelle est une inéquation qui peut étre ramenée a la forme
générale
x

p(@) _

q(x)
ou p(x), q(x) sont des polynomes et le symbole > peut étre remplacé par un des symboles
<, L ou 2.

Exemple
2 -3z +2
L inéquation :L’gix;— < 0 est une inéquation rationnelle.
T —
Exemple 7
(x4+2)(3 —x)

A résoudre : < 0.
résoudre CESEES))

L’expression est déja factorisée, on peut donc directement établir le tableau de signes.
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T -2 -1 3

T+ 2 — o 4+ |4+ o+ |+ o+

3—u N T I O

r+1 — — — 0 + + +

z* 41 + + + + + |+ +

2)3—=
((5: 1))((32 T 1)) I .
La solution de notre probléme est donc I'ensemble S = [—2; —1[J [3; +o0].

Remarques

1. Le quotient n’est pas défini en x = 1 (on a %) x = 1 ne peut donc pas étre une
solution ! Dans le tableau, lorsque le quotient n’est pas défini, on achure les points ou

les intervalles ot ceci a lieu (dans la derniere ligne).

2. Le terme (2% + 1) est toujours positif, il n’a donc pas d’effet sur le signe du quotient.
On pourrait ainsi omettre la ligne correspondante dans le tableau.

Exemple 8

r+1 <9

r+3

Attention! Une erreur fréquente est de multiplier par z 4+ 3. Or, on n’a pas le droit
de multiplier I'inégalité par le dénominateur de la fraction s’il contient une variable. En
effet, comme la valeur de z est inconnue, on ne sait pas si c¢’est un nombre positif ou
négatif! On ne sait donc pas si le sens de I'inéquation changera apres multiplication.
On ne peut multiplier (ou diviser) les deux c6tés d’une inégalité que par des
valeurs connues (des constantes). La résolution correcte est la suivante.

A résoudre :

1
Tt < 2 | =2 (Membre de droite = 0)
r+3
1
vl < 0 Mettre au méme dénominateur
x4+ 3
r1-2(x+3) < 0 Réduire
r+3
T 0| (=1 (Multipli 1)
< (= ultiplier par —
r+3 b b
5
Tt > 0 Inéquation équivalente
r+3
T -5 -3
) — 0 + + +
z+3 — - — 0 +
T+ 95
+ |0 - +
T+ 3
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L’ensemble des solutions est donné par S =] — co; —5]U| — 3; +00].

Le nombre —5 est inclus puisque le quotient s’annule en —5. Le quotient n’est pas défini
en —3; ce nombre n’appartient donc pas a I’ensemble des solutions.

5.6 Fonction valeur absolue et fonctions définies par
morceaux

Le graphe de la fonction valeur absolue donnée par f(x) = |z| est représenté ci-dessous.
Cette fonction permet, en langage familier, ”d’6ter” le signe d’un nombre, et de le rendre
positif.

On constate que ce graphe est formé de deux demi-droites, la demi-droite d’équation

y = —x pour les x négatifs et la demi-droite d’équation y = x pour les x positifs.

)

4 F

3 -

2t

y = |z
1
-3 -2 -1 1 2 3
.

On peut donner une expression de cette méme fonction sans utiliser le symbole valeur
absolue, | . |, en séparant, dans la définition de f, les = positifs des x négatifs.

Définition 5.5
La fonction valeur absolue est définie par :

f: R — R
-z six <0

v m:{ T six >0

Exemples
1) |5] = 5 puisque 5 > 0.
2) | = 5| = —(=5) =5 puisque —5 < 0

Une fonction donnée de cette fagon est dite définie par morceaux ou définie par inter-
valles. On donne ci-dessous 3 exemples de telles fonctions.
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Exemples
Yy
3 -
1 3 :
5T+ 5 stz <1
. fay=¢ =2
—r+3 sixz > 1
x
—r+1 stz <1
flx) = ,
2. —x+3 siz>1
x Le graphe de cette fonction présente un
saut en x = 1.
La fonction signe donnée par f(x) =
Yy sgn(zx) prend la valeur 1 si x est posi-
o b tif, la valeur —1 si x est négatif et la
y = sgn(x) valeur 0 st x est nul. Elle est définie
3 ! par morceaur et peut étre donnée par
' — x [’expression :
-3 -2 -1 1 2 3
* -1 siz<0
—a} sgn(z) =< 0 sizx=0
1 stz >0

On peut également utiliser le symbole valeur absolue pour poser une inéquation.

Exemple 9
A résoudre : |z| < 3.

Essayons de comprendre ce que veut dire |z| < 3.

Si z > 0, cela signifie que x < 3. Si z < 0, cela veut dire que —z < 3, donc x > —3 (on
multiplie par un nombre négatif, le signe de I'inéquation change). On en déduit :

|z| < 3 est équivalent & —3 <z < 3.
De méme, pour |z| >3 on a :

|z| > 3 est équivalent a z < —3 ou = > 3.

On peut généraliser ce qui précede et on obtient, si a et b sont des nombres réels, :

1) Ja| <b est équivalent a —b < a<b,
2) |a] > b est équivalent & a < —b ou a >b.
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Chapitre 6

Nombres complexes

6.1 Introduction

Dans le premier chapitre de ce cours, nous avons décrit les ensembles de nombres suivants :
1. N={0;1;2;...}, 'ensemble des nombres naturels ;
. Z=A...;-2,-1;0;1;2; ...}, 'ensemble des nombres entiers

2

3. Q= {2—9 |pEZetqce Z*}, I’ensemble des nombres rationnels;
q

4

. R, 'ensemble des nombres réels. Cet ensemble est constitué des nombres rationnels et
des nombres irrationnels.

Nous avons alors remarqué que N C Z C Q C R.
Historiquement, ces ensembles de nombres ont été définis successivement.

Les nombres naturels ont été les premiers a étre utilisés. En effet, c’est cet ensemble de
nombres qui est utilisé la plupart du temps pour compter. Historiquement, le zéro n’est
pas apparu en méme temps que les autres nombres. On le rencontre pour la premiere fois
en Inde.

Dans N, 'opposé d’un nombre n’existe pas ou, de maniere équivalente, ’équation z+1 = 0
n’a pas de solution. Par contre, dans 7Z, cette équation admet une solution : —1. Z est
une extension de N.

Dans Z, I'inverse d'un nombre différent de 1 n’existe pas ou, de maniere équivalente,
I’équation 2x = 1 n’a pas de solution. Par contre, dans QQ, une solution existe : % Q est
une extension de Z.

Dans Q, il n’existe pas de nombre ayant pour carré 2 ou, de maniere équivalente, la
diagonale d’un carré de coté 1 n’est pas mesurable ou l’équation 2> = 2 n’a pas de
solution. Par contre dans R, cette équation admet 2 solutions : v/2 et —v/2. R est une
extension de Q.

Dans R, il n’existe pas de nombre ayant pour carré —1 ou, de maniere équivalente,
I'équation 22 = —1 n’a pas de solution.

L’objectif de ce cours est donc de définir un ensemble de nombres tel que les racines de
nombres négatifs soient définies. Nous noterons ce nouvel ensemble C et nous appellerons
ces nouveaux nombres nombres complexes.

On peut montrer que dans C toute équation polynomiale de degré n admet n solutions
(théoreme fondamental de l’algebre). De plus, en utilisant cet ensemble, il est possible de
déterminer une formule qui permet de résoudre toutes les équations du troisieme degré.
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6.2 Présentation des nombres complexes sous forme
de couples

Il existe plusieurs manieres de définir I’ensemble des nombres complexes. Selon le modele
de Hamilton, nous définirons I’ensemble C & partir de I’ensemble produit R2.

Définition 6.1
L’ensemble des nombres complexes, noté C, peut étre défini comme 1’ensemble pro-
duit

C=RxR=A{(a;b) | a,b € R}

muni des opérations d’addition et de multiplications ci-dessous.

6.2.1 Addition des couples

Définition 6.2
L’addition dans C est 'opération interne (C x C — C), notée +, définie par :

(a;0) + (a';0) = (a+d;0+ 1)

Propriétés
L’addition des couples :

— est associative :

(a;b) + [(a';6) + (a”;8")] = [(a;b) + (a’;0")] + (a”;0")

possede un élément neutre dans C, le couple (0;0) :

(a;6) + (0;0) = (0,0) + (a;0) = (a;0)
— est telle que tout couple de C possede un opposé, le couple (—a; —b) :
(a;0) + (—a; =b) = (—a; =b) + (a;b) = (0;0)

— est commutative :
(a;0) + (a's¥) = (a5 ¥) + (a;0)

En raison de ces propriétés, on dit que 'ensemble C muni de I’addition des couples a une
structure de groupe abélien.

6.2.2 Multiplication par un scalaire

Définition 6.3
La multiplication par un scalaire est I'opération externe (R x C — C), notée -, définie
par :

A (a;b) = (Aa; Ab)

avec A € R.
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Propriétés

La multiplication par un scalaire vérifie :

~ 1-(a;b) = (a;b)

= A (a;0)] = (An) - (a;b)

(a;b) + - (a;0) = (A + p) - (a3b)

(a;b) + A+ (as0) = A+ [(a;b) + (a'; V)]

En raison de ces propriétés, on dit que ’ensemble C muni de I'addition des couples et de
la multiplication par un scalaire a une structure d’espace vectoriel réel.

A
A

L’ensemble ordonné ((1;0); (0;1)) est une base de cet espace vectoriel réel. En effet, tout
couple (a;b) de C peut étre engendré de maniére unique comme combinaison linéaire de
(1;0) et (0;1) :

(a;0) =a-(1;0) +b-(0;1)
C muni de ’addition des couples et de la multiplication par un scalaire est donc un espace
vectoriel réel de dimension 2.

6.2.3 Multiplication des couples

Définition 6.4
La multiplication dans C est 'opération interne (C x C — C), notée *, définie par :

(a;0) * (a';0) = (ad’ — 0V'; al’ + a'b)

Propriétés
La multiplication des couples :
— est associative :
(a;b) = [(a"; V) * (a”; )] = [(a; b) * (a;0')] * (a”; V")
possede un élément neutre dans C, le couple (1;0) :
(a;0) * (1;0) = (1,0) * (a;b) = (a;b)

a2+b2;a2—|—b2

a —b a —b
(a;0) * <a2+b2; a2+b2) B (a2+b2;a2+b2) *(@;0) = (1;0)

— est commutative :

a —b
est telle que tout couple de C* possede un inverse, le couple < ) :

(a;b) * (a'; V) = (a'; V) * (a; )

— est distributive par rapport a ’addition des couples :

(a;0) % [(a';0") + (a";8")] = (a;b) * (a';0') + (a;b) x (a”; V")
En raison des propriétés liées aux opérations internes, on dit que I’ensemble C muni de
I’addition et de la multiplication des couples a une structure de corps commutatif.
Ainsi, toutes les propriétés des opérations dans un corps sont vérifiées. Par exemple, la
multiplication n’a pas de diviseurs de zéro, c’est-a-dire que 'équation (x;y) * (2';y") =
(0;0) a pour solution (x,y) = (0;0) ou (z’;y') = (0;0). Pour cette méme raison, on a le
droit de simplifier une équation :

(z;9) % (259) = (x5 9) * (2" y") = (25¢) = (2";9") ou (x;y) = (0;0)
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6.2.4 Prolongement de ’ensemble des nombres réels

Définition 6.5
On note C’ 'ensemble des éléments de C tels que leur deuxieme coordonnée est égale a
0:

C'={(a;0) | aeR} CC

Opérations dans C’

Considérons 'addition et les multiplications dans ce sous-ensemble C’ de C.

— Addition : (a;0) + (a’;0) = (a +d;0) € C'
On dit que C’ est stable pour I'addition.

— Multiplication par un scalaire : X - (a;0) = (Aa;0) € C’
C’ est stable pour la multiplication par un scalaire. C’est aussi un espace vectoriel réel
de base ((1;0)). Tout couple (a;0) de C" peut s’exprimer comme a - (1;0).

— Multiplication : (a;0) * (a’;0) = (aa’ —0-0;a-0+4+a’ - 0) = (aa’;0) € C'

C’ est stable pour la multiplication.

Définition 6.6
Soient F et F' deux espaces vectoriels réels.

On appelle application linéaire de F vers I toute application h de E vers F telle que :

hu+v) = h(u)+ h(v)
h(A-u) = X-h(u)
quels que soient u,v € F et A € R.
Une application linéaire bijective de E vers F' est appelée isomorphisme de E vers F.

Deux espaces vectoriels E et F' sont dits isomorphes s’il existe un isomorphisme de F
vers F'. On note £ =2 F.

Lorsque deux espaces vectoriels sont isomorphes, on peut presque dire qu’ils sont iden-
tiques. Les mémes éléments se trouvent dans les deux ensembles. Seule la maniere de
les écrire est différente. L’application h nous permet de passer d’une écriture a l’autre,
comme un dictionnaire nous permet de passer d'une langue a ’autre.

On considere maintenant 'application linéaire bijective qui a tout nombre réel x fait
correspondre le couple (z;0) de C' :
p: R — C
r — (z;0)

a) ¢ est un isomorphisme de (R;+;-) vers (C'; +;-)

= p(u) + (V) = (4;0) + (v;0) = (u+v;0) = p(u+v)

= Ap(u) = A (u;0) = (Au; 0) = p(Au)
b) ¢ est un isomorphisme de (R;-;-) vers (C’; x; -)

— p(u) * p(v) = (u;0) * (v;0) = (u-v;0) = p(u-v)
= Arp(u) = A (u;0) = (Mu; 0) = (M)
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Les opérations définies dans C et celles définies dans R sont donc les mémes lorsqu’on se
restreint aux couples de la forme (a;0). Ainsi, 'ensemble R et le sous-ensemble de C des
couples de la forme (a;0) sont isomorphes. Nous pouvons alors identifier le nombre réel
quelconque a avec le couple (a;0) :

a = (a;0)

L’ensemble des nombres réels peut donc étre considéré comme un sous-ensemble de I'en-
semble des nombres complexes.

6.3 Présentation des nombres complexes sous forme
cartésienne

Comme ’ensemble des nombres complexes est un espace vectoriel de dimension 2, il existe

au moins une base de cet espace formé de deux couples. La plus simple est la base formée
des couples (1;0) et (0;1). Tout couple (a;b) peut alors s’écrire

(a;0) = (a;0) + (0;0) = a- (1;0) + - (0;1)

Par ce qui précede, on peut remplacer le couple (1;0) par le nombre réel 1. Si on pose en
outre (0;1) = ¢, on pourra remplacer le couple (a;b) par le nombre complexe z = a + bi.

Définition 6.7
Tout nombre complexe z = (a;b) peut s’écrire sous forme cartésienne comme

ou a et b sont des nombres réels.

Le nombre a est appelé partie réelle du nombre complexe z, on la note : a = Re(z).
Le nombre b est appelé partie imaginaire du nombre complexe z, on la note : b = Jm(z).

En appliquant les regles de multiplication, on obtient

- 2=(0;1)*(0;1)=(0-0-1-1;0-140-1) = (-1;0) = —1
— P == (=1)i=—i

Sit=R = (21 (-1) =1

P =iti=1i=1

~f =t P =1 == -1

Ainsi, pour tout nombre naturel n, on a :

Z’4n — 1’ 7:411—1—1 o

— 7/7 ’i4n+2 . _17 Z’4n+3 o

6.3.1 Addition, soustraction, multiplications sous forme carté-
sienne

Pour additionner ou soustraire deux nombres complexes sous forme cartésienne, pour

multiplier un nombre complexe sous forme cartésienne par un scalaire ou pour multi-

plier deux nombres complexes sous forme cartésienne entre eux, on procede comme s’il
s’agissait d’opérations sur les binémes mais en tenant compte que 2 = —1.
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> (a+bi)+ (d+bi)=(a+d)+ (b+)i

> (a+bi)—(d+bi)=(a—d)+ (b—=0V)i

> A (a+bi) = a+ \bi

> (a+bi)-(a + i) =ad + abi+ a'bi + bb'i* = (aa’ — b)) + (ab/ + a'b)i

Remarque

En travaillant sous forme cartésienne, on utilise le symbole - au lieu du symbole * pour
la multiplication de deux nombres complexes, car, sous cette forme, la multiplication par
un scalaire et la multiplication sont tres proches au niveau de la maniere de les réaliser.

6.3.2 Division

Pour diviser deux nombres complexes sous forme cartésienne, on amplifie la fraction afin
de faire disparaitre la partie imaginaire au dénominateur :

a+ bi a+bi o —=Vi ad +bb+ (a'b—ab)i aa’ + bb’ a'b — ab/

GV AtV od—Vi (@P+@F @R+ WR @R+ R

Si le dominateur de la fraction est le nombre complexe 2/ = a/ 4’7, on amplifie la fraction
par le nombre complexe 2/ = a’' — Vi.

6.3.3 Nombre complexe conjugué

Définition 6.8
On appelle nombre complexe conjugué du nombre complexe z = a + bi le nombre

complexe :

Propriétés - nombre complexe conjugué

La notion de nombre complexe conjugué vérifie les propriétés suivantes :

1) La somme de deux nombres complexes conjugués est un nombre réel :
z+Z=a+bi+a—-bi=2acR
2) Le produit de deux nombres complexes conjugués est un nombre réel :

z-Z=(a+bi)-(a—0bi)=a*—abi+bai — V*i* = a®> +b* € R

zZ+Zz Z2—Z zZ—z

et Jm(z) = = '
(2) 21 2

Ces propriété sont valables pour tout z, 21, 2z € C.
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6.3.4 Résolution d’équations du deuxieme degré

Pour rechercher les racines carrées d’'un nombre complexe z = a+bi (il y en a deux!), par
exemple pour la résolution d’une équation du deuxieme degré, on procede comme suit.

Si on appelle x + yi les racines carrées de z, on peut poser, par définition :
(x+yi)?=a+bi ou 2? —y* + 2xyi = a + bi

Comme ’ensemble des nombres complexes est un espace vectoriel, la décomposition dans
une base quelconque est unique. On peut donc poser

-y = a
2xy = b
ce qui nous donne un systeme de deux équations a deux inconnues qu’on résout par

substitution en remplacant y par Y dans la premiere équation. L’équation a résoudre
x

devient )
b
% — (—) =a ou dr* —4az® — 12 =0
2

On obtient alors que

o AaE VI FIOR e VPP
- 8 2

Comme a? + b* > 0, il y aura deux solutions pour z2. De plus, comme a? + b? > a2, une
des solutions sera positive, I’autre négative et ne conviendra pas pour z2. Finalement, on
a:

a+va*+b? b
T1,2 = H—— et Ne = ———F——
2 +9 a+va?+b2
2

Exemple

Résoudre : %22 —4z4+iz+5—10i =0

On commence par calculer le discriminant associé a cette équation :

A= (—4+i)?—4-=-(5—10i) = 16 — 8i + 4> — 10 4+ 20i = 5 + 12i

N —

On cherche ensuite les racines carrées x + yi de 5+ 12i. On peut poser :
(x+yi)? =5+12i ou 2 —y? + 2zyi =54 12i
En identifiant les parties réelle et imaginaire, on obtient le systéme
2> —y? =5
2y = 12
En wsolant y dans la deuxieme équation et en injectant sa valeur dans la premiere
équation, on doit maintenant résoudre I’équation

6\ 2
:52—<—> =5 ou ' —5r*—36=0 ou (z°=9) (2> +4) =0
x
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Ainsi 22 = 9 ou 22 = —4 ce qui est impossible. Les deuz racines carrées de 5+ 12i
sont donc

6
=3 — y1:§:2

6
IQZ—?) — y22—2—2
-3
Ainsi, © 4+ yi = £(3 + 2i). En utilisant la formule de résolution des équations du
deuxieme degré, on obtient comme solutions de [’équation de départ
—(—4+1i) £ (3+29)

2190 = 1 ou z7n=T+1etz=1-—231

6.4 Présentation des nombres complexes sous forme
trigonométriques

6.4.1 Plan de Gauss, module et argument

Nous avons vu que I’ensemble C est un espace vectoriel de dimension 2. Nous avons méme
donné une base de cet espace :

(1;4) ou ((1;0); (0;1))

Avec cette base et le point 0 4+ 0 - ¢ comme origine, nous pouvons définir un repere.

Dans ce repere, tout nombre complexe z = a + bt peut étre représenté par un point
M (a;b) dont 'abscisse est la partie réelle de a et 'ordonnée la partie imaginaire b.

On introduit ainsi une bijection entre C et les points du plan.

Définition 6.9
Le plan ainsi défini est appelé plan complexe ou plan de Gauss.

L’axe des x est appelé axe des réels.
L’axe des y est appelé axe des imaginaires.

Ri

Définition 6.10
Tout nombre complexe z = (a;b) = a + bi peut étre repéré dans le plan de Gauss par :
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a) la distance, notée p ou |z|, entre 'origine et le point M (a;b) représentant z :

p=lz] =Vz-z=Va2+1?

On appelle cette distance le module de z.

b) langle orienté, noté 6 ou arg(z), entre I'axe des réels et le segment [OM] :

0 = arg(z) = arctan (2) + k- 27 sia > 0
et

0 = arg(z) = arctan (2) + 7+ k- 27 si a < 0

a

On appelle cet angle 'argument de z.

Le nombre complexe z de module p et d’argument 6 se note souvent :

[p: 6]

On appelle cette notation la forme trigonométrique de z

On peut passer aisément de la forme trigonométrique, [p; 0], a la forme cartésienne, a+ bi,
d’un nombre complexe z en posant :

pcos(0)
b = psin(0)

ou de maniere équivalente :

z=a+bi=p-(cos(f)+sin(f) - i) = pcos(f) + psin(f) - i

Remarques

1. Si z est un nombre réel, |z| = v2Z = V22 est la valeur absolue de z.
2. Deux nombres complexes z; et 2z, sont égaux sous forme cartésienne ou sous forme
trigonométrique si :
a1 +bii=as+byi < a; =agetb =by
[p1;91] = [p2;92] < pr=pet 0, :92+/{5'27T,k’ €7

Propriétés - module

Le module vérifie les propriétés suivantes :
1) |2/ =20 et |z2]=0&2=0
2) | Azl =\l ]|z], avec A € R

3) lz] = lz2f| < |21 + 20| <] + 22|
Minkowski
4) |z| = 7]
5) |21 22| = |21] - |22]
6) |2 2l
%) |2’2|
7) [Re(z)| < [2] et [TIm(z)] < 7]

Ces propriétés sont valables pour tout z, z1, 20 € C.
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Remarque

Les fonctions vérifiant les deux premieres propriétés et la propriété de Minkowski sont
appelées des normes.

6.4.2 Addition, soustraction et multiplication par un scalaire

Cette maniere de présenter les nombres complexes n’a aucun intérét en ce qui concerne
ces opérations.

Dans le plan de Gauss, 'addition et la soustraction équivalent a des translations. La
multiplication par un scalaire équivaut a une homothétie de centre O et de rapport ce
scalaire.

6.4.3 Multiplication

Soient deux nombres complexes z; = [p1; 01] et zo = [p2; 0]. On peut multiplier ces deux
nombres complexes de la maniere suivante :

2120 = pi(cos(fy) + sin(6y)i) - pa(cos(B) + sin(hy)i)
= p1p2 - [(cos(B;) cos(fz) — sin(fy) sin(62)) + (cos(6y ) sin(fs) + cos(6s) sin(6)) ]

7 7

Cos(€T+92) sin(9‘1,+€2)
= p1p2 - (cos(0y + 02) +sin(6y + 02)i) = [p1 - p2; 01 + 02]

On remarque alors que lorsqu’on multiplie des nombres complexes, les modules se multi-
plient et les arguments s’additionnent :

2y - 29 = [p1;61] - [p2; 02) = [p1 - p2; 61 + 62)

Remarque

Dans le plan de Gauss, la multiplication par z = [p; 6] équivaut a une rotation d’angle 6,
suivie d’'une homothétie de rapport p.

6.4.4 Inversion

Soit le nombre complexe z = [p; ]. Pour déterminer I'inverse de ce nombre complexe, on
prend l'inverse de son module et 'opposé de son argument :

1 [1
2 |p

En effet, on a bien que :
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6.4.5 Division

Soient deux nombres complexes z; = [p1;61] et z2 = [po;02]. On peut déterminer le
quotient de ces deux nombres complexes de la maniere suivante :

z 1 1
Do = =[] {—; —92] = [&;91 — 92}
29 29 P2 P2

On remarque alors que lorsqu’on divise deux nombres complexes, les modules se divisent
et les arguments se soustraient :

ﬂ — [pl’el] = |:ﬂ91 - 92:|
22 [p2; 92] 027

Remarque

Dans le plan de Gauss, la division par z = [p; 6] équivaut a une rotation d’angle —0,
suivie d’'une homothétie de rapport 71).

6.4.6 Elévation a une puissance

Soit le nombre complexe z = [p; f]. Pour élever le nombre complexe z a la puissance n,
2", il suffit de le multiplier n fois par lui-méme. En effectuant les diverses multiplications
successives, on obtient :

2" = [p;0]" = [p"; nb)]
On remarque que pour élever un nombre complexe a la puissance n, on éleve le module
a la puissance n et on multiplie 'argument par n.

6.4.7 Extraction des racines n-iemes

Soit le nombre complexe z = [p; 0]. On cherche ici les nombres qui élevés a la puissance
n donnent le nombre z. D’apres ce qui précede, il faut prendre un nombre complexe dont

le module est {/p et dont 'argument est %. Comme 6 est défini a k- 27 pres, % sera défini
a k% pres. Il y aura donc n modules différents par tour. Ainsi tout nombre complexe

possédera n racines n-iemes distinctes.

Les racines n-iemes de z = [p; 0] sont données par :

0+k-2m
Vz= {(ﬁ; 7}
n
avec 0 < k <n,k €N.
Remarques
k-2m]" " 1 : N
1. Comme |1; = [1";k-27] = 1, on peut en déduire que les racines n-iémes

de z = [p; 0] s'obtiennent en multipliant une des racines n-iemes de z par les racines
n-iemes de l'unité.

2. Dans le plan de Gauss, les n racines n-iemes de z sont situées sur un cercle de centre
O et de rayon {/p. Si on relie ces racines par des segments de droite, elles forment un
polygone régulier a n cotés.
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6.4.8 Formule de Moivre

Soit un nombre complexe z de module 1. Il peut s’écrire
z = [1;60] = cos(f) + sin(6)i
Si on ’éleve a la puissance n, on obtient
2" =[1;,0]" = [1";n - 0] = cos(nh) + sin(nh)i

Proposition 6.1
La formule appelée formule de Moivre est 1’égalité suivante :

(cos(#) 4 sin(#)i)" = cos(nh) + sin(nh)i

Exemple

Si on applique la formule de Moivre pour n =2, on a

(cos(f) +sin(0)i)* = cos(20) + sin(26)i

ou

cos?(0) + 2cos(A) sin(A)i — sin?(f) = cos(26) + sin(20)i

Ainsi, par identification des parties réelles et imaginaires, on a

cos(20) = cos?(0) — sin?(f)
sin(20) = 2cos(f)sin(0)

qui sont les formules trigonométriques de duplication.
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6.5 Exercices

1) Soient les nombres complexes z; = (1;4) et 25 = (5; —1). Calculer :

a) z3 =21 + 22 b) 2z, =3z C) 25 =212
<1

d Z:Z2 e Zr = — f Ze =

) %= ) 27 o ) s >

2) Reprendre 'exercice 1) mais en écrivant les nombres complexes sous la forme a + bi
(forme cartésienne).

3) Soient les nombres complexes z; = 7 — 5i, 20 = 2+ 14, 23 = =5+ 2i, 2y = —10 — 3,
z5 = 8 et zg = 8i. Calculer :

a) 21— 23 — 25 b) 212923 c) 22+ 22
d) iz — 2326 e) Jm(zy) f) PRe(2723)
g) Jm(2z — 32) ny 2 Py 2

26 22

4) Trouver '’ensemble des nombres complexes z tels que 2’ = (z — 1)(z — 21) soit

a) un nombre réel b) un nombre imaginaire pur
z+20
5) Trouver I'ensemble des nombres complexes z tels que 2/ = 5 soit
Z J—

a) un nombre réel b) un nombre imaginaire pur

6) Démontrer les formules :
%e(z)zz_gz et ﬁm(z):Z;iZ:Zgzi.

7) Résoudre les équations :

a) z+2iz=8+4Ti b) (1+id)z+ (5—3i)z =20+ 20¢

1

c) (2+42i)z —3Re(z) = —18 + 30¢ d) Im(Z+1)+i-Re(—2+2) = 5~ 61
8) Résoudre les systemes d’équations :

2) v+ 2y =T+1 b) 1x — dy = 13

or — 3y = —1+8& 20 — iy = 13

9) Résoudre les équations :

a) 2 +zx+1=0 b) 62° + (7 —13i)r —3—-T7i=0
10) Ecrire sous forme cartésienne les nombres complexes suivants donnés sous forme tri-

gonométrique :
T 1 o5m
a) z = [2;7] b) 2z = [\/5, 6] c) z3= [5, Z}
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11) Soient z; = [2; ﬂ, 29 = [3; %}, 23 = [5; %] et 24 = [1; ‘%“] Calculer :

z z
a) 21 - 2o b) z_: c) 2324 d) z_z
12) Calculer le module et 'argument des nombres complexes :
a) z1 =4+ 2i b) zg=3—1 c) zg3=—4+2i
d) zg=-3—1i e) 25 =21+ 29 f) 26 =21 22
g) 2z =2 h) 28253 i) zgzz—z

13) Calculer, en utilisant la forme trigonométrique, les produits et les quotients suivants,
puis exprimer les résultats sous forme cartésienne.

1—1

a) (1+i)(V2—v2) b) (1—-V3i)(—4V3+4) ¢ T

4+ 4v/3i 0 —14++/3i 0 3+
V3 4 V2+V2i 2+i

14) Calculer :

a) (1) 0 (3+3) o) (V- VEi)

d)

1+ /3
15) Soit z = ;“fz
— 1

a) Représenter 2°.

b) Déterminer les nombres entiers n pour lesquels 2" € R.

16) Calculer et construire :

a) les racines carrées de —8&1.

b) les racines carrées de 163.
+1

7

les racines cubiques de —46 + 9:.

d

)
)

c) les racines cubiques de
)

e) les racines sixiemes de 1 + /3.

17) Résoudre les équations :
a) 224+ (5—-2)z+5—-5i=0 b) 22 +22+2+1=0
c) =it =22 +iz+1=0 d) 2% —(1+12i)2*> =13 -9 =0
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6.6 Solutions des exercices

1) a) 2z =(6;3) b) 2= (3;12) ) 2 =(9;19)
§a=(-158) @ a-(mm) D a-(gx)
2) a) z3=6+3i b) z4=3+12i c) z5=9+19%
d) zg=—-15+28i e) @z%—i—}—ji f) 28:21_6+§_éi
3) a) 47 b) —89+ 53i ¢) 112+ 40i
d) 19 + 30i e) —3 £) 20

4) a) 2’ est un réel si z = a + bi est tel que 2ab—2a —b+2 =10

b) 2’ est un imaginaire pur si z = a + bi est tel que (a —3)? = (b—1)>+2 =0

5) a) 2/ est unréelsi z=a+bi est tel quea —b—2=0

b) 2’ est un imaginaire pur si z = a + bi est tel que (a — 1)? + (b+ 1)* = 2

7)) a) z=2+4+3i b) z= —5i c) z=12+3i d) z:8+%z’
8) a) x=1+4+1i, y=2—1 b) z=2i, y=-3

8) a) m:%m D) #m -t s my— -2l
10) a) z = -2 b) 22:§+§Z c) 23——\/?5—@1

1) 6] NE &) [5:7] 3 [ 2]

12) Réponses :
1 2 3 4 D 6 7 8

9
mod. v20 V10 V20 V10 V50 V200 20 420\
arg. 0,464 —0,322 2,678 3,463 0,142 0,142 0,927 3,605 =~

13) a) 22 b) 164 ) —i

d) 2v/3 4 2 e) 0,966+ 0,259 f) 1,4—0,2
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14) a) —262144 + 262144

b) —0,865—0,501¢

c) 21200629, 67 + 5231678, 517

15) b) Les multiples de 12.

16) a) 9i —9i

b) 2v2(1+14) —2/2(1 +1)

V2 V2

¢) 0,966+ 0,259 % + gz

d) 2+3i —3,598 + 0, 232i

e) 1,105+ 0,195 0,384 + 1,055

—1,105 — 0, 1954 —0,384 — 1,055

17) a) 21:—2+i 22:—3+’i

b) 21:]_ ZQZi Zgz—i

¢) 21 = 0,951 — 0,309 2 = 0,588+ 0,809i

2z = —0,951 — 0, 309
d) 21 =241 2 =—1,87+1,23

24 =0,79 40, 79i

z5 = —1,08 40,29
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0,722 —0,860:
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Chapitre 7

Progressions

7.1 Notion de suite

Définition 7.1
Une suite est un ensemble ordonné de nombres réels, appelés termes.

Exemples

1)3;5; =24;53;4; —12; 14, ...

+5 45 +5 45 45
% 8% 8%

2) —2735787137187 ...
3)4;8;16;32;64; ...

Remarques

La suite peut étre munie d’une régle de formation (maniere de construire la suite a
partir d'un ou de plusieurs de ses termes) ou non.

La premiere suite des exemples ci-dessus est une suite sans regle de formation. Les
deuxieme et troisieme suites sont des suites avec regle de formation.

Pour la deuxieme, on obtient le terme suivant de la suite en additionnant 5 au terme
précédent.

Pour la troisieme, on obtient le terme suivant de la suite en multipliant le terme précédent
par 2.

Un ensemble ordonné de nombres réels signifie qu’il existe une fonction qui associe un
sous-ensemble A de N a cet ensemble de nombres réels. Le terme de départ de la suite
est alors I'image du plus petit nombre contenu dans A. Le terme suivant est 'image du
deuxieme nombre contenu dans A, si on ordonne les éléments de A en ordre croissant. Le
troisieme terme est obtenu de la méme maniere, et ainsi de suite.

Définition 7.2
Plus précisément, une suite de nombres réels est une fonction f de A € N dans R :

f: A — R
n r— f(n)
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Le nombre réel f(n) est appelé le n°™° terme de la suite et on le désigne par une lettre
indexée en bas a droite par n, par exemple : x,,, Y,, U, ou v,. La suite elle-méme est alors

désignée par (), (ga); (), et (v,).

Remarques

— Dans 'exemple 1, on a que ug = 3, u; =5, us = —24, ...

— Le plus souvent A est N lui-méme, ou N*. Ainsi, sans indication contraire, on considére-
ra que A =N,

— Si A est constitué d’'un nombre fini de nombres, la suite est également constituée d’un
nombre fini de termes. Dans le cas contraire, la suite est constituée d’un nombre infini
de termes.

7.1.1 Détermination d’une suite
Une suite peut étre déterminée par :
— la donnée de tous ses termes (pas de regle de formation).
Ezxemple : ug=6; uy = —3; up =—1; ug =98; ...
— une formule qui donne w,, par rapport a n (ce qui revient a donner f(n) = u,).
1) fn)=u,=n*=1;4;9;16; ...

2) f(n) =un =g avec A=N" =15 5535 35 ...

Ezxemples :

— par récurrence : le deuxieme terme de la suite est donné en fonction du premier,
le troisieme en fonction du deuxieme et ainsi de suite. Plus généralement, le terme
d’indice n est donné par rapport au terme d’indice n — 1.

Uy
un:f<un—1>
Ezxemple : uy =1, up, =3u,_ 1 —1=1;2;5; 14; ...

Mathématiquement, on écrit : {

7.1.2 Quelques définitions sur une suite

Définition 7.3
Une suite (z,,) est dite majorée s’il existe un nombre réel M tel que, pour tout entier
neA u, <M.

Une suite (x,) est dite minorée §'il existe un nombre réel m tel que, pour tout entier
neA, u, >=>m.

Une suite (z,,) est dite bornée si elle est a la fois majorée et minorée.

Exemple

1
Soit la suite (u,) donnée par u, =1 — —.
n
Elle est majorée par le nombre 3. Elle est aussi majorée par le nombre 1, qui est
le plus petit majorant.

Elle est minorée par le nombre —5. Elle est aussi minorée par le nombre 0, qui est
le plus grand minorant.

Pour les définitions suivantes, on considere que A = N.
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Définition 7.4
Une suite (x,,) est dite croissante (respectivement strictement croissante), a partir de
I'indice ng, si, quel que soit I'entier naturel n > ng, on a

Upy1 = Uy (respectivement w1 > uy).

Une suite (z,,) est dite décroissante (respectivement strictement décroissante), & partir
de I'indice ng, si, quel que soit ’entier naturel n > ng, on a

Upy1 < Uy (respectivement w41 < uy).

Une suite est dite monotone si elle est croissante ou décroissante.

Pour montrer qu’une suite est monotone, on peut étudier le signe de la différence
Up_1 — U, Si cette différence est positive, alors la suite est croissante et, si elle négative,
la suite est décroissante. Cette méthode est particulierement adaptée aux suites définies

a l'aide d’une sommation.
Un+1

On peut également comparer le quotient au nombre 1 (en prenant garde aux signes

n
de u, et u,.1). Si ce quotient est supérieur a 1, alors la suite est croissante et, s’il est
inférieur a 1, la suite est décroissante.

Exemple

dn —1

n+3"

La suite (uy,) est strictement croissante. En effet, si on considére la différence d’un
terme de la suite et du précédent, on obtient :

Soit la suite (u,) donnée par u, =

dn+1)—-1 4n—-1 4n+3 4dn-—1

Ut =l = T ) +3 0 n+3  ntd nt3
(An+3)(n+3)—(4n—1)(n+4) 13
B (n+3)(n+4) C (n+3)(n+4)
> 0

étant donné que le dénominateur du dernier quotient est un produit de deux nombres
positifs (n € N).
La suite (u,) est majorée par le nombre 4. En effet, on a :

_4dn—-1 4n+12 4(n+3)

= < = =
Y3 S Tk n+3

7.2 Progression arithmétique (PA)

Définition 7.5
Une progression arithmétique (PA) est une suite déterminée par le premier terme u,
et par la formule de récurrence :

Up = Up—1 + T
ou r € R. Le nombre r est un nombre constant appelé raison de la progression arithmé-
tique.
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Exemples

ErROR B R
H)u=2,r=6=2;8;14;20;26; ...

+1 +1 +1 41 41
N N N Oy

2)up=0,r=1= 0717273747 ... = {nombres naturels} = N

+2 +2 +2 42 42
N N N Y

) uy=1,r=2=173757779"7 ... = {nombres impairs}
Propriété

La différence de deux termes consécutifs est constante et égale a la raison : u,, —u,_1 =,
Vn € N.

7.2.1 Terme général u,

On peut mettre en évidence un lien entre le premier terme u; et n’importe quel terme wu,,
de rang n d’une PA.

Soit une PA déterminée par son premier terme u, et sa raison r. Par définition, on a :

Uy (premier terme)

Ug = U +7 (définition)

U3 = Uy +T = u; +2r (définition, substitution de us)
Uy = us—+r = u;+3r (définition, substitution de us)
Uy = Up_1+7 = uy+(n—1)-r (définition, substitution de wu,_1)

On obtient ainsi le lien suivant :

Up=u1+(n—1)-r

Remarques

Il ne faut pas confondre u,, et n!
n est le nombre d’éléments, u,, 1’élément de rang n.
n est un nombre entier, u, ne l'est pas forcément.

Exemple

NN K K. R
Soit la suite donnée paruy =5 etr=7=5;12;19;26;33; ...
Son 46°™ terme est ugg = 5 + 45 - 7 = 320.

7.2.2 Somme des n premiers termes : S,
Propriété

Dans une progression arithmétique finie comportant n termes, la somme de 2 termes
équidistants des extrémes (u; et u,) est égale a la somme des extrémes (uy + uy,).
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Exemple

Soit la PA de 6 termes données par uy =5 et r = 4. On a alors :

~
9+21=30

~—
5+25=30
La somme de deux termes équidistants des extrémes est égale 30.

Démonstration. Soit une PA de n termes donnée par u; et r. En reprenant le méme
schéma que pour 'exemple ci-dessus, on obtient pour le cas général :

U1 U9 us Ce un_% Up—1 Uy,
uU3+uUp—2
g
~
u2+un—1
NS ~~ >
u1+un

Or, on a les égalités suivantes :

UL+ U, = Ui+ Uy
Ug +tUp1 = (ug+7r)+ (up — 1) =us + uy
Uz + Up—o = (ug +2r) + (u, — 2r) = uy + uy,

La somme de deux termes équidistants des extrémes est donc bien égale a u; +u,. O

Propriété

La somme des n premiers termes d'une PA, S, = u; +us +uz + ... + Up_1 + Uy, est
donnée par la formule :

Sn:§~[2u1+(n—1)-r]

Démonstration. Soit une PA donnée par u; et r. On peut écrire de deux manieres
différentes (ordre) la somme de ses n premiers termes :

S, = ur + us +  us + .4 Uy + Uy tu,
Sn = U, + Up1 + Up2 + ... + U3 +  ug +uy @

En additionnant ces deux expressions terme a terme, on obtient :
25, = (u1 + up) + (g + tn—1) + (Ug 4+ Un—2) + ... + (Up—1 + u2) + (uy + u1)

D’apres la propriété précédente, il y a n parentheses formées de la somme de termes
valant chacun u; + u,. Ainsi 25, = n - (u; + u,). En remplagant u,, par uy + (n — 1) - r
et en divisant les deux membres de I’équation par 2, on obtient :

n

Sn:§ 2u; + (n—1)-7]
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Exemples

1) La somme des 100 premiers nombres entiers : Sipo = 192(2- 1499 - 1) = 5050
2) La somme des 29 premiers nombres impairs : Sag = 2(2- 14 28 - 2) = 841

7.3 Progression géométrique (PG)

Définition 7.6
Une progression géométrique (PG) est une suite déterminée par le premier terme u,
et par la formule de récurrence :

Up = Up—-1"(
ol ¢ € R. Le nombre ¢ est un nombre constant appelé raison de la progression géomé-
trique.

Exemples

N - A
1)u=2,¢qg=6=2;12;72;432;2592; ...
2)ur=1,r=2=1:;2;4;8;16; ... = {puissances de 2 }

Propriété

Le quotient de deux termes consécutifs est constant et égale a la raison :

Vn € N.

= g,
Up—1

7.3.1 Terme général u,

Comme pour une PA, on peut mettre en évidence un lien entre le premier terme u; et
n’importe quel terme u, de rang n d’'une PG.

Soit une PG déterminée par son premier terme u; et sa raison q. Par définition, on a :

Uy (premier terme)
us = Uuy-q (définition)
Uz = Uy q = u - ¢ (définition, substitution de us)
Uy = uz-q = u-¢° (définition, substitution de us)
Up = Up_1-q = up-q" ' (définition, substitution de wu,_ 1)
On obtient ainsi le lien suivant :
Up = Uy qn_l

Exemple
Soit la suite donnée paru; =3 et q=2=3;6;12 ;24 ;48 ; ...
Son 18°™¢ terme est uig = 3 - 217 = 393/216.

page 122



Mathématiques, MAP 197 année 7. Progressions

7.3.2 Somme des n premiers termes : S,

Propriété

Dans une progression géométrique finie comportant n termes, le produit de 2 termes

équidistants des extrémes (u; et u,) est égale au produit des extrémes (u; - uy,).

Exemple

Soit la PG de 6 termes données par u; = 2 et r = 3. On a alors :

2 6 18 54 162 486

18-54=972

6-162=972

2-486=972

Le produit de deux termes équidistants des extrémes est égal a 972.

Démonstration. Soit une PG de n termes donnée par u; et g. En reprenant le méme

schéma que pour 'exemple ci-dessus, on obtient pour le cas général :

(251 Uy Us NN un_% Up—1 Unp
U3 Un—2
A - ~~ -
U2-Un—1
-
Ul-Un

Or, on a les égalités suivantes :

Uy Uy = UL Up

Up,
Uy Up—y = wym--; = Uy - Uy

u
Us - Up—y = er%(é)zurw

Le produit de deux termes équidistants des extrémes est donc bien égal a u; - u,.

Propriété

O

La somme des n premiers termes d’'une PG, S, = uq + us + us + ... + tUp_1 + Uy, est

donnée par la formule :

sig#1;etpar S, =n-u; siqg=1.

(7.1)

Démonstration. Soit une PG donnée par u; et r. On peut poser les deux égalités sui-

vantes :

S, = Ui + us + us + ... + Up1 + U,

q-S, = q-ur + q-ux + q-uz + ... + U1 + q-up
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On peut réécrire ces relations de la maniere suivante :

Sn:u1+u2—|—U3+...+un_1—|—un
q-Sp = uy + uz + oug A+ .+ U+ qu, O

En retranchant terme par terme la deuxieme relation de la premiere, on obtient :

D’ou : Lo
Uy — g - Up —dq
Sn = - = .
l—¢q T
O
Exemple
La somme des 15 premieres puissances de 2 :
121
Sis=20+2" 422+, 421 = 20 . = 32'767.
15 +2°+ 27+ + -9

=1

7.3.3 Progression géométrique illimitée (PGI)

Définition 7.7
Une progression géométrique illimitée (PGI) est une progression géométrique com-
portant un nombre infini (illimité) de termes.

On note S, la somme de tous ses termes.

On peut utiliser la formule 7.1 pour déterminer la valeur de Sy, = uq +us +ug+us+ ...

Cette derniere dépend de la valeur de ¢ :

— si ¢ est plus grand que 1 ou plus petit que —1 (on note |g| > 1), la valeur de ¢" devient
tres positive ou tres négative (selon le signe de ¢ et la valeur de n) lorsque n devient
de plus en plus grand. La valeur de S, fait de méme. On peut dire qu’elle ”explose”,
ou, en termes mathématiques, qu’elle tend vers I'infini.

—si —1 < ¢ < 1 (on note |g] < 1), la valeur de ¢" devient de plus en plus petite et
s’approche de 0 lorsque n devient de plus en plus grand. Le terme ¢" disparait alors de
la formule 7.1.

Propriété

Soit une PGI donnée par son premier terme u; et sa raison q.
Si |¢| < 1, on a la formule suivante :

Uy

S = lim S, =

n—o00 1—¢q
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Remarque

lim,, ., S, : cette écriture se lit "limite de S,, lorsque n tend vers l'infini”. Ceci signifie
que la valeur de S,, s’approche de S, (la valeur de la limite) lorsque n devient de plus
en plus grand.

Exemple
La somme de tous les termes de la PGI donnée par uy = 1 et q = %,
So =1+ % + i + é + ..., peut étre déterminée a l’aide de la formule ci-dessus :
1
Soo = T =2
I=3
car q = % < 1.

7.4 Application : calculs financiers

Sur un marché économique, des acteurs peuvent préter ou emprunter un capital (une
somme d’argent) en contrepartie de quoi ils percoivent ou respectivement versent un
intérét (une autre somme d’argent) périodique. Cet intérét se justifie par la prise de
risque que prend le créditeur (celui qui préte le capital) relativement au non-rembour-
sement de la totalité ou d'une part du capital initial que doit rembourser le débiteur
(celui qui doit rembourser le capital emprunté) et au fait que le créditeur ne peut plus
utiliser a sa guise le capital immobilisé aupres du débiteur.

Ainsi, quand vous déposez de 'argent sur un compte aupres d’une banque, cette derniere
vous verse a la fin de 'année un intérét. En quelque sorte, elle vous paie pour 'argent que
vous lui avez prété afin qu’elle puisse réaliser certaines opérations financieres : investis-
sement en bourse, investissement dans I'immobilier, prét a d’autres personnes, ...Dans
cette transaction, vous étes le créditeur et la banque le débiteur.

A Tinverse, quand vous empruntez de l'argent aupres d’'une banque pour, par exemple,
construire une maison, cette derniere vous demande de lui verser des intéréts en contre-
partie de ce prét. Dans ce cas, vous étes le débiteur et la banque le créditeur.

En lien avec la notion d’intérét, nous utiliserons souvent le taux d’intérét sur une unité
de temps qui est défini comme :

intéréet produit pendant une unité de temps

taux d’intérét = -
capital

L’'unité, ou période, de temps peut étre, par exemple, 'année, le semestre, le trimestre, le
mois, le jour, I'heure, la minute, la seconde, .... En général et sans indication contraire,
nous considérerons que la période de temps est ’année et donc le taux d’intérét annuel.

Notations

Les notations suivantes seront utilisées dans ce chapitre :
C' = capital (sans autres précisions),
Cy = capital initial, au temps 0,

C,, = capital aprés n années (ou périodes),
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n = nombre d’années (ou de périodes) pendant lesquelles le capital initial est investi,
I = intérét produit pendant une année (ou une période),
i = taux d’intérét annuel (constant), généralement exprimé en %.

Avec les définitions ci-dessus, on a les deux relations équivalentes suivantes :

et I1=C-i

1=

I
C

Sur la base de ces notions, deux types de réflexion sont possibles :

la capitalisation : elle permet de calculer la valeur future (ou valeur acquise) d’un
capital a partir de sa valeur présente. Sous forme de schéma :

Co n années Ch
| >
| |
Capital initial Valeur acquise temps

Le sens de la fleche indique qu’on déplace un capital en direction du futur.

Pactualisation : elle permet de déterminer la somme d’argent, qu’on appelle valeur
actuelle, qui doit étre investi pour obtenir, apres un temps donné, un montant fixé
a I’avance.

Co n années Ch

|
Valeur actuelle Capital final (fix¢)

temps

Le sens de la fleche indique qu’on déplace un capital en direction du passé.

7.4.1 Capitalisation

Un capital C placé pendant une année a un taux d’intérét annuel produit un intérét
valant C' - 7. Si ce capital est placé pendant plusieurs années, I'intérét total produit et
donc la valeur acquise dépend de la convention adoptée pour faire les calculs.

Intéréts simples

L’intérét produit au cours d'une année n’est pas capitalisé pour ’année suivante (il n’est
pas ajouté au capital). Les intéréts sont toujours calculés par rapport au capital initial,
Cy. En appliquant cette convention, on trouve la suite de capitaux :

Apl"éS 1 année : Cl :Co+002200(1+2)

Apres 2 années : Co=C1+Ch-i=Co(1+1)+Ch-i=Cy(l+ 2i)
Apres 3 années : C3=Cy+Cy-i=Co(1+2i)+Cp-i=Co(l+30)
Apreés 4 années : Cy=C3+4+Co-i=Co(1+3i)+ Cy-1=Co(l + 4i)

Apres n années (ou périodes), le capital C, est donné par la formule des intéréts
simples :
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Remarque

Pour tout n > 0, la différence C,, 1 — C,, est constante et égale a Cy-i. Ainsi la suite des
capitaux (), est une progression arithmétique de raison Cy - ¢ et de premier terme Cj,.

Exemple

On place 500 CHF' a intéréts simples et a 5% pendant 20 ans. La valeur acquise
(capital final) est donné par :

Cao = Co(1 + 20i) = 500 - (1 +20 - 0.05) = 1000 CHF

Intéréts composés

L’intérét produit au cours d’'une année est capitalisé pour ’année suivante (il est ajouté
au capital). Les intéréts sont calculés année par année sur la base du capital a la fin
de T'année précédente. Ainsi, chaque année, le montant sur lequel I'intérét est calculé
change! En appliquant cette convention, on trouve la suite de capitaux :

Apl"éS 1 année : Cl = CO + C() -1 = C()(l + Z)

Aprés 2 années : Co=C1+Cy-i=C1(1+1i) =Co(1+1)?
Apres 3 années : Cy=Cy+ Cy-i=Co(l1+1i) =Co(1+1)3
Apres 4 années : Cy,=C3+C3-i=0C5(1+1)=Co(1+1)*

Apres n années (ou périodes), le capital C), est donné par la formule des intéréts
COmposés :

Cr = Co(1+4)"

Remarques

1) Pour tout n > 0, le quotient Cg“ est constant et égal a 1 + ¢. Ainsi la suite des

capitaux ), est une progression géométrique de raison 1+ i et de premier terme Cj.

2) On appelle généralement la raison de cette progression le facteur de capitalisation,
noté r.

Exemple

On place 500 CHF a intéréts composés et a 5% pendant 20 ans. La valeur acquise
(capital final) est donnée par :

Cyo = Co(1 + ) =500 - (1 4+ 0.05)* = 1326,65 CHF

Taux proportionnel et taux équivalent

Selon les cas, on peut considérer d’autres unités de temps que l'année : le semestre, le
trimestre, le mois, .... Pour cela, on divise 'année en m périodes de longueur égale : %
année (m = 2 pour le semestre, m = 12 pour le mois, ... ). On calcule alors les intéréts en
considérant I'unité de temps choisie et non plus I'année. Les formules précédentes restent
valables en utilisant un nombre de périodes et un taux d’intérét correspondant a 1'unité
de temps considérée.
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Exemple

On place 500 CHF a intéréts composés mensuels et a un taux d’intérét mensuel
im = 1% pendant 2 ans. La valeur acquise (capital final) est donnée par :

Cos = Co(1 +1i,,)* =500 - (1 +0.01)** = 634,86 CHF
On peut se poser la question suivante : quel taux d’intérét appliquer sur m périodes
(égales au total a une année) pour que la valeur, au bout d’une année, d’un capital initial
Cp soit la méme que si on considérait un taux d’intérét annuel ¢ 7 Celui-ci dépend de la
convention de calcul d’intéréts adoptée.

Définition 7.8
2 cas dépendant du principe de capitalisation :

Intéréts simples : le taux proportionnel, noté p,,, correspondant a l'unité de temps
de longueur % année et au taux d’intérét annuel i est défini par I’égalité :

En simplifiant cette égalité, on trouve la définition équivalente :

Pm = —
m

Intéréts composés : le taux équivalent, noté i,,, correspondant a I'unité de temps de
longueur L année et au taux d’intérét annuel 4 est défini par I’égalité :

Co(14+14) = Co(1 + i)™

En simplifiant cette égalité, on trouve la définition équivalente :

= WV1+i—1

Exemple

Si le taux d’intérét annuel est de 3% et que 'unité de temps considéré est le mois
(m=12), on a :
— taux proportionnel : p1p = % = 0.0025 = 0, 25%

— tauzr équivalent : 110 = /1 +0.03 —1=0,00247 = 0,247%

7.4.2 Actualisation

On considere le probleme inverse de la capitalisation. On va déplacer un capital en direc-
tion du passé. Par exemple, on peut se demander quel investissement Cj on doit placer,
a un taux d’intérét annuel ¢, pour obtenir apres n années un capital C,.

Formules

On peut conserver les mémes formules que pour la capitalisation, si ce n’est qu’on connait
C,, et qu'on désire déterminer Cy. On obtient les formules suivantes :

1
Intéréts simples : Co=0Cp  ———
14+n-1

Intérét ¢ C C 1
ntéréts composés : =Ch 77—
P ° (1+i)"
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Exemple

Si on souhaite posséder 100000 CHF' dans 30 ans sur un compte en banque rap-
portant un intérét annuel de 2% (on laisse les intéréts sur le compte), on doit

placer :

1
Co=Cs- 0 = 10'000 - —————— =~ 10°000 - 0.552071 = 5’520, 71 CHF

1
(1+41) (14 0.02)%0
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7.5 Exercices

1) Ecrire les cinq premiers termes des suites ci-dessous :

U():l
a) {un:2un_1—3

Uy = 3
b) Up—1 + 2
Up = ————=
Up—-1 — 2

1
BGn—2)3n+1)

a) Ecrire les quatre premiers termes de cette suite.

2) Soit la suite (u,) définie par u,, =

b) Démontrer par récurrence que, ¥n € N*, uy +ug + ... + u, = 3 7:_ T
n
2n — 7
3) Soit la suite (u,,) définie par u,, = )
) (un) p 3o

a) Démontrer que cette suite est croissante.

b) Démontrer que cette suite admet 1 pour majorant.

4
(n+1)(n+2)
a) Ecrire les 4 premiers termes de cette suite.

b

)
)

c) Démontrer que cette suite est bornée.
)

4) Soit la suite (u,,) définie par u, =1 —

, avec n € N*.

Démontrer que cette suite est croissante.

n2

d _
n—+2

Démontrer par récurrence que les somme des n premiers termes est s, =

5) Soit la suite (u,,), avec n € N*| définie de maniere récursive par :

Uy = \/§
Up4+1 = \/2un

a) Ecrire les quatre premiers termes de cette suite.

b) Démontrer par récurrence que cette suite est croissante et majorée.

6) Soit la suite (u,), avec n € N*, définie de maniere récursive par :

(51 =0
{ Up+r1 = 2un + 35
Démontrer par récurrence que cette suite est croissante et majorée par 7.
2n?

n+1
Calculer le plus petit entier naturel p tel que

7) Soit la suite (u,) définie par u,, =

n>p = u, > 1000
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8) Soit une PA avec u; = 8 et ug = 18. Calculer uyy.

9) Soit les PA ci-dessous :
a) 2;4;6; ...
Calculer r, uj9g et Sigo.
b) =7; —4; =1, ...
Calculer T, Uy et S48-

10) Calculer la somme de tous les multiples de cing compris entre 101 et 1001.
11) La somme des 19 premiers termes d’'une PA est nulle et le dernier terme 27. Définir
cette progression. (Définir une progression : donner la raison et le premier terme de

cette progression.)

12) La somme du 8¢ et du 14°™¢ d'une PA est 50. On sait également que uz = 13.
Définir cette progression.

13) Dans une PA; on donne u; = 3, S, = 120 et r = 2.
Calculer u,, et n.

14) Dans une PA, on donne uz = 3, ug = 6 et S,, = 42.5.
Calculer uq, r et n.

15) Trouver trois nombres en PA connaissant leur somme 33 et leur produit 1287.
16) Déterminer les trois angles d’'un triangle rectangle sachant qu’il sont en PA.

17) Déterminer le triangle rectangle dont les trois cotés sont en PA et dont le périmetre
vaut 84.

18) Soit une PG avec u; = 8 et ug = 18. Calculer u;y.

19) Soit les PG ci-dessous :

a) 2;4;8; ...
Calculer ¢, u; et S7.
b) 1; —%; i;

Calculer ¢, ug et Ss.

20) Dans une PG, on donne S,, = 1’456, u,, = 972 et u; = 4.
Calculer q et n.

21) Le 6™ terme d'une PG est 1215 et le 10°™° 98/415.
Calculer le 4°™° terme.

22) Trouver 3 nombres positifs en PG connaissant leur somme 248 et la différence des
extremes uz — u; = 192.
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23)

24)

25)

26)

27)

28)

Les cotés d'un triangle rectangle sont en PG. Déterminer la raison de cette progression.

Soit la suite (u,,), avec n € N*| définie de maniere récursive par :

U1l =
Up+1 =

Une seconde suite (v,,) est donnée par v, = u,, — 6.

wl—

U, + 4

a) Démontrer que (v,) est une suite géométrique.

b) Donner le terme général v, en fonction de n; en déduire le terme général de la
suite ().

c) Déterminer le plus petit entier naturel p tel que

n>p = 6 —u, < 10710

Déterminer les fractions irréductibles qui engendrent les nombres périodiques suivants :
a) 3,2121212121212121...
b) —11,89090909090. ..

Un nommé Sissa, I'inventeur du jeu d’échec, présenta son jeu au Sultan. Enthousiasmé,
ce dernier lui proposa de choisir sa récompense. Sissa, d’apres la légende, répondit :
”Que tes serviteurs mettent un grain de blé sur la premiere case, deux sur la seconde,
quatre sur la troisieme, huit sur la quatrieme, et ainsi de suite en doublant chaque
fois le nombre de grains de blé jusqu’a la soixante-quatrieme case.”

a) Combien de grains de blé aurait-il fallu pour récompenser Sissa selon ses désirs ?

b) En supposant quun grain de blé occupe un volume de 1 mm?, quelle serait 1'épais-
seur de la couche de blé qui recouvrirait une surface équivalente a celle de la Suisse,
soit 41'288 km?.?

Une balle de caoutchouc est lachée d’une hauteur de 2 metres. Apres chaque rebond,
elle remonte au sept dixieme de la hauteur atteinte apres le précédent rebond.

a) Apres le 7°™¢ rebond, quelle sera sa hauteur a I'apogée de sa trajectoire ?

b) Quelle longueur de chemin aura-t-elle parcourue quand elle se sera immobilisée sur

le sol ?

Dans la décoration d’un palais, on peut remarquer le motif symétrique ci-dessous,
composé de plusieurs segments :

1 “1 YA ’7
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Les nombres représentent la numérotation des segments
a) Les segments sont-ils en progression arithmétique ou géométrique ?

b) Sachant que la longueur du segment no 8 est 16,25 cm et que celle du segment no
11 est 21,5 cm, quel est la raison de la progression et la longueur du segment no
17

¢) Quelle distance parcourrait une fourmi du point a au point b en suivant les segments
du dessin ?
d) Quelle est la distance ”a vol d’oiseau” entre a et b7

e) Que vaut d?

29) Dans un carré de coté a, on joint les milieux des cotés. On forme ainsi un nouveau
carré dont on joint les milieux des cotés et ainsi de suite (voir figure ci-dessous).
Calculer la somme des aires de tous les carrés ainsi construits.

y

) a

30) Un segment M;M; a une longueur de 12 cm. Soit M3 le milieu de M; My, M, le milieu
de MyMs, My le milieu de M3M,, et ainsi de suite.
Calculer la longueur du segment M; M, quand n — oo.

31) Soit S, =1+ 11+ 111+ 1111+ ...+ 11111...1. Calculer S,,.

n fois
Indication : calculer d’abord 9 - .S, puis extraire une PG.

32) Le "flocon de neige” de von Koch est une figure fractale qui se construit de maniere
itérative. En partant d’un triangle équilatéral, on remplace chaque coté par :

_ > 4 c
3/ \3
C
<
3

<
3

Voici les figures obtenues apres 0, 1 et 2 itérations du processus :

AN TRES
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33)

34)

35)

36)

37)

38)

39)

40)

Quand le nombre d’itérations tend vers I'infini :

a) que vaut le périmeétre du flocon si le coté du triangle équilatéral initial a une
longueur ¢?

b) que vaut l'aire du flocon ?

Que deviendront apres 14 ans, 16'000 CHF placés a intéréts composés a 4% ?

Que deviendront 15’000 CHF placés a un taux annuel de 5%% pendant 10 ans a intéréts
composés, ceux-ci étant capitalisés tous les six mois sur la base du taux proportionnel
correspondant ?

Quelle est la somme qui placée & intéréts composés a 6% pendant 20 ans est devenue
206’455 CHF ?

On considere un taux d’intérét annuel de 3%.
a) Si on place 2’500 CHF le 1°" janvier 2008, quel sera le capital le 1" janvier 20727

b) Un 1 janvier, on constate que le capital se monte a 5'234,45 CHF. En quelle
année est-on ?

On place 15’000 CHF & intéréts composés et a 4%% pendant 20 ans. Pendant combien
d’années aurait-il fallu placer cette somme a intéréts simples et a 5% pour qu’elle
acquiere la méme valeur ?

Pour mener a bien certains travaux, une commune a di emprunter 1'800'000 CHF &
5% et veut amortir cette dette en 30 ans. Combien doit-elle prévoir a son budget ?

Une personne place a la fin de chaque année 3’000 CHF a un taux de 4%. Que lui
reviendra-t-il une année apres son 25°™¢ placement ?

Un fumeur dépense en moyenne 6 francs par jour et ce depuis 1’age de 16 ans. Quelle
somme aurait-il accumulée le jour de ses 65 ans s’il avait placé a la fin de chaque année
et a 4% ce que lui cotite ce vice ?
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7.6 Solutions des exercices

1) a) 1; —-1; —=5; —13; =29 b) 3;5;%;13; 2
11 1 1

Y 1257 70° 130
124 13

V3355

5) a) V2;V/8; V128; V32768

7) p =500

8) u1p = 53

9) a) =2, ug = 200, Sipo = 10100 b) =3, us = 134, Sys = 3'048

10) Somme : 99’450

1) r = = 27

12) r=1.5,u; =10

13) w, = 21,7 =10

14) uy = =1 n=10

15) 9; 11 13et 13; 11; 9

16) w; = 30°, uy = 60°, ug = 90°

17) wy = 21, uy = 28, uz = 35

18) g = 307.546875 ou uyg = —307.546875

19) a) ¢=2, uy =128, Sy =254 b) ¢=—1 ug=—7k, Sy = 2T

20) g = =06

)
)

21) uy = 135
)

22) 8 40 ; 200
1
23) +5
2
1
24) a) vpi1 §vn
1
b) Un__?)n— etun_6 3n12
c) p=22
106 654
i b) — =
25) a) 33 )~
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26) a) 1,84-10" grains de blé b) environ 45 cm

27) a) 0,165 m b) 2'm

2) a) PA b) r=1.75,4 cm c) 327 cm
d) 21 cm e) 7cm

29) Aire = 2a*

30) 8 cm

_ 10m—1 n
30) S, =10¢=1 =«

32) a) oo b) B2

33) 27'706.82 CHF

34) 25/806.43 CHF

35) 64'373.64 CHF

36) a) 16’577 CHF b) par tatonnement : en 2033

37) 29 ans (léger dépassement de valeur)

environ 129935 CHF

)
)
38) environ 117'092 CHF
39)
)

40) environ 231’810 CHF
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Chapitre 8
Répétition de géométrie

8.1 Quelques définitions

Dans cette partie, nous allons rappeler quelques notions de géométrie vues a 1’école se-
condaire. Nous allons nous baser sur quelques définitions intuitives :

”Le point est ce qui n’a aucune partie, la ligne est une longueur sans largeur, la ligne
droite est celle qui est placée entre ses points.”

Ces définitions sont tirées des écrits d’Euclide . ..

8.1.1 Notations

Dans ce cours, nous utiliserons les notations suivantes :

A B, C ... points

a, b, c ... droites

a, B,y ... angles ou mesure d’angles

(AB) la droite passant par A et B

d(A; B) ou AB la distance de A a B

[AB] le segment (de droite) d’extrémités A et B
[AB) la demi droite d’origine A et passant par B
AOB angle des demi-droites [OA) et [OB)

AB arc de cercle d’extrémité A et B

Rappel

Nous donnons ci-dessous 1’ensemble des lettres de I'alphabet grec avec leur nom.
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Alphabet grec
Minuscule | Majuscule Nom Minuscule | Majuscule Nom
Q A alpha v N nu
6] B béta & = ksi ou xi
v r gamma o) O omicron
) A delta T ou w I1 pi
€o0ue E epsilon pou o P rho
¢ Z zéta ooug by sigma
i H eta T T tau
0 ou ¥ e théeta v T upsilon
L I iota Y ou ¢ P phi
K K kappa X X khi ou chi
A lambda (0 v psi
1 M mu w Q oméga

8.1.2 Les polygones

Un polygone est une figure plane limitée par des segments de droites consécutifs. Pour
rappel, un figure plane est une partie du plan limitée par une ligne fermée.

Les extrémités des segments sont appelés les sommets du polygone. Les segments de
droites entre deux sommets sont appelés les cotés du polygone.

En général, on nomme un polygone par I’énumération des sommets, en respectant ’ordre
dans lequel les sommets se suivent sur le pourtour du polygone.

Exemple
¢ e cété [CD)
/
D

A E
N

le sommet B

[’angle BAE

En respectant l’ordre dans lequel les sommets se suivent sur le pourtour de ce po-
lygone, on pourrait appeler ”le polygone ABCDE”, mais aussi "CDEAB” ou
encore "AEDCB?”,. .. Mais, par exemple, on ne peut pas l'appeler “le polygone
"ABCED”.
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8.1.3 Les triangles

Un triangle est un polygone a trois cotés.

Définition 8.1
Nous pouvons définir quelques droites remarquables dans les triangles quelconques.

- La médiane :

Droite passant par un sommet et par le milieu du coté opposé.
Chacune des trois médianes divise le triangle en deux triangles d’aires égales.

- La médiatrice :

Droite passant perpendiculairement par le milieu d’un coté du triangle.

Plus généralement, la médiatrice d'un segment est la droite perpendiculaire a ce
segment en son milieu.

De plus, cette médiatrice est ’ensemble des points équidistants des extrémités de
ce segment.

- La hauteur :

Droite passant par un sommet du triangle et perpendiculaire au coté opposé.
L’intersection de la hauteur et du coté opposé s’appelle le pied de la hauteur.

- La bissectrice intérieure :

Droite passant par un sommet du triangle et coupant ’angle intérieur formé par
les deux cotés en deux parties égales.

Plus généralement, la bissectrice d’un secteur angulaire est la demi-droite issue du
sommet de I’angle qui partage cet angle en deux angles adjacents de méme mesure.
Elle forme de ce fait I'axe de symétrie de cet angle.

De plus, la bissectrice de deux droites est I’ensemble des points a égale distance
des deux droites.

A faire : dessiner des exemples de médianes, médiatrices, hauteurs et bissectrices.
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Définition 8.2
On peut définir quelques familles de triangles particuliers.

- Triangle isocele :
Triangle ayant deux cotés isométriques (= de méme longueur) ou deux angles de
meme mesure.
Un triangle isocele est caractérisé par un axe de symétrie et par le fait que la
médiane, la hauteur, la bissectrice et la médiane relatives a la base et a ’angle au
sommet sont confondues.

- Triangle équilatéral :
Triangle ayant ses trois cotés isométriques ou ses trois angles de méme mesure.
Un triangle équilatéral est un triangle trois fois isocele.

- Triangle rectangle :
Triangle possédant un angle droit. Dans ce cas, le coté opposé a 'angle droit est
appelé hypoténuse et les cotés de 'angle droit les cathétes .

- Triangle scaléne :

Triangle ne possédant pas de symétrie particuliere.

1
T
’

Triangle isocéle Triangle équilatéral Triangle rectangle

8.1.4 Les quadrilateres

Un quadrilatére est un polygone a quatre cotés.

Définition 8.3
On peut définir quelques familles de quadrilateres particuliers.

- Trapeze :

Quadrilatere ayant au moins une paire de cotés paralleles.

/A
Trapeze isocéle Trapéze rectangle

- Parallélogramme :
Quadrilatere ayant deux paires de cotés paralleles.

Propriétés : - les diagonales se coupent en leur milieu,
- les cotés paralleles sont isométriques,
- il possede un centre de symétrie.
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- Rectangle :
Parallélogramme ayant au moins un angle droit.

Propriétés : - les mémes que celles du parallélogramme,
- les diagonales sont isométriques,
- il possede deux axes de symétrie.

- Rhomboide :

Quadrilatere dont au moins une des diagonales est un axe de symétrie.

Propriétés : - les diagonales sont perpendiculaires,
- il possede au moins une paire d’angles égaux,
- il possede deux paires de cotés consécutifs isométriques,
- il possede un axe de symétrie.
Cerf-volant Fer-de-lance
- Losange :

Quadrilatere dont les deux diagonales sont des axes de symétries.
Propriétés : - les diagonales sont perpendiculaires,
- les diagonales se coupent en leur milieu,
- les quatre cotés sont isométriques,
- les angles opposés sont isométriques.
- Carré :
Losange ayant au moins un angle droit.

Propriétés : - toutes celles du losange,
- il possede quatre axes de symétries.

Théoréme 8.1

1. Tout quadrilatere qui possede une paire de cotés paralleles et isométriques est un
parallélogramme.

2. Tout quadrilatere dont les diagonales se coupent en leurs milieux est un parallé-
logramme.
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Démonstration.

1. Admettons que [AB] et [C'D] sont paralleles et isométriques. Il existe alors une trans-
lation qui déplace [AB] sur [C'D].
A allant sur D et B sur C, [AD] et [BC] sont paralleles et isométriques. ABC'D est
donc un parallélogramme.

2. Soit O l'intersection des diagonales. La symétrie de centre O déplace C sur A et D
sur B. Or, par symétrie centrale, tout segment est transformé en un segment parallele
et isométrique.

[AB] et [C'D] sont paralleles et isométriques. ABC'D est un parallélogramme.

8.1.5 Les cercles et les disques

Un cercle est I’ensemble de tous les points situés a une distance fixée, appelé rayon et
notée r, d’'un point donné, appelé centre et noté Q.

On appelle disque la surface enfermée par un cercle.

Sur le dessin :
— [AB] est un diameétre du cercle,
— [PQ) est un corde du cercle,

— PQ@ est un arc de cercle.
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8.1.6 Formules de calcul du périmetre et Paire

On donne ci-dessous les formules pour le calcul du périmetre, p, et de l'aire, A, de figures
planes présentées dans les pages précédentes.

Triangle Carré
C
7 9
a C
h c c
BN Al
b C
b-h 5
p=a+b+c A:T p=4-c A=c
Rectangle Losange
a
~ 3 C L C
b :
C ? d C
BN A -
a
_ _ _ _ Dd
p=2-a+2-D A=a-b p=4-c A=5°
Parallélogramme Trapeéze
b b
a h a a h c
BN R
b B
B+b
p=2-a+2-b A=0b- p=a+B+c+b A:T+-h
Cercle et disque
p=2m-r A=m-r?
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8.1.7 Les angles

Définition 8.4
- Lesangles 1—-3 (2—4,5—7, 6 —8) sont appelés

opposées par le sommet.

) 1 - Lesangles 1—-5 (2—6,3—7, 4—38) sont appelés
1 2 correspondants.
3
- Les angles 3 —5 et 4 — 6 sont appelés alternes-
internes.
6 - Les angles 1 — 7 et 2 — 8 sont appelés alternes-
externes.

- Si la somme de deux angles fait 180°, ces deux
angles sont dit supplémentaires. Les angles 1—2,
3—4,5—6et 7— 8 sont supplémentaires.

Proposition 8.2
1. Les angles opposés par le sommet sont égaux.

2. Si les droites f et g sont paralléles, alors les angles correspondants, alternes-internes
et alternes-externes, sont tous égaux. La réciproque est vraie.

8.2 Quelques théoremes

8.2.1 Théoréme de Thales

Le Théoreme de Thales est un théoreme de géométrie, attribué selon la légende au
mathématicien et philosophe grec Thales de Milet; en réalité Thales s’est davantage
intéressé aux angles opposés dans des droites sécantes, aux triangles isoceles et aux cercles
circonscrits.

Cette propriété de proportionnalité était connue des Babyloniens. Mais la premiere dé-
monstration de ce théoreme est attribuée a Euclide qui la présente dans ses Eléments
(proposition 2 du livre IV) : il le démontre par proportionnalité d’aires de triangles de
hauteur égale.

Le Théoreme de Thales sert notamment a calculer des longueurs dans un triangle, a
condition d’avoir deux droites paralleles.

Théoréme 8.3 (Théoreme de Thales)

Dans les situations ci-contre

((BB') /] (CC")), on a :

AB _AB' BB
AC — AC' ~ CC"
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On peut permuter certains termes de ces fractions pour obtenir d’autres égalités de
AC"  ADB’

AC  AB’

En réalité, le théoreme de Thales concerne une propriété plus générale :

rapports, comme

Trois droites paralléles déterminent sur deux droites sécantes
(quelconques) des segments homologues proportionnels.

Autrement dit :

Si trois droites paralleles rencontrent deux droites d et d,
respectivement et dans cet ordre, en A, B, C et A’, B’, C,
alors :

A'B"  B'C'  AC
AB  BC  AC

En permutant certains termes de ces fractions, on peut faire
naitre d’autres égalités de rapports :

A'B° AB BC' BC AB _ AB
BC'~ AC AC' T AC AC T AC

Remarque

Dans le cas général du théoreme de Thales (ci-dessus) avec A # A’, on a les inégalités
suivantes :

AB , BB /HT#BE
Aac’ co ¢ AC 7T o

contrairement au cas particulier du théoreme avec A = A’ ol ces rapport sont égaux.

Théoréme 8.4 (Réciproque du théoreme de Thales)

Le théoreme de Thales, dans son sens direct, permet de déduire certaines proportions des
que l'on connait un certain parallélisme. Sa réciproque permet de déduire un parallélisme
des que l'on connait 1'égalité de certains rapports.

Dans un triangle ABC, si les points A, B, B sont alignés

dans cet ordre (B' € [AB]) et les points A,C",C sont

alignés dans cet ordre (C' € [AC)) et si, de plus, les rap-
AB" AC AB' AC”) alors

18 Ao AB ~ AC

les droites (BC') et (B'C") sont paralléles.

ports sont égaux (

Des théoremes analogues existent pour des points A, B, B alignés dans cet ordre et pour
des points B’, A, B alignés dans cet ordres.

8.2.2 Angle au centre

Définition 8.5
Un angle est dit inscrit dans un cercle quand son sommet est sur le cercle et ses cotés
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coupent le cercle.

Un angle est dit au centre quand son sommet est au centre d’un cercle.

Théoreme 8.5
Tout angle inscrit est égale a la moitié de I’angle au centre qui intercepte le méme arc.

Démonstration. On désire démontrer que 1’angle au centre BOC vaut le double de I’angle
inscrit BAC : BOC = 2BAC. On Nous distinguons trois cas :

Le triangle OAB est isocele. Nous obtenons les
résultats suivant :

- BAC = BAO = ABO = a

1. - AOB = 180° — 2a
- BOC + AOB = 180°
- et donc : BOC = 180°—AOB = 180°—(180°—2«) =
2a
A
D’apres le cas particulier ci-dessus :
) - BAC' = BAM + MAC et BOC = BOM + MOC
’ - BOM =2-BAM et MOC =2 MAC
B -etdonC:EO\C’:ZB/AT%%—Q-]\m:Q-@
C
M
A
D’apres le cas particulier du début :
. - BAC = BAM — MAC et BOC = BOM — MOC
- BOM =2-BAM et MOC =2 MAC
- et donc : BOC =2- BAM —2- MAC =2 BAC.
C
M

Corollaire 8.6
1. Tout angle inscrit dans un demi-cercle est un angle droit.

2. Deux angles inscrits qui interceptent le méme arc sont isométriques.

8.2.3 Triangles semblables

Définition 8.6
Deux triangles sont semblables si leurs cotés sont proportionnels. Les cotés proportion-
nels sont dit analogues ou correspondants.
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Proposition 8.7
Deux triangles sont semblables quand deux angles de I'un sont égaux a deux angles de
I’autre.

Proposition 8.8
Deux triangles sont semblables quand deux cotés de I'un sont proportionnels a deux cotés
de l'autre et les angles déterminés par ces cotés sont égaux.

8.2.4 Cercle circonscrit a un triangle

Théoreme 8.9
Les médiatrices d'un triangle sont concourantes (= se coupent au méme point).

A

Démonstration.
Hyp. : m, est la médiatrice de BC', m; la médiatrice de AC' et m, la médiatrice de AB
Concl. : m,Nmy, = {Q} et Q € m,

Démo. : m, et m; ne sont pas paralleles, sinon [BC] et [AC] le seraient aussi. Donc m,
et my se coupent en un point €.

Qem, = BQ=0CQ B
Qem, = CQ=AQ };‘AQ_BQ
Donc Q2 € m,.
]
Conséquence

A tout triangle, on peut associer un et un seul point équidistant des sommets du triangle.
Par suite, on peut associer un et un seul cercle passant par les 3 sommets. Ce cercle est
appelé cercle circonscrit au triangle.

Cas particulier

Supposons que le triangle ABC' soit rectangle en A. Soit €2 le milieu de [BC] et A’ le
symétrique de A par rapport a . ABA'C est un rectangle.

Donc ) est équidistant de A, A’, B, C. Par suite, le cercle de centre € passe par ABC.
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En d’autres termes : dans un triangle rectangle, le cercle circonscrit admet ’hypothénuse
comme diametre.

La réciproque est aussi vraie : lorsque le cercle circonscrit d’un triangle ABC' admet le
coté BC comme diametre, le triangle est rectangle en A.

Définition 8.7
Le cercle de Thales d’un segment est le cercle admettant ce segment comme diametre.

8.2.5 Orthocentre d’un triangle
Théoreme 8.10

Les hauteurs d’un triangle sont concourantes.

Cl

Démonstration.

Hyp. : A€ hy, ha L [BC], B € hp, hg L [AC], C € he, he L [AB].
Concel. : hyNhg=hasNhc=hgNhc=H.

Démeo. : Tracons [B'C"] // [BC] par A et [A'C"] // [AC] passant par B.

Le quadrilatere AC BC” est un parallélogramme. AC" et BC' sont donc isométriques.
Pour la méme raison, BC' et AB’ sont isométriques. A est donc le milieu de B'C".

Donc hy L B'C’ est la médiatrice de B'C’. De méme, hp est la médiatrice de A’C’
et he celle de A'B’.

Donc, d’apres le théoreme précédent, H existe et est le point d’intersection des trois
hauteurs.

O

Définition 8.8
L’orthocentre d’'un triangle est le point d’intersection de ses hauteurs.

Remarque

L’orthocentre est donc le centre du cercle circonscrit au triangle augmenté.
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8.2.6 Centre de gravité

Théoreme 8.11
Les médianes d’un triangle se coupent en un point intérieur du triangle, situé au % de
chaque médiane a partir des sommets correspondants.

Démonstration.

Hyp. : A'B=AC, A €[BC]
B'C=DB'A, B €|AC]
C'A=C'B, ('€ [AB]

Concl. : 1. gaNggNge=G

2. GA=2GA
GB =2GB’
GC =2GC"

Démeo. : [AA'] et [BB'] se coupent a 'intérieur de ABC'. Soit G ce point, D le milieu
de [GA] et E le milieu de [GB].

1. Le quadrilatere A’B’'DE est un parallélogramme. En effet, [A'B’] // [AB] et
A'B' = 1AB. De méme que [DE] // [AB] et DE = ; AB (segments de ABG).

GA = DG 2 . . 2,
2. Donc AD — DG } = AG = §AA et de méme, on voit que BG = gBB.

En remplacant [BB'] par [C ("], il existe un point G’ avec G'A = 2G’A’. On
aurait donc

GA=2GA" avec G e AA
et G'A=2G'A" avec G € AA'.

Par suite G = G’

Définition 8.9
Le centre de gravité ou barycentre d'un triangle est le point d’intersection des
médianes de ce triangle.
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8.2.7 Cercle inscrit dans un triangle

Théoréme 8.12
Les bissectrices intérieures d’un triangle sont concourantes.

A

b

B /éA C

Démonstration.
Hyp. : by, bp, be sont les bissectrices intérieures.
Concl. : byNbg C bc, (bA Nbg Nbo = {I})
Démo. : by coupe le coté opposé au sommet d’ou elle est issue. Il en est de méme pour
bp.
Donc by Nbg = {I}, un point intérieur de ABC'.
Ieby = O(I;[AB]) =0(I;[AC))
Iebg = O(I;[|AB]) =4(I;[BC])
Donc I appartient a la bissectrice intérieure issue de C, donc appartient a b¢.

b= at:lacy = ar: )

O

Conséquence

A tout triangle, on peut associer un et un seul point équidistant des cotés du triangle.
Par suite, on peut associer un et un seul cercle tangent aux 3 cotés du triangle. Ce cercle
est appelé cercle inscrit au triangle.

8.2.8 Théoremes relatifs au triangle rectangle

Nous allons énoncer ci-dessous trois théoremes importants liés au triangle rectangle : les
théoremes de la hauteur, d’Euclide et de Pythagore. Les démonstrations de ces
théoremes seront effectuées en exercices.

On considere un triangle rectangle en A. Le point H désigne le pied de la hauteur issue
du sommet A.

page 154



Mathématiques, MAP 197 année 8. Répétition de géométrie

Rappel
r+y

La moyenne arithmétique de deux nombres x et y est donnée par

La moyenne géométrique de deux nombres = et y est donnée par \/x - y.

Théoréme 8.13 (Théoréme de la hauteur)
La hauteur d’un triangle rectangle est la moyenne géométrique entre les 2 segments qu’elle
détermine sur '’hypothénuse. Autrement dit :

|AH?> = BH - CH

Théoréme 8.14 (Théoreme d’Euclide)
Dans un triangle rectangle, chaque cathéete est la moyenne géométrique entre sa projection
sur I’hypothénuse et '’hypothénuse entiere. Autrement dit :

|AB*=BH-BC| e |AC =CH-CB

Théoréme 8.15 (Théoreme de Pythagore)
Dans un triangle rectangle, le carré de I’hypothénuse est égal a la somme des carrés des
deux cathetes. La réciproque est encore vraie. Autrement dit :

| BC? = AB? + AC”
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8.

1)

3 Exercices

Dans un triangle ABC, tel que I'angle en A égale deux fois I'angle en B, on prend
sur [AB] un point quelconque M ; on prolonge [C'A] d'une longueur AM et on place
D a lextrémité du segment obtenu (AD = AM). Enfin, on mene la droite (DM) qui
coupe [BC| en N.

a) Comparer les angles ADM et AMD avec I’angle BAC.
b) Montrer que MN = NB.

¢) Montrer que I'angle CND et que l'angle BAC sont isométriques.

Sur les cotés d’un angle de sommet O, on prend des longueurs égales OA = OB. En
A, on éleve la perpendiculaire & (OA) qui coupe la droite (OB) en C. En B, on éleve
la perpendiculaire & (OB) qui coupe la droite (OA) en D. Ces perpendiculaires se
coupent en I.
a) Montrer que I'on a :i) OC =0D

ii) IC' =1ID

iii) TA=1IB
b) Montrer que [OI) est la bissectrice de 1’angle de sommet O.

Montrer que deux angles qui ont leurs cotés respectivement perpen-
diculaires sont isométriques.

Soit un triangle ABC inscrit dans un cercle; la bissectrice intérieure de ’angle en A
coupe le cercle en M ; la bissectrice intérieure de I’angle en B coupe le cercle en N et
rencontre (AM) en I.

Comparer les angles BIM et TBM et montrer que IM = BM.

On trace les hauteurs [AA'], [BB'] d'un triangle ABC. Elles se coupent en H. La
hauteur [AA’] recoupe le cercle circonsrcit en H'.

a) Comparer les angles CAA et CBB.
b) Comparer les angles CBH' et CAH.

En déduire une propriété remarquable des symétriques de I'orthocentre d’un triangle
par rapport aux trois cotés du triangle.

Un lieu géométrique désigne I'ensemble des points du plan ou de I'espace possédant
une certaine propriété.

Exemple : le lieu géométrique des points M dont la distance a un point fire A est
égale a R est le cercle de centre A et de rayon R.

Construire le lieu géométrique des points d’ou I'on voit le segment [AB] sous un angle
de 90° et celui d’ou1 'on voit le segment [AB] sous un angle de 30°.
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7)

10)

11)

12)

13)

Montrer que la hauteur [AH] d'un triangle rectangle en A détermine deux triangles
rectangles semblables au triangle donné. En déduire les théoreme de la hauteur, d’'Eu-
clide et de Pythagore.

Construire les longueurs données par les expressions suivantes dans lesquels a, b et ¢
sont des longueurs données.

a) r=+va%+ 4b? b) z=aVT7 c) x=+a>+b*—c?

Quelle est la valeur de la hauteur h d’un triangle équilatéral de coté a? Que vaut son
aire 7

Partager un segment donné en n parties de méme longueur ; prendre n = 4 puisn = 7.

Construire un triangle ABC, connaissant «, b et by (la longueur de la bissectrice
intérieure issue de A).

Construire un triangle ABC', connaissant ¢, hp (la longueur de la hauteur issue de B)

et 5.

Calculer les aires des domaines grisés ci-dessous :

a b) ' ‘a C)

14) Entourez un ballon de football d'une ficelle rouge. Allongez la ficelle de maniere a

entourer le ballon tout en restant a 1 metre de sa surface. Entourez alors la Terre
(supposée sphérique) entiere avec une ficelle bleue et allongez cette ficelle de fagon a
entourer la Terre tout en restant a 1 metre de sa surface. Quel est, selon vous, le plus
grand des deux allongements? Celui de la ficelle rouge autour du ballon ou celui de
la ficelle bleue entourant la Terre?
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15) Le jour du solstice d’été, le fond d’un puits situé en Haute-Egypte a Syréne (I’actuel
Assouan) est éclairé par le soleil. Au méme moment, a Alexandrie, distant de 800 km
et sur le méme méridien, on voit le soleil sous un angle de 7° par rapport a la verticale
du lieu. Déduire le rayon de la terre de cette observation.

16) Soit un cube d’aréte a.
a) Calculer le volume de la sphere inscrite au cube.
b) Calculer I'aire de la sphere tangente aux douze arétes du cube.

c¢) Calculer le volume de la spheére circonscrite au cube.

17) On dispose d’une corde de longueur [ = 7. Parmi les trois figures géométriques sui-
vantes, laquelle doit-on former avec la corde pour couvrir la plus grande surface : un
triangle équilatéral, un carré ou un cercle ?
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8.4 Solutions des exercices

Vi 3,
9)h—7 ,A—TCL
a® T 9 34+2v2 -1 9 9
13) a) ? b) (§—l)a C) ma d) a
ab 3V3—1m , 3WV3—-T1 ™\ o
© 5 ) =%« 8 —p ¢ b (1+v3+3)a
15) 6548 km
16) a) V:%a3 b) A= 2rd? c) V:@a3
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Chapitre 9

Trigonométrie

9.1 Mesure d’un angle

9.1.1 Angles et degrés

Inventée par les Grecs il y a plus de 2000 ans, la trigonométrie est une partie des
mathématiques qui s’occupe des relations entre les longueurs et les angles des triangles.
Le mot trigonométrie est dérivé des trois mots grecs tri (trois), gonos (angles) et metron
(mesure).

Un angle est une grandeur permettant de décrire 'amplitude d’une rotation. On utilise
tres souvent des lettres grecques « (alpha), 5 (béta), v (gamma), ¢ (phi) ou 6 (théta)
pour nommer les angles (voir les conventions de notation sous 8.1.1).

52

S1

Afin de résoudre des problemes ayant trait a l'astronomie, les Babyloniens ont divisé
le disque en 360 parties égales identifiant un degré[°]. On mesure le nombre de degrés
depuis la demi-droite de référence du 0° dans le sens trigonométrique (sens contraire
de celui des aiguilles d'une montre).

Ce choix se justifiait par le fait que 360 a un grand nombre de diviseurs. En effet, 360 est
divisible par 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120 et 180.

90°
120° 60°
135° 45°

150° 30°

180° 0°
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A une méme situation peuvent correspondre plusieurs angles (une infinité!). En effet, on
peut faire autant de tours que l'on veut dans un sens comme dans 'autre. Par exemple,
voici trois fagons d’amener le segment s; sur le segment s, par une rotation.

52 52 52

30° 390°

—330°

Voici quelques-uns des angles correspondant a la situation ci-dessus.
..., —1050°, —690°, —330°, 30°, 390°, 750°, 1100°, . ..
Ces angles sont les mémes a un multiple de 360° pres, ce qui correspond a un tour.

Définition 9.1
Un angle « est dit :

- aigu si a > 0° et a < 90°. - droit si a = 90°.

- obtus si a > 90° et o < 180°. - plat si a = 180°.

9.1.2 Angles et radians

Jusqu’a présent, vous avez toujours représenté les angles en degrés. C’est la maniere la
plus courante de se représenter les angles, mais ce n’est pas toujours la plus pratique en
mathématiques. Une autre facon de mesurer un angle serait de prendre la longueur de
I’arc correspondant. Toutefois cette longueur dépend du rayon du cercle.

Définition 9.2

Soit C' un cercle de centre O et de rayon r. Soit encore \
a un angle de sommet O. C

r
Si la longueur de ’arc de cercle intercepté par 'angle «
est égale a r, on dit que I'angle o mesure un radian (de ‘

radius = rayon).

Comme la circonférence du cercle vaut 27r, il en découle
que :
1 tour = 27 radians

Or, 1 tour correspond également a 360°. On a donc la correspondance suivante :

1360° «— 2 ou 180° +— 7|

On prononce ”2 pi radians correspond a 360 degrés”.
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Exemple

180° «— 7 radians = 3.14 radians

1° +— % radians = 0.0175 radian

180\ °
Un angle de 1 radian correspond a un angle de (—) >~ 57.2958°.
T

Ainsi, pour convertir des degrés en radians, il faut multiplier le nombre de degrés par

b
180" Inversement, pour convertir des radians en degrés, il faut multiplier le nombre de
180

radians par —.
i

A vous :

degrés 0° 15° | 30° | 45° | 60° | 90° | 120° | 150° | 180°

radians

s
2

Par convention, quand on ne précise pas 'unité d’un angle, il est exprimé en
radians. Si vous voulez travailler en degrés, n’oubliez pas le °.

9.1.3 Longueur d’un arc de cercle et aire d’un secteur circulaire

Considérons un cercle de rayon r et un angle au centre de 6 radians.

D’apres la définition du radian, la longueur [ de ’arc correspondant L
a I’angle 6 est donnée par /\ \
=160

De méme, 'aire S du secteur circulaire correspondant a ’angle 6
est donnée par A

1

S =_r%
5"

9.2 Le cercle trigonométrique

Définition 9.3
On appelle cercle trigonométrique le cercle de rayon 1 centré a l'origine O d’un repere
orthonormé.

Dans ce cas, un angle de 1 radian correspond a un arc de longueur 1 et un angle de 6
radians correspond a un arc de longueur 6.

Nous allons "enrouler la droite réelle autour du cercle trigonométrique” de maniere a
visualiser tout nombre réel comme la mesure en radians d'un angle.
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Plus précisément, a tout nombre réel o > 0, on fait

correspondre le point M du cercle trigonométrique tel Yy
que : J(0;1)

I’arc IM a une longueur égale a « et est orienté posi-
tivement (sens contraire des aiguilles d’une montre).

Si a < 0, 'arc est orienté négativement. 0 >

Le nombre « est donc une mesure en radians de
I’angle TOM. Cette mesure en radians d'un angle est
la longueur de ’arc correspondant sur le cercle trigo-
nométrique et s’écrit sans unité.

Un angle possede plusieurs mesures en radians qui different entre elles d’'un multiple
entier de 27.

9.2.1 Les fonctions trigonométriques
Les fonctions sinus et cosinus

Définition 9.4

Soit P(1;0) sur le cercle trigonométrique. Soit encore
M, lI'image de P par une rotation de centre O et
d’angle a.

On appelle cosinus de l'angle «, noté cos(a), la
premiere coordonnée ou abscisse de M. Celle-ci cor-
respond a la mesure algébrique du segment OC', ou
C est la projection de M sur 'axe des abscisses.

On appelle sinus de 'angle «, noté sin(«), la seconde
coordonnée ou ordonnée de M. Celle-ci correspond
a la mesure algébrique du segment OS, ou S est la
projection de M sur I'axe des ordonnées.

On note : M(cos(a);sin(a))

Remarques

— Si le point S est au-dessus de O, le sinus est positif; si S est au-dessous de O, le sinus
est négatif.

— Si le point C est a droite de O, le cosinus est positif; si C' est a gauche de O, le cosinus
est négatif.

— Des valeurs approximatives de sin(«) et de cos(a), pour tout angle a, peuvent étre
facilement obtenues au moyen d’une machine a calculer.

Ezemple : sin(35°) = 0,5735. . .; cos(3) = —0,9899. ..

Propriétés

Il découle de la définition que :

—1 < cos(a) <1 et —1 <sin(a) <1
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Les fonctions tangente et cotangente

Définition 9.5
Soit. M (cos(a);sin(ar)) sur le cercle trigonométrique.

On définit le point 7' comme l'intersection entre la 3{

droite passant par (0;0) et M et la droite verticale J ot K

tangente au cercle au point /(1;0). T /
MX |\ =

On définit encore le point K comme l'intersection 1

entre la droite passant par (0;0) et M (la méme que « ]C "

ci-dessus) et la droite horizontale tangente au cercle o
au point J(0;1).

On appelle tangente de l'angle «, noté tan(«),
l'ordonnée de T. Celle-ci correspond a la mesure
algébrique du segment I7'.

On appelle cotangente de 1'angle a, noté cot(«), abscisse de C. Celle-ci correspond &
la mesure algébrique du segment JK.

On note : T(1;tan(«)) et K(cot(a);1)).

Remarques

— Si T est au-dessus de I, la tangente est positive; si T" est au-dessous de I, la tangente
est négative.

— Si K est a droite de J, la cotangente est positive; si K est a gauche de J, la cotangente
est négative.

Relations fondamentales entre les fonctions trigonométriques d’un méme arc

Les trois relations suivantes permettent de déterminer le sinus, le cosinus, la tangente
ou la cotangente d'un angle lorsqu’une seule de ces valeurs est connue. Elles sont tres
importantes. Il faut donc les connaitre par cceur.

Proposition 9.1
Soit un angle a. On a 'égalité

cos®(a) +sin®(a) = 1

T
et, si toutes les expressions sont bien définies (si o # 5 + k-7, k € Z pour la premiere et

si o # k-7, k € Z pour la seconde), les égalités

tan(a) = 210222)) et cot(a) = L _ cos(a)

tan(a)  sin(a)

Ces égalités seront établies en exercices.

9.2.2 Valeurs exactes des fonctions trigonométriques

Il est bon de connaitre par cceur les valeurs exactes des fonctions trigonométriques de
quelques angles particuliers qu’on retrouve fréquemment.
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a (degrés) 0° 30° 45° 60° 90° 180° 270°
(radians) 0 s T s T 3T
radian — — = = —

a (radians 5 1 3 > 7r >

3 2 1
cos(a) 1 £ £ - 0 -1 0
2 2
1 V2 | V3
i 0 = — — 1 0 -1
sin(a) 5 5 5
3
tan(o) 0 g 1 V3 — 0 —

| S

cot(av) — V3 1

Au lieu de représenter ces valeurs sous forme d’un tableau, on peut également utiliser le
cercle trigonométrique.

Démonstration. Nous allons déterminer les valeurs du sinus et du cosinus pour les angles
T W m

64 3
i 1
utilisant les relations : tan(a) = sin(a) et cot(a) =

cos(av)
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i
—a=— (=45°
a=" (=47)
y On sait que cos” (%) + sin® (%) =1.
—5] J ...... o Or cos (i)_\: sin/(_%\). E; effet le triangle OMC' est
w isocele (MOC = OMC = T voir le dessin).
= :
£ ™o 1
T EN Donc 2 cos? <z) =1 = cos? <z) = — = oS <z) =
O lcos(}) C 4 4 2 4
11 V2

2 V2 2

On a donc : cos (Z) = sin (%) = @

5
T
-—a=—= (=30°
a=% (=30)
Dans le dessin ci-contre, on voit que comme l'angle
Yy COM vaut %, langle OMC vaut g, de meéme que
] J I’angle OM'C (par symétrie). Le triangle OM M’ est
u donc équilatéral et la longueur de chacun de ses cotés
1 vaut 1 (rayon du cercle).
6 |1 s (T 1
0 o1 " On en déduit que sin <6) =CM = R
1 De plus, le théoreme de Pythagore écrit dans le triangle
- OMC t d’écri 2<7T)+1 1= 2(7T>
ermet d’écrire cos” | — - = cos” | =) =
~ per rir 5 1 5
3 A (71‘) \/5 V3
—. Ainsi —)=3/-=—.
g e 12
3 1
On a finalement : cos <E> = £ et sin (E) =—.
6 2 6 2
T
-—a=—= (=60°
a=% (= 60)

T T
On peut montrer que cos(a) = sin <§ - a) et sin(a) = cos (5 - ) (voir le chapitre
sur les fonctions trigonométriques en analyse) .

On a alors que : cos (E) — sin (E> _ 1 et sin (f) — cos (f) _ ?

3 6 2 3 6

O

9.3 Les triangles rectangles
Définition 9.6 (Rappel)

Un triangle rectangle est un triangle possédant un angle droit. Dans ce cas, le coté
opposé a 'angle droit est appelé hypoténuse et les cotés de 'angle droit les cathetes.
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Une particularité intéressante des triangles rec-
tangles est le fait que tous ces triangles qui ont
un angle aigu o de méme mesure sont sem- ol

blables : leur cotés sont donc proportionnels. Le /
théoreme de Thalés nous permet d’écrire pour

les triangles ABC, AB'C" et AB"C"” (angle aigu

a commun) :

A @ alla a
BC B B'C' B B'C" B| B B
AC  ACT  ACTT

Ce rapport ne dépend que de la mesure de a. On peut donc définir le rapport :

. i ) longueur de la cathete opposée a o «a
sinus défini par sin(a) = i

longueur de I’hypoténuse

On utilise les notations définies par la figure ci-dessous.

On définit également les deux autres rapports :

. L longueur de la cathete adjacente a o« b
cosinus défini par cos(a) = , - = -
longueur de I’hypoténuse c

L longueur de la cathete opposée a « a

tangente défini par tan(a) = - - — = =
longueur de la cathete adjacente a o b

On peut, de la méme maniere, définir le sinus, le cosinus et la tangente pour le second
angle aigu du triangle rectangle, 'angle (3.

Proposition 9.2
Les rapports sinus, cosinus et tangente définis ci-dessus correspondent bien aux définitions
des fonctions trigonométriques pour les angles aigus.

T
Démonstration. A chaque angle aigu o (0 < a < 5), on peut associer un triangle rec-

tangle de cotés de longueur 1 pour 'hypothénuse et cos(a), sin(«) pour les deux cathetes.

Tout triangle rectangle avec un angle o de méme mesure est semblable au triangle rec-
tangle défini ci-dessus. On oriente ce triangle pour obtenir la figure représentée ci-dessous.
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c
gy a
4 L7N\e
@ =
n
cos(a) /
b
En utilisant le théoreme de Thales, on trouve :
b .
cos(a) _b ot sin(av) _a
1 c 1
, sin(«)
De plus, on a bien que tan(«) = ) O
cos()

9.3.1 Résolution de triangles rectangles

Définition 9.7
Résoudre un triangle consiste a calculer les éléments non donnés (cotés et angles)

On pourra s’aider de la machine pour le calcul des fonctions trigonométriques.

Exemple
Résoudre le triangle ABC' rectangle en C' dont on donne le coté ¢ = 4.25 et 'angle
8 =67.2°.
On obtient d’abord o = 90° — 5 = 22.8°.
Comme cos(67.2°) = 7%=, on obtient avec la machine :
a=4.25-cos(67.2°) = 1.65
Comme sin(67.2°) = 12, on obtient avec la machine :

b=4.25sin(67.2°) = 3.92

Pour résoudre un triangle rectangle (i.e. déterminer toutes ses caractéristiques), il faut
connaitre :

— la longueur d’au moins deux cotés de ce triangle, ou

— la longueur d’un coté de ce triangle et un angle.
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9.4 Les triangles quelconques

Dans ce paragraphe, on considere un triangle quel-
conque ABC. On note ses sommets dans le sens
positif par A, B et C. Les angles associés aux som-
mets seront notés «, 3 et v et les cotés opposés aux
sommets a, b et c.

Cette convention doit étre respectée dans le but de pouvoir appliquer les théoremes qui
suivent.

Lorsqu’on a parlé des triangles rectangles, la connaissance de deux caractéristiques (angle
ou longueur de c6té) nous permettait de trouver toutes ses caractéristiques. Dans le
cas d’un triangle quelconque, c¢’est au moins trois caractéristiques qu’il faut connaitre
pour pouvoir déterminer toutes les autres. Les théoremes ci-dessous nous permettront de
résoudre un triangle quelconque.

9.4.1 Théoréme du sinus

Théoréme 9.3

Considérons un triangle quelconque ABC
inscrit dans un cercle de centre O et de rayon
r.

On a les relations suivantes :

a b c
sin(av) - sin(5) - sin(7) =2

ou r est le rayon du cercle circonscrit au tri-
angle. B

Autrement dit : dans un triangle quelconque, le rapport entre le coté opposé a un angle
et le sinus de cet angle est égal au rapport entre le c6té opposé a un autre angle et le sinus
de cet autre angle. Ce rapport est aussi égal au double du rayon du cercle circonscrit.

Démonstration. Considérons un triangle quelconque ABC' inscrit dans un cercle de rayon
r et de centre O.

N

Le triangle OBC est isocele en O, car les cotés [OB] et [OC] sont d’égale longueur.

page 169



Mathématiques, MAP 197 année 9. Trigonométrie

On en déduit que [OH] est en méme temps bissectrice de I'angle en O et hauteur issue
de O.

Or l'angle en O vaut 2a; et 'angle COH = a. On a donc oc = sin(a).

Or CH = % et OC = r. On peut donc réécrire 1’égalité précédente sous la forme :
in(a) = 2

sin(a) = =

Finalement, en transformant cette égalité, on a :

a
2r = ——
" sin(a)

Pour achever la démonstration, il suffit de choisir les triangles OAC et OAB et appliquer
le méme raisonnement. 0

9.4.2 Théoréeme du cosinus

Théoreme 9.4
Considérons un triangle quelconque ABC'.

On a les relations suivantes :

a’> = b*+ - 2bccos(a)
V¥ = ¢ +a®—2cacos(f)
? = a®>+b*—2abcos(v)

Autrement dit : le carré de la longueur d’un coté d’'un triangle quelconque est égal a
la somme des carrés des longueurs des deux autres cotés moins deux fois le produit des
longueurs des deux autres cotés multiplié par le cosinus de I'angle entre eux.

Pour passer d’une relation a ’autre, on fait les permutations circulaires suivantes.

Ty O
N N

Cela nous permet de ne mémoriser qu'une seule relation.

Démonstration. Considérons un triangle quelconque ABC'. Nous allons démontrer la for-
mule a? = b% + ¢ — 2bccos(a).

Pour cela, nous allons examiner la hauteur partant du sommet C. On doit distinguer
trois cas suivant ou se situe le pied de cet hauteur : entre A et B, a gauche de A ou a
droite de B.

1. Premier cas : la hauteur "tombe” entre A et B : les trois angles du triangle sont
aigus.
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En appliquant des résultats de trigonométrie

sur le triangle ACH, on obtient : C
H
— sin(a) = CT = CH = bsin(«) |
AH !
— cos(a) = — = AH = bcos(a) :
’ A A B
De plus, le segment [HB] a pour longueur c H

HB =c¢— AH = ¢ — bcos(a).

Pour obtenir a2, on peut maintenant utiliser le théoréme de Pythagore sur le triangle
CHB :

a°> = CH?+ HB?
b? sin?(a) + (¢ — beos(a))?
b? sin?(a) + ¢® 4 b cos?(a) — 2bccos(a)

= b (sin?(a) + cos*(a)) +c* — 2bc cos(ar)

7

'

1
= b* +c* — 2bccos(a)

2. Deuxieme cas : la hauteur ”tombe” a gauche de A : I'angle a est obtus.

En appliquant des résultats de trigonométrie ('
sur le triangle AC' H, on obtient :

— sin(r —a) = CTH = CH =bsin(r —a) =
bsin(«)
AH

— cos(m—a) = - = AH = bcos(m—a) =

—bcos(a) -
L
H

De plus, le segment [HB] a pour longueur
HB =c¢+ AH = ¢ — bcos(a).

Comme pour le cas 1, on utilise le théoreme de Pythagore sur le triangle CHB
pour obtenir a?. On peut reprendre ici la démonstration du cas 1, puisque HB a la
méme forme qu’en 1.

3. Troisieme cas : la hauteur "tombe” a droite de B : 'angle 3 est obtus.

En appliquant des résultats de trigonométrie
sur le triangle AC' H, on obtient :

— sin(a) = CTH = CH = bsin(«)

— cos(a) = ATH = AH = bcos(a)

De plus, le segment [HB] a pour longueur 4
HB = AH — ¢ = bcos(a) — c.

A
c B H

Comme pour le cas 1, on utilise le théoreme de Pythagore sur le triangle C'H B pour
obtenir a?. On peut reprendre ici la démonstration du cas 1, puisque H B pour 3 est
I'opposé de HB pour 1 et que 'on considere le carré de H B dans le développement.

On peut, de la méme maniere, montrer les relations pour b% et c2. O
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9.4.3 Résolution de triangles quelconques

A partir de ces deux théoremes, les informations minimales que 1’on doit connaitre pour
résoudre un triangle quelconque (i.e. déterminer toutes ses caractéristiques) sont :

— la longueur des trois cotés de ce triangle, ou

— la longueur de deux cotés de ce triangle et un angle, ou

— la longueur d’un coté de ce triangle et deux angles.

Exemple

Résoudre le triangle ABC' dont on donne le coté a = 70.24, le coté b = 82.12 et
l’angle v = 30.69°.

Par le théoréeme du cosinus, on obtient que le carré du coté ¢ vaut
& = a’+b* —2abcos(y) = (70.24)*4(82.12)* —2-70.24-82.12 cos(30.69°) = 1756.88

Et donc que ¢ = 41.92

Avec cette information, on peut utiliser le théoréeme du sinus pour déterminer c.

On sait que =2~ = ——~. On en déduit que

sin(a) ~ sin(y)”

asin(y)  70.24-sin(30.69°)
c 41.92

sin(a) = = 0.8552

A Uaide de la machine a calculer, on détermine 'angle o qui a pour sinus 0.8552 :

o = 58.79°.
Finalement, on trouve que f = 180° — o — v = 90.52°.
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9.5 Exercices

1) Sur les trois cercles trigonométriques ci-dessous, représenter graphiquement le sinus,
le cosinus, la tangente et la cotangente des angles indiqués sous le cercle (g, %’T et %’r)
Pour chaque dessin, évaluer ensuite les valeurs de ces quatre mesures et les controler
a I’aide d’'une machine a calculer.

(Pour dessiner les angles, les convertir au préalable en degrés)

Y Y
1 1
% x
-1 0 1 -1 0 1
-1 -1

>
w

2) En utilisant une machine a calculer, trouver les valeurs de :
a) sin(128°) b) cos(315°) c) tan(123°)
d) sin(2) e) cos(0.7) f) tan(4)

3) En utilisant le cercle trigonométrique et des théorémes de géométrie élémentaire, prou-
ver les relations suivantes :

a) cos®(a) + sin’(a) = 1

b) tan(a) = if;ii;
¢) cot(a) = ta111(a)
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4) Construire les angles aigus ayant
a) 0.43 pour sinus b) % pour cosinus,

puis les mesurer.

5) Est-il possible de construire un angle « tel que
a) sin(a) =1.4 b) cos(a) = 1.2 c) tan(a) =2.5

6) Utiliser les relations fondamentales entre cos(«), sin(a) et tan(a) (voir exercice 3)
pour résoudre (sans machine) les questions suivantes.

a) Si a est un angle du deuxieme quadrant tel que sin(a) = 0.8 que vaut cos(a) ?
3
b) Le cosinus d'un angle du quatrieme quadrant vaut > Que vaut son sinus ?

c¢) Trouver sin(«) et cos(«) sachant que a est un angle du deuxiéme quadrant et que
tan(a) = —/8.

d) Trouver sin(«) et cos(a) sachant que « est un angle du quatriéme quadrant et que

V11
tan(a) = ———.
D
1
Mont : 1+ tan®(a) = :
e) Montrer que : 1 + tan®(«) o2 (@)

7) Simplifier autant que possible les expressions suivantes :

a 1-cos(a) b) sin®(a) + sin(a) cos®(a)

sin®(a)

sin?(a) — sin*(a)

d) tan(a)cos(a)

c)

cos?(a) — cost(a)

e) cos?(a) + cos?(a) tan?(a) f) cos(a) + sin(a) tan(«)

8) Un observateur, couché sur le sol, voit un satellite sous un angle de 35° avec la verticale.
Sachant que le satellite gravite a 1000 km de la surface de la Terre, quelle est la distance
séparant le satellite de I'observateur 7 (Rayon de la Terre : 6370 km)

9) Un bateau quitte le port & 13h00 et fait route dans la direction 55°W a la vitesse de
38 km/h (les angles sont mesurés avec la direction N). Un deuxieme bateau quitte le
méme port & 13h30 et vogue dans la direction 70°E a 28.5 km/h.

Calculer la distance séparant les bateaux a 15h00.

10) Pour déterminer l'altitude du sommet C' d’'une montagne, on choisit deux point A et
B au bas de la montagne d’ou 'on voit le sommet. A et B ne sont pas forcément a la
méme altitude mais ils sont séparés d’une distance d. On mesure les angles o = BAC ,
8= ABC , ainsi que 'angle d’élévation € sous lequel on voit C' depuis A (angle entre
AC' et I'horizontale).

Quelle est I'altitude de C' si celle de A est hy?

Application numérique :
d =450 m, hy =920 m, o = 35.4°, § = 105.8°, § = 23.5°.
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c

B

11) Une cathédrale est située au sommet d'une colline (voir schéma ci-dessous). En obser-
vant le sommet de sa fleche depuis le pied de la colline, 'angle d’élévation est de 48°.
Si on 'observe a 60 m de la base de la colline, 'angle d’élévation de la fleche est de
41°. La pente de la colline forme un angle de 32°. Calculer la hauteur de la cathédrale.

12) Un triangle ABC' est donné par b = 35,2, ¢ = 26,2 et a = 123,2°.

Calculer la longueur du segment [AP], ou P est le point d’intersection entre la bissec-
trice de 'angle BAC' et le coté [BC].

13) On doit percer un tunnel pour une nouvelle autoroute a travers une montagne de 80
m de haut. A une distance de 60 m de la base de la montagne, ’angle d’élévation est
de 36° (voir figure). Sur autre face, 'angle d’élévation a une distance de 45 m est de
47°.

Calculer la longueur du tunnel au metre pres.
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14)

15)

16)

Un hélicoptere est en vol stationnaire a 300 m au-dessus du sommet d’'une montagne
qui culmine a 1560 m, comme le montre la figure. Du sommet de cette montagne ou de
I’hélicoptere, on peut voir un deuxieme pic, plus élevé. Vu de I’hélicoptere, son angle
de dépression est de 43° et vu du petit sommet, son angle d’élévation est de 18°.

Calculer T'altitude du sommet le plus élevé et la distance séparant I’hélicoptere de ce
somimet.

En observant le sommet d’une montagne a partir d'un point P au sud de la montagne,
I'angle d’élévation est « (voir figure). L’observation a partir d’un point @, situé a d
km a l'est de P, donne un angle d’élévation .

Déterminer la hauteur A de la montagne si o = 30°, § = 20° et d = 16 km.

Si on observe le sommet d’une montagne a partir du point P représenté dans la figure,
I’angle d’élévation est de v = 15°. A partir du point @), plus proche de la montagne
de d = 3 km, I'angle d’élévation est de 8 = 20°.

Calculer la hauteur de la montagne.

< —>
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17) La figure ci-dessous représente un panneau solaire de 3 m de large qui doit étre fixé
sur un toit qui forme un angle de 25° avec I’horizontale.

Calculer la longueur d du support afin que le panneau fasse un angle de 45° avec
I’horizontale.

18) La figure ci-dessous représente un téléphérique transportant des passagers d'un point
A, qui se trouve a 2 km du point B situé au pied de la montagne, a un point P
au sommet de la montagne. Les angles d’élévation de P aux points A et B sont
respectivement de 21° et 65°.

Calculer la hauteur de la montagne (par rapport au point B).

< 2 km ————>

19) La figure ci-dessous représente une partie d’'un plan de toboggan d’une piscine. Trouver
la longueur totale du toboggan.

30 m

20) Un géometre, situé a une altitude de 912 m, observe une antenne de communication
située sur une colline en face de lui. Il mesure, au moyen d’un théodolite, les angles
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21)

d’élévation du sommet et du pied de 'antenne et détermine comme valeurs pour ces
angles : respectivement 17.15° et 14.03°.

Si la hauteur de l'antenne est de 35 m, a quelle altitude se trouve le pied de cette
derniere ?

Un ingénieur se promene sur le Champ-de-Mars en direction de la tour Eiffel, qui
culmine a une hauteur de 324 metres. Il remarque alors que ’angle d’élévation sous
lequel il voit le sommet de la tour est de 32.8°. 5 minutes plus tard, il constate que
cet angle est passé a 52°.

A quelle vitesse I'ingénieur s’est-il déplacé entre ses deux observations du sommet de
la tour Eiffel ? La réponse doit étre donnée en km/h.

(On suppose que le sommet de la tour et les points ou sont effectués les observation
sont dans le méme plan vertical. On suppose également que la vitesse, a laquelle
I'ingénieur se déplace, est constante.)
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9.6 Solutions des exercices

9) a) 0,788 b) 0,707 ¢) —1,539
d) 0,909 e) 0,765 £) 1,158
6) a) cos(a) 0,6 b) sin( ):—5
c) cos(a) = 1 ; sin(a) = ? d) cos(a) % ; sin(a) = —g
7 a) Sinl(a) b) sin(a) o 1
1
d) sin(«) e) 1 f) cos(a)

8
9

10

—_

)
)
)
1)
12)
13) 80 m
14) 1637,5 m et 326,21 m
15) 7,50 km
16) 3,05 km
17)
18)
19)
20)
)

21) environ 3 km/h

page 179






Troisieme partie

Géométrie vectorielle et analytique
plane

181






Chapitre 10

Vecteurs dans le plan

10.1 Introduction

Des quantités comme l'aire, le volume, la longueur, la température et le temps n’ont
qu'une intensité et peuvent étre entierement représentées par un nombre réel (accom-
pagnées de I'unité de mesure adéquate, comme cm?, m?, ecm, © ou s). Une grandeur de
ce type est une grandeur scalaire et le nombre réel correspondant est un scalaire.
Des concepts tels que la vitesse ou la force ont a la fois une intensité, un sens et une
7
direction et sont souvent représentés par un segment de droite orienté (ou, "plus
)
simplement” | une fleche). On nomme aussi ce segment de droite orienté un vecteur. On
donne ci-dessous la représentation d’un vecteur ¢’ (on désignera un vecteur par une lettre

ou un groupe de lettres surmonté d’une fleche).

/

Sens

~~ _direction

~
~
~.

On peut représenter beaucoup de concepts physiques par des vecteurs. A titre d’exemple,
on considere un avion qui descend a une vitesse constante de 100 km/h et dont la ligne de
vol rectiligne forme un angle de 20° avec ’horizontale. Ces deux faits sont représentés a
la figure ci-dessous par le vecteur ¢ d’intensité 100. Le vecteur ¢ est un vecteur vitesse.

Un vecteur qui représente une action sur un objet par une cause quelconque est un
vecteur force. La figure ci-dessous illustre la force exercée par une personne qui tient
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une masse de 5 kg; cette force est représentée par le vecteur F d’intensité environ 5.
Cette force a la méme intensité que la force exercée par 'attraction terrestre sur cette
masse, mais elle est de sens opposé. Le résultat est qu’il n’y a mouvement ni vers le haut,
ni vers le bas.

[\

*fli?il

n——
|
|

On utilise parfois la notation B pour représenter le chemin de A vers B parcouru par un

point (ou une particule) le long d’un segment de droite. On se réfere alors a zﬁ comime
étant la trajectoire de ce point (ou de cette particule). Dans la représentation ci-dessous,

une trajectoire A§ suivie d'une trajectoire B(% amene au méme point qu’une trajectoire

f@. On verra par la suite que le vecteur AC' correspond a la somme du vecteur AB et
du vecteur ﬁ On écrira : ﬁ = /@ + B?

C

A

A Torigine, en mathématiques, un vecteur est un objet de la géométrie euclidienne. A
deux points, Euclide associe leur distance. Or, un couple de points porte une charge
d’information plus grande : ils définissent aussi une direction et un sens. Le vecteur
synthétise ces informations.

La notion de vecteur peut étre définie en dimension deux (le plan) ou trois (I’espace). Elle
se généralise a des espaces de dimension quelconque. Cette notion, devenue abstraite et
introduite par un systeme d’axiomes, est le fondement de la branche des mathématiques
appelée algebre linéaire.

Dans la suite de ce cours, nous allons définir précisément la notion de vecteur dans le
plan et étudier les opérations (somme et produit) que 'on peut associer a cette notion.

10.2 Définitions

On note 7 ’ensemble des points du plan.

Définition 10.1
On appelle bipoint du plan tout couple de points du plan.

(A; B) est un bipoint d’origine A et d’extrémité B.
On représente un bipoint (A; B) par une fleche joignant A & B. On appelle souvent fleche
(A; B) le bipoint (A; B).
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B

A/

Si A et B sont deux points distincts, les bipoints (A; B) et (B; A) sont distincts.

Remarque

Définition 10.2
Si A et B sont deux points distincts, la droite (AB) est appelée support du bipoint (A; B).

Deux bipoints (A; B) et (C; D) ont la méme direction si leurs supports sont paralleles
ou confondus.

Deux bipoints (A; B) et (C; D) de méme direction peuvent étre de méme sens (figure
de gauche) ou de sens contraire (figure de droite).

-~ ~

\ \
\D \C

~
~ -

La longueur d’un bipoint (A; B) est la distance §(A; B) (distance qui sépare A et B).

Remarque

Si A et B sont deux points distincts, les bipoints (A; B) et (B; A) sont de méme direction,
de méme longueur et de sens contraire.

Définition 10.3
Deux bipoints (A; B) et (A’; B') sont équipollents si les segments [AB’] et [A’'B] ont le
meéme milieu.

Dans ce cas, on note : (A; B) ~ (A"; B')

De maniere équivalente, deux bipoints sont équipollents s’ils sont de :
— meéme direction,

— méme sens,

— meéme longueur.
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Propriété

Dans I’ensemble des bipoints du plan (noté m x ), la relation "est équipollent a” est
réflexive, symétrique et transitive.

La relation d’équipollence de bipoints est donc une relation d’équivalence.

Par conséquent, cette relation induit dans ’ensemble des bipoints une partition en classes

d’équivalence. Chacune de ces classes regroupe ’ensemble des bipoints qui sont équipol-
lents.

Définition 10.4
Soit (A; B) un bipoint du plan. L’ensemble des bipoints (M; N) équipollents au bipoint
(A; B) est la classe d’équivalence du bipoint (A; B), appelée vecteur et notée AB :

AB = {(M;N) | (M;N) ~ (4; B)}

Le bipoint (A; B), ou tout autre bipoint (M; N) de la classe d’équivalence du bipoint
(A; B), est un représentant du vecteur AB. En d’autres termes, le bipoint (A; B) définit
le vecteur A

(A4;B) ~ (C; D) = AB = CD
Un vecteur, sans référence a un représentant, se note u, v, ...

L’ensemble des vecteurs du plan est appelé plan vectoriel et se note V.

Remarques

1. O% représente un vecteur 4 en dessinant I'une quelconque des fleches (A; B) telle que
AB = 1.

Les trois bipoints de la figure ci-dessous représentent le méme vecteur, car les trois
bipoints (ou fleches) ont la méme direction, le méme sens et la méme longueur. Ainsi,
un vecteur n’est pas déterminé par sa position et peut étre représenté par un bipoint
choisi dans le plan (de direction, sens et longueur adéquate).

/A/;*D/ F

C

2. Etant donné un vecteur « et un point P quelconque du plan m, il existe un unique
point () tel que ]@ = 1.

Définition 10.5
L’ensemble des bipoints dont 'origine et 'extrémité sont confondues est appelé vecteur

nul et est noté 0 :
— R
AA=0

On appelle opposé du vecteur @ de représentant (A; B) le vecteur —u de représentant

(B;A) :
—AB = BA
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10.3 Opérations sur les vecteurs du plan

10.3.1 Addition de vecteurs

Définition 10.6
Soient « et ¥ deux vecteurs du plan vectoriel Vj. A partir du point A quelconque du plan
7, on construit les points B et C tels que AB =4 et BC' = 7.

Le bipoint (A; C') définit un vecteur appelé somme des vecteurs 4 et ¥. On note :

7+7=AB+ BC = AC

gl
+
<l

<y
]

Y

<y

)
:
S

L’application
S V2 X V2 — V2
(U;0) — U479
est une loi de composition interne dans V,, appelée addition vectorielle.

Remarque

L’égalité 1@ + B? = @ est appelée relation de Chasles.

Propriétés de ’addition
Soient les vecteurs i, ¥ et w de V.

L’addition est commutative : «

[N

0 est ’élément neutre :

w

)
) L’addition est associative :
)
)

S

—1 est ’élément opposé a i : U

Remarque

Il résulte des quatre propriétés ci-dessus que (Vy; +) est un groupe commutatif.

Soustraction de vecteurs

Définition 10.7
On appelle soustraction 'application qui associe aux vecteurs « et v le vecteur, noté
U — U, qui est défini par :

—

U—T=1u+(—7)

Le vecteur 4 — v est appelé différence des vecteurs u et .
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g

A

<y
]

Y
IS

|
<y

|
S

Proposition 10.1
Soient A, B et O trois points du plan 7. On a 1’égalité suivante :

AB=0B-0A

Démonstration. Soient A, B et O trois points du plan 7. Par la relation de Chasles, la
commutativité de 'addition, la définition de I'opposé d’un vecteur et la définition de la
différence, la suite d’égalité suivante est vraie :

AB ™ A0 + OB 2" OB + A0 Z 0B + (-04) "L 0B - 04

10.3.2 Multiplication d’un vecteur par un nombre réel

Définition 10.8

Soit 4 un vecteur du plan vectoriel V5 et A un nombre réel. A partir d’'un point A
quelconque du plan 7, on construit le point B tel que AB = , puis les images A’ et B’
des points A et B par une homothétie de centre O quelconque et de rapport A. Le bipoint
(A’; B') définit un vecteur appelé produit du vecteur @ par le nombre réel . On le
note A - .

L’application

m: RXVQ — V2
(A7) — A-d

est une loi de composition externe, appelée multiplication d’un vecteur par un réel.

Proposition 10.2
Sid#0et A# O, les vecteurs 4 et A -« ont la méme direction. Ils sont de méme sens si
A > 0 et de sens contraire si A < 0. La longueur de X - 4 est égale a |A| fois celle de 4.

Exemple

On donne ci-dessous quelques multiples d’un vecteur u.

(—~1)@

&
DO
Sy

|

—

i

N
S
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Propriétés de la multiplication

Soient les nombres réels \ et p et les vecteurs « et ¢. On a :

D A (p-)=(Ap) -4

— —»

2) 1.4

) A (U+V)=A-u+\-T
4) AN+p)-d= -u+p-u
Conséquences

Les propriétés données ci-dessous découlent directement des propriétés de la multiplica-
tion d'un vecteur par un réel.

Soient un nombre réel A et un vecteur @. On a :

1) 0-

10.4 Combinaison linéaire et colinéarité

Dans ce qui suit, @, I;, ¢, ...sont des vecteurs du plan vectoriel Vy et A\, 5, v, ...des
nombres réels.

Définition 10.9
On appelle combinaison linéaire des vecteurs a, b, ¢, ..., m, de coeflicients respectifs
a, B, 7, ..., i, le vecteur

T=a-@+8-b+~y-C+...+p-m
Exemple

On donne ci-dessous un représentation du vecteur v = %b (—=1)¢, combinaison
linéaire des vecteurs a, b et c.

b, 24
‘Y
Définition 10.10

Des vecteurs a, b, ¢, ..., m sont linéairement dépendants s’il existe des nombres «,
B, 7, ..., i non tous nuls tels que

N[
S

<y

a-@+B-b+vy-C+...4p-m=0

page 189



Mathématiques, MAP 197 année 10. Vecteurs dans le plan

Ceci signifie que I'un des vecteurs au moins peut s’écrire comme une combinaison linéaire
des autres vecteurs.

Des vecteurs da, I;, c, ..., m, sont linéairement indépendants si et seulement si
a-6+5-5+7-5+...+u-7ﬁ:6:>a:ﬁ:7:...:,u:()

Ceci signifie que la seule combinaison linéaire qui donne le vecteur nul est celle dont tous
les coefficients sont nuls.

Définition 10.11
Deux vecteurs i (# 0) et ¢ sont colinéaires s'il existe un nombre réel A tel que

v=A-1u

Exemple

win

Les vecteurs U et W donnés ci-dessous sont colinéaires au vecteur U car v = 24 (ici

A=2)etw = -2 (ici \ = —2).

/

Remarques

—

/

]

1. Deux vecteurs colinéaires non nuls sont de méme direction.
2. Deux vecteurs sont linéairement dépendants si et seulement s’ils sont colinéaires.

3. Le vecteur nul est colinéaire & tout vecteur.

10.5 Espace vectoriel

Définition 10.12

Un espace vectoriel réel est un triplet (F; +; -) formé d’un ensemble E, d’une opération
interne dans E, appelée addition et notée +, et d'une loi de composition externe, appelée
multiplication par un réel et notée -, satisfaisant aux quatre propriétés de I’addition et aux
quatre propriétés de la multiplication par un nombre réel décrites dans les paragraphes
précédents (en remplagant les vecteurs de Vy par les éléments de F).

Proposition 10.3
(Va;+;-) est un espace vectoriel réel.

Il existe beaucoup d’autres espaces vectoriels, comme par exemple ’ensemble des po-
lynomes de degré 2 muni de l'addition usuelle des polynomes et de la multiplication
usuelle d’un polynome par un nombre réel. Nous étudierons quelques-uns de ces espaces
vectoriels notamment dans le cours ” Algebre linéaire”.

Cette structure d’espace vectoriel possede quelques caractéristiques intéressantes qui per-
mettent de travailler efficacement, comme la notion de base et I'écriture des éléments de
I’espace vectoriel comme combinaisons linéaires des éléments de la base.
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Définition 10.13

On appelle base d’un espace vectoriel réel V' tout sous-ensemble B de V' tel que chaque
élément v de V peut s’écrire de maniere unique comme combinaison linéaire des vec-
teurs de B.

Les coefficients de cette combinaison linéaire sont appelés composantes scalaires de
I’élément v dans la base B.

Remarque

Pour un espace vectoriel donné, toutes les bases ont le méme nombre d’éléments. Le
nombre d’éléments d’une base d’'un espace vectoriel V' est appelé dimension de V.

Proposition 10.4

Une base de V5 est constituée d'un couple de vecteurs linéairement indépendants ou,
de maniere équivalente, d’'un couple de vecteurs non colinéaires. V, est donc un espace
vectoriel réel de dimension 2.

Une base de V, se note généralement (,7) ou (&, &).

Propriétés

Si (€1, €) est une base de V,, alors tout vecteur 4 de V, peut s’écrire comme une
combinaison linéaire unique de € et €. Il existe un couple («; 5) de nombres réels, et un
seul, tel que

i=a-&+p &

)

a et [ sont les composantes scalaires de @ dans la base (€7, €;). On note alors

-(5)

Opérations sur les composantes
. — — ’ — u]_
Soient une base B = (€, €) de Vy, un nombre réel \ et deux vecteurs @ = et

U2

U= ( Zl ) donnés par leurs composantes scalaires relativement a la base B. On a :
2
(%) V2 U + Vg
U9 )\Ug
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Exemple

1 S 5) f T —
9 )0 U=\| _g)etW=

On donne les vecteurs 4 = (

(

) dans une base

B = (€1,€) de Vo. On peut réaliser les opérations suivantes sur ces vecteurs.

e (1)+(5)- ()= (4)
o2 (3)-(23)-(3)

Cette situation est représentée ci-dessous.

Test du déterminant

-~ - . - Uy - U1 ’
Dans une base B = (€1, €3) de Vy, soient les vecteurs 4 = ( " ) et U= ( v ) donnés
2 2
par leurs composantes scalaires.
— - . . , - Uy U1
@ et U sont linéairement indépendants <= Det(u, V) = W e | W12 T U2V #0
2 U2

Remarque

-

Le déterminant de deux vecteurs @ et b de Vi, Det(d,b), est égal a l'aire du parallélo-

gramme construit sur ces deux vecteurs.
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10.6 Exercices

1) Utiliser les vecteurs de la figure ci-dessous pour dessiner, sur une feuille quadrillée, les

vecteurs suivants :

w

_v 5
a) U+ u b) v+ c) 3-U d) (—4)-a@
e) U—u f) «u—v g) 3(0+u)—w h) 2u—30+w
R N (L 3 I 3, 4,
i) 3u—§v j) g~ v k) —2u+30—§w 1) 7l — =

2) On donne trois points A, B et C' non alignés.

Construire un représentant de chacun des vecteurs suivants :

a) @=AD+ AC b) b= AB + AC + BC
¢) ¢=AB - BC d) d=AC — AB +2CD

¢) &= 2AB —CA)+3CA— BA

3) Soient cing points quelconques A, B, C, D et E. Exprimer plus simplement les vecteurs

b=DA+CD+ AE
d=AC — BD — AB
F_ 70 TB+ B DB

suivants :

a) @=BD+AB+ DC b)
¢) é=BC+DE+DC+AD+EB )
¢) @=DA—DB—CD - BC £)

4) On donne trois points A, B et C' non alignés.
Construire les points D, E, F et G tels que :

) 4B - -Lap ) B¢ — 28 - 5

¢) 3FA=2FC d) BG = ADB +20C — 3GA

5) On donne trois points A, B et C' non alignés.
o

Soit le point GG défini par la relation GA + @ + Cﬁ = 6)

a) Construire le point G.

(04 + 08 + 0¢)

1
b) Démontrer que pour tout point O : O? =3

6) On donne trois points A, B et C' non alignés.
Construire les ensembles de points suivants :

a) E={M|AM = k- AB,k € R}
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10)

11)

b) F={M|MB=BA+k AC,k € [-2;3[}

¢) G={M|2CM =k-AB+m-CA kR, me {-1:4)}

d) H={M|AM =2 -BC+k-CA—t-BA ke [-21),te[~1;4]}

Utiliser les vecteurs de la figure ci-dessous pour répondre aux questions.

-

c
h
i

a) Que vaut 7, sachant que 7 + b= f?

b) Que vaut ¥, sachant que ¥ + d=¢e?

1

¢) Exprimer ¢ comme combinaison linéaire de d,
d

(S

cet f.

k.

@D
-+

13
Exprimer ¢ comme combinaison linéaire de ¢, d, €

>

Exprimer € comme combinaison linéaire de d, g et
b d.

-+

f) Exprimer € comme combinaison linéaire de @, b, ¢ e

g) Que vaut Z, sachant que f:6+g+g+§?

)
)
)
)
)
)
)
)

h) Que vaut Z, sachant que F=G+b+C+h?

Montrer que I’ensemble des nombres réels R muni de ’addition et de la multiplication

habituelles est un espace vectoriel réel.

Montrer que I’ensemble des polynomes a une variable de degré inférieur ou égal a 2
muni de 'addition et de la multiplication par un réel usuelles est un espace vectoriel

réel.

Montrer que ’ensemble des fonctions muni de I'addition et de la multiplication par

un scalaire habituelles est un espace vectoriel réel.

On considere trois vecteurs 4, U et w d’un espace vectoriel V' et un nombre réel \.

Montrer que :
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— —

12) Dans le plan, on donne quatre vecteurs @, b, ¢ et d.

oy

—

L b

) Est-il possible d’exprimer b, ¢, d comme combinaison linéaire de @7
) Est-il possible d’exprimer ¢, d comme combinaison linéaire de @ et b?
c¢) Est-il possible d’exprimer d comme combinaison linéaire de @, b et ¢'7

Donner les conditions permettant d’exprimer tous les vecteurs du plan comme
combinaison linéaire d’'un ensemble de vecteurs du plan.

e) A quelle(s) condition(s) la combinaison linéaire est-elle unique ? Comme appelle-t-
on dans ce cas l’ensemble de vecteurs permettant d’exprimer tous les vecteurs du
plan sous forme d’une combinaison linéaire unique ?

13) Dans le plan, on donne six vecteurs @, I;, c, J: € et f

Dans la base (@, €), déterminer, par constructions et mesures, les composantes scalaires
(valeurs approchées) des vecteurs suivants :

a) @ b) b ) @ d) d
e) & f) 7 g) b+¢ h) @—2b+ 3¢
f
&
a
= >
. ¢
d

page 195



Mathématiques, MAP 197 année 10. Vecteurs dans le plan

14) Soit le quadrilatere ABC'D suivant.

Par constructions et mesures, déterminer une valeur approximative des composantes
des vecteurs

a) CA dans 1a base (E, z@) b) BD dans la base (E, ﬁ)
c) AB dans la base (@, E) d) AC dans 1a base (B?, C'_IS)
e) CD dans la base (E, @) f) AD dans la base (ﬁ, 1@)

15) On considere la figure suivante :

a) Représenter, dans la base B = (€7, €3), les vecteurs suivants :

=(0) i=(5) = () =(5) = (3)

b) Représenter les vecteurs b+ C et 3b+ 2 et donner leurs composantes scalaires dans
la base B.

oW

16) Relativement a une base B de V,, on considere les vecteurs :

(3 () = (3) () ~(2)
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Déterminer, parmi ces vecteurs, ceux qui sont colinéaires.

17) Relativement a une base B de Vg, on donne les vecteurs :

- (5) (1) ()

Calculer les composantes scalaires des vecteurs suivants :

B L1
a) 3d—4b+¢ b) @—2b+ 5@ ¢) —5d — 3b— 8¢

18) Relativement a une base B de V3, on donne les vecteurs :

= (2) i-(5) ()

Déterminer deux nombres « et 3 tels que ad + 3

S
I
oL

19) Relativement a une base B de V3, on donne les vecteurs :

() 5= (5) = (5) ()

-,

a) Montrer que (d,b) est une base du plan.

b) Calculer les composantes scalaires des vecteurs ¢ et d dans la base (@, b).

-,

20) Relativement & une base B = (Z, j) de V, on donne les vecteurs :

() 5= (4) (3)

a) Calculer les composantes scalaires du vecteur b dans la base (d,c).

b) Calculer les composantes scalaires du vecteur & dans la base (7, @).

21) Vu du sol, un avion se déplace vers le nord-ouest a une vitesse constante de 250 miles
par heure, poussé par un vent d’est de 50 miles par heure. Quelle serait la vitesse de
I’avion s’il n’y avait pas de vent ?

22) La figure ci-dessous montre deux remorqueurs qui amenent un navire dans un port.

Le remorqueur le plus puissant génere une force de 20’000 N sur un cable, le plus petit
une force de 16’000 N. Si le navire suit une ligne droite [, calculer I'angle que forme
le plus puissant des remorqueurs avec la droite (.
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23) La figure ci-dessous représente un appareillage servant a simuler les conditions de
gravité sur d’autres planetes. Une corde est attachée a un astronaute manoeuvrant
sur un plan incliné qui forme un angle de 6 degrés avec I'horizontale.

a) Si 'astronaute pese 80 kg, calculer les composantes selon les directions z et y de
la force de pesanteur (voir figure).

b) La composante de la partie a) selon y "est la force de pesanteur” de I’astronaute
par rapport au plan incliné. La force de pesanteur de I'astronaute serait de 140 N
sur la lune et de 300 N sur mars. Calculer les angles (a 0,01° pres) que devrait
faire le plan incliné avec ’horizontale pour simuler une marche sur ces surfaces.
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10.7 Solutions des exercices

3) a) d=AC b) b=CE ¢) &= AC + DC
d) d=DC e) = DA ) =0
7) a) @ b) —G—h; da+b+¢;
¢) é=—f+é—d d) g=—-k+cé+d—¢
¢) é=—g—h+d fy e=a+b+c+d
g) 0 h) —§

Sl
I

13) a)

2,6 —6,2
0 (52) v (o)
14) a)CTZl:(_Ol) b)ﬁ:(‘ll)
~ [ 1,64 (2,2
C)@_(—1,09) d)ﬁ—(gﬁ)
~ [ —0,28 ~ [ 0,48
e)@_<0761) n A= (o3 )
o —1
15) re= () 3b+2c:< )
16) € est colinéaire & tous; @, d et h; b et 7; € et

—_
\]
S~—
R
VRS
- |
D=
~~
VRS
|
u>|"‘
~
o
S~—
VR
o |
o=
~~

—_
N
Q
|
w
™
|
N}

[
8o

)

I
VRS
sl

ol
~__

)
o
S~—
js¥
SN—
S
Il
S~ N 7 N /7 N
|
8383~

b) &

ol
S~— ~

21) 217.54 mph
22) 23, 6°
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23) a) P= ( 80g - sin(6) )

80g - cos(f)
b) Lune : 79,72°; Mars : 67,53°
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Chapitre 11

Plan affine

11.1 Repere du plan 7

Soit 7 I’ensemble des points du plan.

Dans cet ensemble, nous n’avons pas défini d’opérations. Pour résoudre un probleme fai-
sant intervenir des points du plan, on se ramene a un probleme équivalent dans I’ensemble
des vecteurs Vy dans lequel on dispose d’opérations. Dans cette optique on choisit un
point O de 7 et on définit la bijection :

f: Oxm — Vy
(O, M) —s OM

On dit alors que 7 est le plan affine associé au plan vectoriel V.

Définition 11.1
On appelle repére du plan affine 7 tout triplet (O; E1; E3) de points non alignés.

- P
Si R = (O; Ey; Es) est un repere de , les vecteurs €, = OF; et €, = OF, déterminent
une base B = (€1, &) du plan vectoriel Vs, appelée base associée au repere R.
Le point O est appelé origine, les vecteurs €] et €5 vecteurs de base du repere R.

On note également ce repere (O; €1; €3).

Coordonnées d’un point relativement a un repére
Soit R = (O; Ey; Es) un repere du plan 7.

Les coordonnées x et y relativement a R d’un point M de 7w sont les composantes du
vecteur OM relativement a la base associée (OE7, OF5). On note M (x;y).

M(x;y)(z)O—]\)4:x-O—£?1>+y-O—£?2>:(§)

M
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x, la premiere coordonnée du point M, est appelée abscisse de M.

y, la deuxieme coordonnée du point M, est appelée ordonnée de M.

Remarque

On peut associer un systeme d’axes de coordonnées a un repere du plan affine 7.

Le premier vecteur de la base associée, €1, donne la direction et le sens du premier axe
de coordonnées ou axe des x. L’échelle sur cet axe est définie par la longueur de é;.

Le deuxieme vecteur de la base associée, €3, donne la direction et le sens du deuxiéme
axe de coordonnées ou axe des y. L’échelle sur cet axe est définie par la longueur de é5.

Exemple

On donne ci-dessous un repére (O;€1;€y) du plan affine 7, ainsi que les axes de
coordonnées associés. Dans ce repere, les coordonnées des points représentés ci-
dessous sont les suivantes :

A(6;3), B(10;1), C(=2;2), D(=2;—1), E(8,—1), F(0:2)

JA
B
,I II ,I II ,I Il:‘/E
5 /6 /7 /8 /9 10
D 1 JE

11.2 Calculs avec les coordonnées

Dans un repere (O; Ey; E3) du plan affine 7, on donne les points A(x4;ya4), B(xp;yp) et
C(rc;yo)-

11.2.1 Composantes d’un vecteur

S
Comme on a vu au chapitre précédent que E = @ — OA (proposition 10.1), on peut

écrire :
4§ (xB) (xA) (xB xA)
YB Ya Y — YA
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11.2.2 Milieu d’un segment

Les coordonnées du milieu du segment [AB], noté M,p), sont :

Tat+xTp Ya+ys
M[AB}( 5 5 )

Les coordonnées du milieu du segment sont les moyennes arithmétiques des coor-
données correspondantes des extrémités du segment.

Démonstration. Soit Mg}, ou plus simplement M pour cette démonstration, le milieu
du segment [AB]. Dans ce cas, les deux égalités suivantes sont vraies :

A = MB  ou m:%@

On peut donc écrire :

11.2.3 Centre de gravité d’un triangle

Les coordonnées du centre de gravité du triangle ABC', noté G, sont :

3 ’ 3

G(xA+$B+$C_yA+yB+yC)

Les coordonnées du centre de gravité d'un triangle sont les moyennes arithmétiques
des coordonnées correspondantes des sommets du triangle.

Démonstration. Soit G le centre de gravité du triangle ABC'. Dans ce cas, ’égalité sui-
vante est vrale : N

ﬁ - gAA/
ou A’ est le milieu du segment [BC]. On peut donc écrire :
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2—> 2, — 1 2 1
0C = OA+AC = OA+3AA 0A+§(0A'—71):§(ﬁ1 5-5((79#(%)

_I_
raA+Trpt+aCo
_ 3
- YA+ystyc
3

T W
~—— O

- 0A+cﬁ+o? _%« )+<§
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11.3 Exercices

1) Soit ABCDEF un hexagone régulier de centre O.

Donner les coordonnées des points A, B,

CvD7E7F7G7H717J7K7L7M7N7 B N, G \M a

O,P,Q, Ret S ‘
a) relativement au repére du plan : O
Ri1=(O;E; F). )
C, Q |JR E

b) relativement au repere du plan :

RQ = (O, A; C)

2) On considere la figure suivante :

VANVANVANVAN

Ey ‘B

A/

a) Représenter les points dont les coordonnées sont données relativement au repere
Ri1 = (0; Ey; Es) -

M(4;2) N(=3;3) P(-4-4)  Q(23) R(1;=3)
S(0; —3) T(5;0) U(—1;-4) V(-2;3) W(1;-1)
b) Trouver les coordonnées de ces points relativement au repere Ry = (O; A; B)

c¢) Calculer les composantes scalaires, relativement a la base (€7, &), des vecteurs :

MN, MP, NDB, PM, ST, UP, PS

d) Calculer, dans le repere Ry = (O; Ey; Es), les coordonnées des points C' et D tels

que :
MC = NP DN + 2AT — 3DS — 2US

3) Dans un repeére du plan, soit le triangle de sommets A(—4;2), B(1;3) et C(2;5).
a) Calculer les coordonnées des milieux des cotés du triangle ABC.

b) Calculer les coordonnées du centre de gravité du triangle ABC'.
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4) Dans un repere du plan, on donne un triangle ABC' par deux sommets A(6; —1),
B(—2;6) et le centre de gravité G(3;4).

Calculer les coordonnées du troisieme sommet C.

5) Dans un repere du plan, on donne les points A(2;3), B(—3;1) et C(8;—1).
a) Calculer les coordonnées du point D tel que ABCD soit un parallélogramme.

b) Calculer les coordonnées du centre de ce parallélogramme.

6) Dans un repeére du plan, dessiner les ensembles de points suivants :
A={M(z;y) | v =5} B ={M(z:y) | |yl =2}

C={M(z;y) |z =2y} D ={M(x;y) | 2z +y = 6}
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11.4 Solutions des exercices

1) a) A(—1;1) B(~1;0) C(0;—1) D@ —1) E(1;0)
F(0;1) G(—3%:3) H(—3;0) 1(0;—3) J(5;—3)
K(3;0) L(0; 3) M(—3%;3) N(-%1) 0(0;0)
P(—3—3)  Q(3-3) R(3;—3) S(3:3)

b) A(1;0) B(1;1) C(0;1) D(~1;0) E(~1; 1)
F(0;—-1) G(3;0) H(3:3) 1(0;3) J(—3:0)
K(=%3:—3)  L(0;—3) M(3;—3) N(%;3) 0(0;0)
P(3:3) Q(—3:3) R(-%-3)  S(=3-3)

2) b) M(1;3) N(-3;0) P(0; —4) Q(—3;3) R(2;—1)
S(5:-3) T(3:3) U3:—3 V(=3:3) W(1;0)

d) C(3;-5), D(-§;-8)

3) a) Miap) = (—%;3), Muog = (-13), Mpe=(3:4)
b) G(—3:%)

4) C(5;7)

5) a) D(13;1)
b) centre : (5;1)
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Chapitre 12

La droite

12.1 Définitions

Définition 12.1
Trois points A, B et C sont alignés si et seulement si les vecteurs E et 1@ sont

colinéaires : AC' =k - 1@, ou k € R.
Droite déterminée par deux points

Soient deux points distincts A et B.

Définition 12.2
La droite (AB) est I’ensemble des points M du plan 7 alignés avec A et B :
(AB) = {M | AM = k- AB, k € R}

Le vecteur AB est appelé vecteur directeur de la droite (AB).

Droite déterminée par un point et une direction
Soient un point A et un vecteur d non nul.

Définition 12.3
La droite passant par A (appelé point d’ancrage) et de direction d, notée d(A;d), est

I’ensemble des points M du plan 7 tels que les vecteurs AM et d sont colinéaires :

d(A,d)={M | AM =k -d, k € R}

Le vecteur d est un vecteur directeur de la droite d(A, cf)

Remarque

A chaque valeur du nombre réel k correspond un unique point de la droite.
A chaque point de la droite correspond un unique nombre réel k.
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12.2 Equations paramétriques d’une droite

Le plan 7 est muni d’un repere (O;é;; €s).

da

Un point M (x;y) appartient a la droite d si et seulement s’il existe un nombre k € R tel

Soit la droite d passant par le point A(x4;y4) et le vecteur directeur d = ( d )

que AM =k - d. Ainsi, pour tout point M de la droite d, on a :

O—]\f:wl—l—k‘-af ou <x):<mA)+k-<d1)
Yy YA dy

ou k € R. Cette équation est une représentation paramétrique de la droite d. Elle

s’écrit aussi sous forme d’un systeme d’équations, appelées équations paramétriques
de d :

d:{l' = a4 —+ k’dl

y = ya + k-dy
ouk € R.
A7

M A
——_,' d ;d
(?2 _____ L) "\()

Olo=c"" OM

€1
Exemple

Soient les points A(—3;2) et B(—1;3). Nous allons déterminer les équations pa-
ramétriques de la droite (AB).

1. Un vecteur directeur de la droite (AB) :

r-a-ob-od- (1 )-(3)-(2)

3 2 1

2. Les équations paramétriques de (AB) sont (une représentation possible parmi
Uinfinité des représentations possibles de la droite (AB)) :

= =3 + k-2
(AB)'{y = 2 + k-1

On peut maintenant donner des points appartenant a la droite (AB) en choisissant
une valeur de k. Par exemple, pour k =5, on obtient le point

Jr = -3 + 52 =7 _
C.{y: 2 4+ 5.1 _ . = 0m)
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De plus, on peut déterminer si un point appartient ou non a la droite (AB) en
déterminant s’il existe une valeur unique de k telle que les équations paramétriques
sont vérifiées pour les coordonnées du point. Par exemple, pour le point D(—9;8),
on a

p. 9= -3+ k2= k=23
‘18 = 2 + k-1 = k=6

Ainsi, D ¢ (AB).

12.3 Equation cartésienne d’une droite

Soit la droite d passant par le point d’ancrage A(x4;y4) et admettant comme vecteur

directeur d = ( d )

da
. . . . . . Ry 7
Un point M (z;y) appartient a la droite d si et seulement si les vecteurs AM et d sont
colinéaires. Or, ces deux vecteurs sont colinéaires si et seulement si Det(AM;d) =0 ou :
— _
Det(AM, dj =| T~ di|_y
Yy—ya do

En effectuant ce déterminant et en regroupant les termes, on obtient successivement les
équations :

(x—x4)-do—(y—ya)-di = 0
doy-x—di-y+(di-ya—do-x4) = 0

En posant dy = a, —dy =bet (dy - ya — ds - x4) = ¢, la relation ci-dessus s’écrit

‘am+by+c:0‘

ol a, b et ¢ sont trois nombres réels. Cette équation est appelée équation cartésienne
de d.

Proposition 12.1
Soit la droite d d’équation cartésienne ax + by 4+ ¢ = 0.

Comme dy = a et —d; = b,

—b )
le vecteur ( a ) est un vecteur directeur de d

Exemple

Soient les points A(5;2) et B(1;—3). Nous allons déterminer [’équation cartésienne
de la droite (AB).

1. Un vecteur directeur de la droite (AB) :

== 4)-(3)-(2)- ()

Ainsi, on obtient a = =5 et —b = —4. L’équation cartésienne partielle de (AB)
est : —dx +4y +c = 0.
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2. Comme A € (AB), on peut déterminer ¢ en résolvant I’équation
(=5)-5+4-24+¢c=0 — c=17

L’équation cartésienne de (AB) est : —bx + 4y + 17=10

12.3.1 Equation cartésienne résolue et pente

Soit la droite d d’équation cartésienne ax + by + ¢ = 0 avec b # 0.

Dans ce cas, on peut expliciter y en transformant cette équation :

—a —c
ar+by+c=0 — by=—-ar—c — y= T:)H_T
En posant —* =m et 3¢ = h, cette équation s’écrit
Sous cette forme, ’équation cartésienne de d est dite résolue.
Définition 12.4
Soit la droite d d’équation cartésienne axr + by + ¢ = 0 et de vecteur directeur
J— di\ [ —b
- dg o a '
Si la premiere composante scalaire de d est différente de zéro, d; = —b = 0, le rapport
dg —a
m —= — = ——
dy b

est appelé pente (ou coefficient directeur) de la droite d.

Si la droite d est donnée par deux points distincts A(xa;y4) et B(zp;yg), tels que

ra # Tg, la pente de d est
_ Y~ Ya
IB — TA

m

Remarques

Soit la droite d d’équation cartésienne résolue y = mx + h.

1. La droite d passe par le point A(0;h) (en effet : h =m -0+ h). Elle coupe I'axe des y

en h. On dit que h est 'ordonnée a P’origine de la droite d.

2. L’équation cartésienne de la droite d peut s’écrire mz —y + h = 0. La droite d a donc

. - 1
pour vecteur directeur le vecteur d = < " )

Exemple

Soient les points A(5;2) et B(1; —3). L’équation cartésienne de la droite (AB) est

—bx + 4y + 17 =0, selon l'exemple précédent.

L’équation cartésienne de (AB) peut s’écrire sous forme résolue :

5
—Sr+4y+17=0 — dy=dzx—-17 — y=-
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La pente de cette droite vaut donc :

5 —(=5) —-3-2
4 4  1-5

(AB) admet comme vecteur directeur d = ) et comme ordonnée a l’origine le

1
N
TS, e

nombre h = —1747

12.4 Position relative de deux droites dans le plan

On donne dans le tableau ci-dessous les positions relatlves possibles de deux droites d,
de vecteur directeur d1 et dy, de vecteur directeur dz

Sécantes Paralleles
distinctes confondues
dy
I
dy
do dy = do
i i . . . Infinité de points
Un quue pc.nnt I Aucun point d’intersection " [HIE de pout:
d’intersection d’intersection (droites)
dy et d2, ne §ont pas dy et dy sont colinéaires
colinéaires

Equations cartésiennes de deux droites paralleles

Théoreme 12.2
Soient les droites, données par leurs équations cartésiennes, d; : ajx + byy + ¢; = 0 (avec

ap, by #0) et dy : asx + boy + co = 0 (avec ag, by, c2 # 0).

Les droites d; et dy sont paralleles si et seulement si les coefficients a et b sont propor-
tionnels :

c
#* - pour d; et dy paralleles distinctes
aq . bl Cy
— = c
az by =1 pour d; et dy paralleles confondues
Co
Remarque
Les droites d; et dy sont paralleles si et seulement si b‘l“ = % (en transformant 1’égalité

donnée ci-dessus) ou si m; = my. Ainsi, deux droites paralleles ont la méme pente.

12.4.1 Calcul du point d’intersection de deux droites sécantes

On donne ici des méthodes pour déterminer le point d’intersection de deux droites sécan-
tes.
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Droites sous formes paramétriques

On écrit les équations paramétriques des deux droites en désignant leurs parametres par
des lettres différentes.

En posant 1'égalité des coordonnées de méme rang, on obtient un systeme de deux
équations & deux inconnues (les parametres).

On résout ce systeme.

Si celui-ci admet une solution unique, les droites sont sécantes et on obtient le point
d’intersection en injectant la valeur obtenue d'un des parametres dans les équations de
la droite correspondante.

Droites sous formes cartésiennes

Un point I(z;y) appartient a deux droites d; et ds si et seulement si ses coordonnées z
et y vérifient les équations cartésiennes de d; et ds.

On obtient donc les coordonnées du point d’intersection des droites d; et do en résolvant
le systeme de deux équations a deux inconnues formé par les équations de d; et ds.

Exemple

Nous allons déterminer les coordonnées de I’éventuel point d’intersection des droites
dy et dy, données tout d’abord sous forme paramétrique puis données sous forme
cartésienne.

d.x:—3+k-2 td_x:6+s~1
Y"1y = 2+ k-1 ‘ 2Vy = -1 + s-(=1)

di:x—2y+7=0 dy:x+y—5=0

ou

Sous forme paramétrique

On pose le systeme suivant d’équations

—3+2k = 6+s
24k = —-1-s5

Pour résoudre ce systeme, on peut isoler s dans la premiere équation et trouver
s = =9+ 2k. En injectant ceci dans la deuriéme équation, on trouve

24+k=—-1—(-9+2k) — 24k=8-2k — 3k=6 — k=2

On obtient alors s = -9 +2.2 = —5.

Maintenant, pour trouver le point I d’intersection, on utilise les équations pa-
ramétriques d’une des deux droites et la valeur du parametre associé.

[z = -3 + 2.2 =1 _
I.{y: 5 +2_1:4:>I(174)
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Sous forme cartésienne

On pose le systeme suivant d’équations

r—=2y+7 = 0
r+y—5 =0

Pour résoudre ce systéme, on peut soustraire ces deux équations et trouver la nou-
velle équation —3y + 12 = 0. On en tire immédiatement que y = 4. En injectant
cette valeur dans la premiere équation, on trouve

rT—2-44+7=0 — az=1

Le point d’intersection des droites dy et dy est I(1;4).
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12.5 Exercices

Dans les exercices suivants, les coordonnées des points sont relatives a un repere (O; I; J)
de 7 et les composantes des vecteurs relatives a la base (7, 7) = (Of,0J) de V4 associée.

1) Les points A, B et C' donnés ci-dessous sont-ils alignés ?

a) A(2;3) , B(1;6) , C(4;-3)
b) A(;-1) , B(31) , C(-2;3)
¢)  A(=56;84) , B(16;—24) , C(-8;12)

2) On donne une droite d par ses équations paramétriques :

d: r =1+ k-3
My = 3 + k-(-2)

Représenter les points de d correspondant aux valeurs suivantes du parametre k : —3,
-2, —-1,0,1, 2, 3.

3) Représenter graphiquement les quatre droites suivantes, données par leurs équations

paramétriques :
Jr = —4 + 4k Jr = -4 — 8k
a)“'{yz 5 — 3k b)b'{y: 5 + Gk
Jr = 8 + 4k o= 2k
C)C'{y:—4—3k‘ d)d'{y=2—%k‘

4) Soit la droite d passant par le point A(5;4) et de vecteur directeur d= < g )

a) Calculer les coordonnées de trois autres points B, C' et D de la droite d.
b) Par calcul, déterminer si les points E(101;70) et F'(—40; —26) appartiennent a d.
c¢) Construire la droite d.

. . s . Lo = 2 - 3k
5) Soit la droite d d’équations paramétriques : { y = -4 + k

a) Déterminer deux points A et B situés sur la droite d.
b) Les points C'(1;—1), D(0;0), E(5; —5) et F'(—139;43) sont-ils sur la droite d?
¢) Déterminer sur la droite d le point K d’abscisse -3.
d)
)

e

Déterminer sur la droite d le point L d’ordonnée 4.

Déterminer sur la droite d le point N dont ’abscisse vaut le double de I'ordonnée.

6) Trouver une représentation paramétrique de la droite :
. ) - 4
a) qui passe par A(3;5) et a pour vecteur directeur d = ( ) ) :

b) qui passe par A(—3;—2) et B(4;—-5);
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3
¢) qui passe par A(2; —4) et a pour pente m = ——;

) ( ;
d) qui passe par A(5;2) et est parallele au segment [BC], ou B(1;1) et C(—3;2);
e) qui passe par A(0; —2) et est parallele a (OI);

) (

I

f) qui passe par A(8;12) et est parallele a (OJ).

7) On donne le triangle ABC' de sommets A(—4;1), B(2; —3) et C(5;4).
a) Déterminer les équations paramétriques de la médiane passant par le sommet A.
b) Déterminer les équations paramétriques de la droite d passant par A et parallele &
(OJ).
c) Déterminer les équations paramétriques de la droite g passant par B et parallele
a (AC).

8) Soit la droite d donnée par la représentation < g ) = < _41 ) + k- ( _13 )
a) Représenter la droite d.
b) Colorer en rouge les points pour lesquels k € [—1;2].

c) Colorer en bleu les points pour lesquels k£ > 3.

9) Trouver quelques points situés sur chacune des droites suivantes, données par leurs
équations cartésiennes. Représenter ces droites.

a) o4 2y—12=0 b) 3z — 15y +15=0
c) dr—3y=0 d) y—4=0

r—4 y+1
e) 2r+ ) 5 3

10) Représenter graphiquement les quatre droites suivantes, données par leurs équations

cartésiennes :

a) a:3x+4y—8=0 b) b:—6x —8y=—16
3

c) ¢:12y =—9x + 24 d) diy=—x+2

4
11) Quelle particularité possede la droite d d’équation ax + by 4+ ¢ = 0, lorsque :

a) a=0 b) b=0 c) c=0

12) Soit la droite d donnée par la représentation paramétrique { ;7 i _73 _T_ EZ .

Ecrire une représentation cartésienne de cette droite.
13) Déterminer I’équation cartésienne de chacune des droites données a l’exercice 6.

14) Soit la droite passant par les points A(1;4) et B(3; —2).

a) Donner une représentation cartésienne de la droite (AB).
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=3

Donner une autre équation cartésienne de la droite (AB).

c) Existe-t-il une équation cartésienne de la droite (AB) qui contienne le terme 7z ?

(o9

)
)
) Déterminer deux points C' et D situés sur cette droite.

) Les points E(0;0), F(2;1), G(5;8) et H(2;%) appartiennent-ils & la droite (AB) ?
)

)

)

@

7T
Déterminer sur la droite (AB) le point J d’abscisse —12.

o

(AB)
Déterminer sur la droite (AB) le point K d’ordonnée 555.
(AB)

h) Déterminer sur la droite (AB) le point L dont I’ordonnée vaut quatre de plus que

I’abscisse.

15) Soit la droite d : 3x + 2y — 5 = 0.
a) Donner un vecteur directeur de la droite d.

b) Déterminer le vecteur directeur de la droite d ayant pour premieére composante 7.

16) Soit la droite d : 2z — 3y + 6 = 0.
a) Ecrire 'équation cartésienne de la droite d’ paralléle & d et passant par Uorigine.

b) Ecrire I’équation cartésienne de la droite d” parallele a d et passant par le point
A(—4;1).

17) Soit le point A(5; —2).
a) Ecrire I’équation de la droite d parallele a ’axe des x et passant par le point A.

b) Ecrire 'équation de la droite d paralléle & 'axe des y et passant par le point A.

18) Représenter dans un méme repere les droites :
a) y=2x-—5 y=2x y=2x+4
b) y=-x+2 y=32x+2 y=4x+2

19) Représenter, dans un méme repere, les droites passant par A(2;5) et de pente :
a) m=—2 b) m=—= ¢ m=0 d) m=- e) m=2
20) Ecrire I'équation cartésienne de la droite passant par A(—1;6) et de pente m = 4.

21) Soit la droite passant par les points A(3; —5) et B(—1; —2).

Calculer sa pente et son ordonnée a l’origine.

22) Soit la droite d : y = =3z + 7.

Ecrire un vecteur directeur de la droite d.

23) Déterminer, lorsque cela est possible, I’équation cartésienne résolue de chacune des
droites données a l'exercice 6.
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24) Soit la droite d : y = —bx + 2.

Ecrire Iéquation cartésienne résolue de la droite d’ parallele & d et passant par
A(3;—4).

25) On donne les points A(1; —2), B(—5;2), C(—4;—1), D(1;—1) et E(61;—40).
a) Les droites (AB) et (C'D) sont-elles paralleles ?
b) Les droites (BD) et (CE) sont-elles paralleles ?

26) a) Représenter graphiquement les quatre droites suivantes, données par leurs équa-
tions cartésiennes :

a:x+2y+1=0 b: —3x+4y+7=0
c:—2x—4y—5=0 d:6x+12y+6=0

b) Déterminer graphiquement les points d’intersections entre la droite a et les trois
autres droites b, c et d.

27) Indiquer les positions relatives des droites d et e (sécantes avec le point d’intersection,
strictement paralleles ou confondues) dans les cas suivants :

a) d:dr—2y—1=0 e:2x+y—5=0
b) d:3x+y—8=0 e:6x—2y—3=0
c) d:8r—4y—2=0 e:—4r+2y+1=0
_ _ o = -1 + 2k
d) d:—z+2y—3=0 e.{y 1 4k
_ - o =4 + 2k
e) d:3x+2y—7=0 e.{y _ 3 _ 5k
x =1 — k
f) d:62+y—-9=0 e.{y _ 3 4 ook
) d r =7 + k e 1T = 5 — 3t
& y = 8 — k Yy = 10 + 3¢
o =4 + 2k xr = 6 — 2t
h) d.{y B f e {y _ 3 _
) d: T = 2k e 1T = 4 + 3t
' “ly = 3 + 5k My =1 — 2t

28) On donne les droites d : 2z + Ty + 13 =0et g : bz + by + ¢ = 0.
a) Calculer b et ¢ tels que les droites d et g soient confondues.

b) Calculer b et ¢ tels que les droites d et g soient strictement paralleles.
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29) Soit la droite d passant par les points A(45; —206) et B(712;4).

Déterminer les coordonnées des points d’intersection de la droite d avec les axes de
coordonnées. Travailler sous forme paramétrique.

30) Soit la droite d : 9z — 7Ty — 4 = 0.

Déterminer les coordonnées des points d’intersection de la droite d avec les axes de
coordonnées.

31) On donne les quatre points A(1;5), B(13;—1), C(8;4) et D(—2; —4).

Calculer les coordonnées du point d’intersection des droites (AB) et (C'D). Travailler
sous forme paramétrique.

32) On donne la quadrilatere ABC'D par ses sommets : A(—5; —3), B(12;—1), C(9;4) et
D(—2;6).

Calculer les coordonnées du point E tel que E soit sur la diagonale (BD) et le qua-
drilatere ABC'E soit un trapeze. Travailler sous forme paramétrique.

33) On donne le quadrilatere ABC'D de sommets A(—2;3), B(8; —1), C(10;3) et D(1;9).
a) Ce quadrilateére est-il un trapeze ?

b) Déterminer les coordonnées du point d’intersection des diagonales de ce quadri-
latere. Travailler sous forme cartésienne.

34) Un parallélogramme ABC'D est donné par un de ses sommets, A(3; —1), et les droites
support de deux de ses cotés : 2z + 3y —H =0et x —4y + 14 = 0.

Calculer les coordonnées des sommets B, C' et D, ainsi que celles du point d’intersec-
tion I des diagonales.

35) On donne les milieux des cotés d’un triangle : M (2; —1), N(—1;4) et P(—2;2).
Déterminer les coordonnées des sommets du triangle. Travailler sous forme carté-

sienne.

36) Soit le triangle ABC de sommets A(3;1), B(—2;5) et C(5; —3).
a) Etablir une équation cartésienne de chaque médiane.

b) Vérifier que les trois médianes sont concourantes.

37) Soit la droite d : 2x — 3y +4 = 0.

Déterminer une équation cartésienne de la droite image de d par :
. - 1

a) la translation ¢ de vecteur ¢t = < 6 )

b) la symétrie s de centre A(—2;4).

¢) 'homothétie h de centre A et de rapport k = —%.

38) Représenter I'ensemble E des points M (z;y) tels que 3z — 4y + 2 > 0.
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39) Représenter graphiquement 1’ensemble E des points M (x;y) tels que

r—y+4 < 0
20 4+y—1 = 0

40) Ecrire un systeme d’inéquations a deux variables tel que I'ensemble des solutions soit
I'intérieur strict du triangle de sommet A(3;1), B(7;0) et C(1;—3).
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12.6 Solutions des exercices

1) a) oui b) non c) oui
4) b) E :non, F :oui

5) a) A(2;—4), B(—1;—3) par exemple

)
)
b) C :non, D :non, F :oui, F :oui
¢) K(=3;—%)
d) L(—22;4)
e) N(—4;-2)
r = 3 — 4k r = =3 + Tk
o W {0 R S
x = 2 — 4k r = 5 — 4
C){y——4—|—3k‘ d){y—2+k‘
r = k r = 8
e){y:_2 f){y:12—|—k:
o = —4 + 15t
7) a)m.{y 1
r = —4
b)d'{y = 1 + s
) g r = 2 + 3u
© 9 y = =3 + u
11) a) La droite est parallele a (OF).
b) La droite est parallele & (O.J).
¢) La droite passe par l'origine.
12) d: 5x + 2y — 29 = 0 par exemple
13) a) z+4y—23=0. b) 3z +Ty+23=0
c) 3x+4y+10=0 d) z+4y—13=0
e) y+2=0 f) +—8=0

14) a) 3z +y — 7 =0 par exemple
b) 21z + Ty — 49 = 0 par exemple
¢) Oui: Tz +Iy—2 =0
d) C(0;7), D(%;0) par exemple
e) F:non, F :oui, G:non, H :oul
£) J(—12;43)

g) K(—23%555)

h) L(3; )

page 221



Mathématiques, MAP 197 année 12. La droite
15) a) d = ( _3 ) par exemple
b) d = ( 721 )
T2
16) a) d' : 2z —3y=0
b) d’:2x—3y+11=0
17) a) y+2=0
b) t—=5=0
20) y =4z + 10
21) Pente : —32, ordonnée & lorigine : —4
7 1
22) d = < _3 ) par exemple
1 23 3 23
3 D 1 13
C)y——zz—§ d)y——zx T
e) y=—2 f) impossible

24) d' 1y =—bxr+11

25) a) Oui
b) Non

26) b) Avec b: I;(1;—-1),
section

27) a) strictement paralleles

confondues

o

)

confondues

o

)
) strictement paralleles
)

i) sécantes : I(55; )

28) a) b=2ctc=2

b) b=2etc# 2
29) Axe des x : (699, 3;0),
30) Axe des x : (5;0),
31) I(%,;32)
)
)

axe des y : (0;—3)

137 13

2) B(3; %)

w

33) a) Oui
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b) I(%:3)

BB

3) Bli—§), C(-23), D8, 1)

117 11

—_
—_

35) Sommets : (=5;7), (3;1), (1; =3)

r+y—3=0, 122+9y—-33=0, y—1=0

20— 3y +28 =0

)
)
37) 1) 22— 3y — 16 =0
)
) 22 —3y+20=0

20 —y—5 > 0
40) r+4y—7 < 0
r—2y—7 < 0
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Chapitre 13

Ensembles

13.1 Ensembles et sous-ensembles

13.1.1 Ensembles, définitions

Définition 13.1
Une collection d’objets est un ensemble lorsqu’on peut dire avec certitude si un objet
donné appartient ou non a la collection. Ces objets sont les éléments de I'ensemble.

N’importe quel objet (mathématique ou non) peut étre considéré comme un élément d’un
ensemble (y compris un ensemble!).

Notation

1. On représente généralement un ensemble par une lettre latine majuscule : FE.

2. Les éléments d'un ensemble sont notés entre accolades et séparés par des points-
virgules.

3. Sil’élément x appartient a I’ensemble F, on écrit x € F.
4. Silélément = n’appartient pas a ’ensemble E, on écrit = ¢ F.

Exemples
— L’ensemble des nombre de 0 a 6 y compris : E = {0;1;2;3;4;5;6}.
Ici, on a :
0€E, 4€F, 10 ¢ E.
— L’ensemble des éléves d'une classe : F'= {Aline; Bernard; . ..}.
On peut définir un ensemble de deux manieres différentes :
1. en énumérant ses éléments, G = {5;10; 15;20; 25; .. .}.

2. en donnant une condition d’appartenance. La notation est alors légerement plus
sophistiquée. Par exemple, on traduit la phrase

7 H est 'ensemble des ¢léments de E tels que leur carré est plus grand ou égal a 15”7
S —— N———— , _

-
H= (.} nek | n2>15

on donne un nom P L0 .
on écrit la condition & ’aide d’une formule

général aux éléments ~ . ) L P
de I’ensemble grace au fait qu’on a donné un nom aux éléments

par
H={nec E|n*>15}

227



Mathématiques, MAP 197 année 13. Ensembles

Cas particulier

Si un ensemble F ne contient aucun élément, on ’appelle ensemble vide et on le note
{} ou @.

Définition 13.2
On appelle cardinal d’un ensemble E, noté Card(FE), le nombre d’éléments que contient
E.

Exemple

— Le cardinal de l’ensemble B = {1;2;3;4;5;6} est 6 : Card(B) = 6.
— Le cardinal de l’ensemble constitué des éléves de la classe est :

13.1.2 Sous-ensembles et appartenance

Définition 13.3
Si tous les éléments de 'ensemble A appartiennent a I’ensemble B, on dit que A est un
sous-ensemble de B.

Exemple
A=1{1;2;3;4}, B=1{1;2;3;4;5;6} et C={3;4;5;6}

L’ensemble A est un sous-ensemble de B, mais A n’est pas un sous-ensemble de C.

Définition 13.4
Soit A et B des sous-ensembles d’un ensemble F. On dit que

1. A est inclus dans B si tout élément de A appartient a B. On note A C B . Dans
ce cas, A est un sous-ensemble de B.

2. A contient B, lorsque tout élément de B appartient a A. On note A D B . Dans
ce cas, B est un sous-ensemble de A.

3. A est égal a B, lorsque tout élément de A appartient a B et que tout élément de B
appartient a A. On note A = B.

Syntaxe

Nous venons de rencontrer deux signes mathématiques qu’il s’agit de ne pas confondre :

Nom Terme de gauche | Symbole | Terme de droite
Appartenir a Elément € Ensemble
Etre inclus dans Ensemble C Ensemble
Etre égal a Elément = Elément
Etre égal a Ensemble = Ensemble
Contenir Ensemble > Elément
Contenir Ensemble D Ensemble
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On a I’équivalence suivante lorsque A est un ensemble.

reAs{z}CA

Remarques

1. A ¢ B signifie qu’il existe au moins un élément de A qui n’appartient pas a B.

2. Soit un ensemble E = {a;b; c}.
a € Eet {a} C E sont des notations correctes, a C E ne 'est pas.

3. L’ensemble vide est contenu dans tous les ensembles. En termes mathématiques,
cela revient & écrire () C A pour tout ensemble A.

13.2 Opérations sur les ensembles

Définition 13.5
Soit A et B deux sous-ensembles d’un ensemble E.

ANB
L’'intersection de A et B est 'ensemble des éléments

qui appartiennent a la fois & ’ensemble A et a I’ensemble
B. On note cet ensemble AN B et on lit ” A inter B”.
Symboliquement :

ANB={ec€ Elec Aet e € B}

La réunion de A et B est ’ensemble des éléments qui
appartiennent a ’ensemble A ou & I’ensemble B (ou au
deux). On note cet ensemble AU B et on lit ” A union
B”. Symboliquement :

e
>y

AUB={e€ Elec Aouec B}

La différence de deux ensembles A et B est ’ensemble
des éléments qui appartiennent a I’ensemble A mais non
a ’ensemble B. On note cet ensemble A\ B et on lit 7 A
moins B”. Symboliquement :

S

A\B={e€ Elec Aete¢ B}

La différence symétrique de deux ensembles A et B AAB

est ’ensemble des éléments qui appartiennent a l’en-
semble A mais non a I’ensemble B ou qui appartiennent
a I’ensemble B mais non a I’ensemble A. On note cet
ensemble AAB. Symboliquement :

AAB = (A\ B)U(B\ A)
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CrA

Le complémentaire de A dans F est I'ensemble des
éléments de F qui n’appartiennent pas a A. On note cet
ensemble 0z A ou, lorsqu’il n’y a pas d’ambiguité quant
au référentiel, A. Symboliquement :

EEA:{GEE|€¢A}

Exemple

Soit l'ensemble E = {1;2;3;4;5;6;7;8} et les sous-ensembles de £ : A = {2;4;6;8}
et B ={1;2;3;4}.

ANB = {2;4}, AUB = {1;2;3;4;6;8}, A\ B = {6;8}, AAB = {1;3;6;8},
A={1;3;5;7}.

Définition 13.6
Soit A et B deux sous-ensembles d’un ensemble E. On dit que A et B sont disjoints si
ANnB=0.

13.3 Partition, ensemble des parties

Définition 13.7
Soit P = {Ey; Es;...; E,} (n € N*) un ensemble de sous-ensembles d'un ensemble E.
L’ensemble P est une partition finie de I'’ensemble F si :

EiUEU...UE, =F,

E; # () pour tout i de 1 & n,

E;NE; =0 pour tous les i et j de 1 a n, avec i # j

Exemple
1. On peut illustrer la partition d’un ensemble de maniére graphique :
E
E
E E 6
2 4 o
E, Es

2. Soit l’ensemble F' des éléves du lycée.
— Partition 1 :

a) Fy : ensemble des éléves de premiére année,

b) Fy : ensemble des éléves de deuzieme année,

c) Fy : ensemble des éléves de troisiéme année.
— Partition 2 :

a) Fy : ensemble des gargons,

b) F, : ensemble des filles.
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Définition 13.8

Soit un ensemble E. I’ensemble des parties de E, noté P(E), est 'ensemble constitué
de tous les sous-ensembles possibles de E. Symboliquement, on définit cet ensemble par :
P(E)={A|A C E}.

Exemple

On considére l’ensemble E = {1,2,3}. L’ensemble de ces parties est :
P(E) = {0 {1}: {2} {3} {L; 285 {1; 3}:{2: 3} £}

Remarque

Pour un ensemble E quelconque, 'ensemble vide, (), et ensemble E lui-méme sont tou-
jours des sous-ensembles de E. Ils font donc partie de P(F).

13.4 Propriétés des opérations dans P(F)

Soit un ensemble E et trois ensembles A, B et C' appartenant a P(FE) (trois sous-ensembles
de E). Les opérations réunion, U, et intersection, N, ont ls propriétés suivantes :

Associativité (ANB)NC=AN(BNC)|(AuB)UC =AU (BUCQC)

Commutativité | ANB=BNA AuB=BUA

Distributivité AN(BUC) = AUu(BNC) =
(ANB)U(ANCQC) (AUB)N(AUCQ)

Elément neutre | ANE = A AUdp=A

Complémentaire | ANA =10 AUA=F

On peut encore énoncer deux relations entre les trois opérations de base consistant a
former des unions, des intersections ou des complémentations, qui sont connues sous le
nom de lois de De Morgan et sont tres utilisées, surtout en probabilités.

Proposition 13.1
Soit un ensemble E et deux ensembles A et B de P(F). On a alors les propriétés suivantes
sur les complémentaires :

|
C
]

ANB =
Lois de De Morgan

|
D
o]

AUB =

Ces formules seront démontrées en exercice.

Note

Pour tout ensemble E, I'ensemble des parties P(F) muni des opérations de réunion,
d’intersection, ainsi que la notion de complémentaire, a une structure d’algebre de
Boole.
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13.5 Intervalles réels

Les intervalles sont des notations simples et efficaces pour décrire certains sous-ensem-
bles de R. Ils sont notamment utilisés lors de la résolution d’inéquations.

Définition 13.9
Soit a et b deux nombres réels tels que a < b. On a les définitions suivantes :
1. On appelle intervalle fermé, noté [a;b], 'ensemble de tous les réels z tels que
a<x<b

2. On appelle intervalle ouvert, noté |a;b[ ou (a;b), 'ensemble de tous les réels x
tels que a < o < b.

3. On appelle intervalle semi-ouvert a gauche, noté Ja; b] ou (a; b, (respectivement
a droite, noté [a; b[ ou [a; b)) 'ensemble de tous les réels x tels que a < x < b (resp.
a<x<b).

Exemple

1) [2;5] est l’ensemble de tous les nombres réels situés entre 2 et 5; 2 et 5 compris.

2) 12;5] est l’ensemble de tous les nombres réels situés entre 2 et 5; 2 et 5 non
cCoOmpris.

3) [2;5] est l'ensemble de tous les nombres réels situés entre 2 et 5; 2 compris et
D non compris.

On peut représenter les intervalles sur la droite réelle, ce qui est fait dans le tableau
ci-dessous. On y considere deux nombre réels a et b tels que a < b. Chacune des lignes
décrit le méme sous-ensemble de trois fagons équivalentes.

Les huit types d’intervalles
Sous-ensemble Intervalle Représentation graphique
a b
{zr € Rla <z <b} [a; b] — @—— IR
a b
{r eRla< z < b} [a;b] ou [a;b) — G——O— R
a b
{r € Rla <z < b} Ja;b] ou (a;0]  O———> R
a b
{r € Rla < z < b} la;b[ ou (a;b) OO — R
a
{z e Rlz > a} Ja;+o00] ou (a;+00)  O—— R
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Sous-ensemble Intervalle Représentation graphique
a
{r €R[z > a} | [a;+o0] ou [a;+00) — > R
b
{z e Rlx <b} | |—o0;b] ou (—o0;b) —)—> R
b
{z € Rlz <b} | ]—o0;8] ou (—o0;0] —_—— R

13.6 Produit cartésien

Définition 13.10
Soit deux ensembles A et B.
Un élément a de A et un élément b de B, pris dans cette ordre, forment un couple noté
(a;b).
On peut considérer le couple comme une ”paire ordonnée”.
Soit encore un élément ¢ de A et un élément d de B. L’axiome suivant définit I’égalité de
couples :
(a;0) = (¢;d) <= (a=cet b=d)
a est 'abscisse ou la premieére coordonnée (composante) du couple (a;b).
b est 'ordonnée ou la deuxieme coordonnée (composante) du couple (a;b).

Le produit cartésien de A et B, pris dans cet ordre, est ’ensemble des couples ayant
leur premiere coordonnée dans A et leur deuxieme coordonnée dans B. On note :

AxB={(z;y) |z € Aety e B}
On lit " A cross B” (ou ” A croix B”).
Cas particulier : Si A= B, on pose : A x A = A2,

Remarques

1) Attention! A x B # B x A : l'ordre joue un role important.

2) Ne pas confondre
— (a;b), élément du produit cartésien,
— {a; b}, ensemble comprenant a et b comme éléments,
— |a; b], intervalle fermé de a a b.

3) On peut généraliser la notion de produit cartésien et l'appliquer a un nombre quel-
conque d’ensembles. Par exemple, un produit cartésien de trois ensembles est un en-
semble de triplets.

Exemple
Soit A ={0;1} et B ={a;b;c;d}
alors A x B = {(0; a); (0;0); (0; ¢); (0; d); (1; a); (1;0); (15 ¢); (1 d)}

(1;b) est un couple de A x B ou 1 est la premiére coordonnée ou abscisse et b la
deuzieme coordonnée ou ordonnée.
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13.6.1 Le plan R?

Dans le chapitre ”Notions fondamentales” en algebre, nous avons défini I’ensemble des
nombres réels R et avons montré qu’on peut le représenter par la droite réelle. Nous allons
maintenant montrer comment associer I’ensemble des couples (a;b) de nombres réels

R*=R xR ={(a;b) | a € Ret bc R}

a chaque point d'un plan.

Un systeme de coordonnées orthogonale ou systeme cartésien dans un plan est
formé de deux droites de coordonnées perpendiculaires appelées axes de coordonnées,
qui se coupent a l'origine O, comme le montre la figure ci-dessous. On appelle la droite
horizontale laxe des x et la droite verticale ’axe des y, et on les note respectivement Ox
et Oy. Le plan est alors un plan de coordonnées ou plan Oxy. Les axes de coordonnées
divisent le plan en quatre secteurs appelés le premier, le deuxiéme, le troisieme et le
quatriéme quadrant, et notés respectivement I, I, III et IV. Les points sur les axes
n’appartiennent a aucun quadrant.

Chaque point P d’'un plan Oxy peut étre associé & un couple (a;b) comme le montre la
figure ci-dessous. On appelle a la coordonnée en x (ou abscisse) et b la coordonnée en y
(ou ordonnée). On dit que P a les coordonnées (a;b) et on parle du point (a;b) ou du
point P(a;b). Réciproquement, chaque couple (a; b) détermine un point P de coordonnées
a et b. On repere un point en mettant un point rond. Quelques exemples de points sont
données dans la figure de droite.

Yy Yy
(0;5)
, (—4:3) |
pom-- b (5;2)
1} ! 1}
A Ly R (1) )
ol 1 a (=4;0) o] 1
(—4-3) 1079 5.2

Dans la suite de ce cours, nous allons largement utiliser le plan Oxy pour représenter des
ensembles de couples de nombres réels sous forme de points. Nous présentons ci-dessous
deux exemples de cette utilisation.

On peut représenter dans le plan I’ensemble des solutions d’une équation a deux inconnues
x et y. En effet, une solution particuliere d’une telle équation est un couple (a; b) qui vérifie
I’énoncé si x = a et y = b.

Exemple

(2,3) est une solution de y*> = 5x — 1 puisque siz =2 ety =3 on a :
- MG :3*=9
- MD :5-2—1=9

page 234



Mathématiques, MAP 197 année 13. Ensembles

Définition 13.11
A chaque solution (a;b) d’une équation en x et y correspond un point P(a;b). L’ensemble
de tous ces points est appelé la représentation graphique de 1’équation.

Dans les cas simples, la représentation graphique peut étre obtenue en reportant quelques
points. Pour une équation compliquée, reporter des points ne donne que peu d’informa-
tions au sujet de la représenation graphique. Dans un tel cas, on devra employer des
techniques que nous étudierons dans la suite du cours.

Exemple

Représentation graphique de l’équation y = 2z — 1.

On donne ci-dessous quelques points (z;y) du plan qui satisfont cette équation.

zll—=3|-2|-1/0|1]2]3
yl|l =7 -5|-3|-1] 1|3 |5

On observe que les points qui ont ces coordonnées sont sur une droite (représentée
ci-dessous). En général, aussi peu de points ne suffisent pas pour représenter gra-
phiquement une équation ; cependant, dans ce cas élémentaire, on peut raisonna-
blement étre sur que la représentation graphique est une droite.

On peut également représenter graphiquement le produit cartésien de deux sous-ensem-
bles de R en utilisant certaines conventions qui seront illustrées par I’exemple ci-dessous.

Exemple

Soit les ensembles A = [2;4[ et B = {1} U [2;5].

La représentation graphique du produit cartésien de A et B

Ax B=1[2;4] x ({1} U [2;5])
est donnée ci-dessous.
On utilise les conventions suivantes pour la représentation graphique :
disque : le point appartient a [’ensemble,

cercle : e point n’appartient a [’ensemble,
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segment continu : tous les point du segment appartiennent a [’ensemble,
segment discontinu : aucun point du segment n’appartient a I’ ensemble,

surface colorée : tous les points de la surface appartiennent a l’ensemble.

Yy
5 ——
I
4} |
I
I
3 |
I
2 —
1 e——O
- xr
—1 1 2 3 4 5
1}

13.7 Relations binaires

13.7.1 Graphe - relation binaire

Définition 13.12
Soit GG une partie de A x B.

Une relation binaire de A vers B est déterminée par la donnée de

— son ensemble de départ A (source)
— son ensemble d’arrivée B (but)
— son graphe G

La relation est désignée par le symbole Z.

L’élément a de A est dans la relation &# avec 'élément b de B, si (a;b) € G, et dans ce
cas seulement. On écrit a Z b et on lit a est en relation avec b.

a est alors une préimage de b par la relation Z et b est une image de a par la relation

Z.

De plus, si (a;b) ¢ G, on écrit a Z b.

Enfin, deux relations & et . sont égales et on note Z = ., dans le seul cas ou Z et
< ont la méme source, le méme but et le méme graphe.

Remarque

La représentation graphique d’un graphe dans un diagramme cartésien porte parfois, par
abus de langage, le nom ”graphe”.

13.7.2 Relation réciproque

Définition 13.13
Le couple (b;a) de B x A est le transposé ou le symétrique du couple (a;b) de A x B.
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Le graphe transposé ou symétrique du graphe G est I'ensemble de tous les couples trans-
posé des couples de GG. On note

'G={(y;7) | (v;y) € G}

La relation réciproque d’une relation # de A vers B ayant G comme graphe est la
relation de B vers A admettant "G comme graphe. Elle est désignée par le symbole 'Z.

Par définition, la condition suivante se vérifie pour tout x de A et tout y de B :

YRr <= Xy

13.7.3 Propriétés d’une relation dans un ensemble A

Définition 13.14
Une relation binaire #Z dans un ensemble A est une relation de A vers A.

Une relation & dans A est :

réflexive si tZx

symétrique si xRy = yZcw

antisymétrique si (xZy et yZzxr) = x=y

transitive si (tZy et y#z) = aHz

connexe si (red et yeA) = (¢Zy ou yZx)

pour tous les éléments x, y, z de A.

13.7.4 Relations particulieres dans un ensemble A

Définition 13.15
On peut définir les relations particulieres dans un ensemble A suivantes :

réflexive
Une relation d’ordre est une relation antisymétrique
transitive

réflexive
antisymétrique
transitive
connexe

Une relation d’ordre total est une relation

réflexive
n i Squi une relati Stri
Une relation d’équivalence est une relation symétrique
transitive
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13.7.5 Classes d’équivalence - ensemble-quotient

Définition 13.16
Soit #Z une relation d’équivalence dans un ensemble A.

On introduit souvent la notion suivante :
x ~y (mod Z)
en lieu et place de x Z y et on lit "z est équivalent a y, modulo Z”.

La classe d’équivalence d’un élément a de A, modulo Z#, est I’ensemble des éléments
de A équivalents & a, modulo Z.

On note :
Clla)=a={x |z € Aet z ~a (mod Z)}

L’ensemble-quotient de A par & est I’ensemble de toutes les classes d’équivalence de
A, modulo Z. On le note : A/Z#

Proposition 13.2
L’ensemble-quotient A/Z est une partition de A.

Réciproquement, toute partition de A permet de définir une relation d’équivalence dans

A.

13.7.6 Exemples

Exemple 1
Soit Z la relation de A = {0;1;2} vers B = {—1;0;2;4} donnée par
rZy < x+y est un nombre pair
Le graphe de cette relation est :
G ={(0;0); (0;2); (0;4); (1; =1); (2;0); (2 2); (2 4)}

On donne ci-dessous une représentation fléchée et un diagramme cartésien de Z.

Exemple 2

On considere 'ensemble E formé des 6 boules a, b, ¢, d, e et f. Les trois boules a, b, ¢
sont rouges, les deux boules d, e sont vertes et la boule f est blanche.

Dans FE, on envisage la relation % donnée par

r Xy < x ety sont de méme couleur
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Z est une relation :
réflexive : car une boule est évidemment en relation avec elle-méme ;

symétrique : car si une premiere boule est de la méme couleur qu’'une deuxieme boule,
alors la deuxieme boule est de la méme couleur que la premiere;

transitive : car si une premiere boule est de méme couleur qu'une deuxieme boule et
que cette deuxieme boule est de méme couleur qu’une troisieme boule, alors la
premiere et la troisieme boules sont de méme couleur.

Il s’agit donc d’une relation d’équivalence.

La classe d’équivalence de a est : @ = {a;b;c} (qui est aussi la classe d’équivalence de b
et de ¢) . ‘
La classe d’équivalence de d est : d = {d;e} (qui est aussi la classe d’équivalence de e).
La classe d’équivalence de f est : f = {f}.
L’ensemble quotient est donné par : E/Z = {{a;b: c};{d;e}; {f} }

——— Y~

a d f

On donne ci-dessous une représentation fléchée et un diagramme cartésien de cette rela-
tion.

9
X
x
X

S
X
X
X

Q
x
X
X

Exemple 3
On donne les ensembles A = {1;2;3}, B = {3;4}, C ={1;2;3;4} et D = {2;3;4}.
Soit alors l'ensemble E = {A; B;C; D}.
Dans F, on définit la relation & :
XY X CY
On peut démontrer que & est une relation réflexive, antisymétrique, transitive. Il s’agit
donc d’une relation d’ordre.

Par contre, #Z n’est pas une relation connexe, car, par exemple, on n’a ni AZ B, ni

Bx% A.

On donne ci-dessous une représentation fléchée et un diagramme cartésien de cette rela-
tion.
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Exemple 4
Dans Z, on envisage la relation :

x Ay < x—y est un multiple de 4
&S r—y=4k keZ

Cette relation est une relation d’équivalence car :
Z est réflexive : T X x
carx—r=0=4-0

X est symétrique : Ry =y#x
carx —y=4k=y—xv=4-(—k)=4K

Z est transitive : v Ay }:>x9?z
YZX z
v —y=4k / "
car y— 2 = 4k >rx—z=x—y+y—z=4k+4k' = 4k

Les 4 classes d’équivalence sont les suivantes :

Co = {...;-8-4;0;4;8;...}
Cy = {...;-7,-3,1;5;9;...}
Cs {...;—6;-2;2;6;10;...}
Cs = {...;=5-1;3;7;11;.. .}

Finalement, I’ensemble-quotient est donné par : Z/% = {Cy; C1; Cy; Cs3}.
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13.8 Exercices

1) Enumérer les éléments des ensembles suivants :
a) A={reRjz=2n—-1,n€ N,n <5}
b) B = {z € R|z*> + z = 0}
c) C={zeQz? -2=0}

2) Décrire les ensembles suivants en donnant une condition d’appartenance :
a) A={1;2;3;4;5,6;7;8}
b) B ={1;4;7;10;13;16;19}
¢) C={Ll 1, 1.1

3) Les écritures suivantes sont-elles correctes? Dans I'affirmative, les propositions sont-
elles vraies?

a) a € {a} b) {a} C {a;b} c) aC {a;b;c}
d) ae{bc} e) {a} € P({a;0}) 1) {a} € {{a};{a;b};{b}}

4) Trouver les ensembles A et B sachant que 'on a :
a) AUB ={a;b;c;dye}, ANB={b;c;d},a¢ B\ Aeteg¢ A\ B,

b) AUB =1{1;2;3;4;5;6;7;8;9}, AN B = {4;6;9}, AU {3;4;5} = {1;3;4,;5;6;8;9}
et BU{2;4;8} = {2:4;5;6;7;8;9}.

5) Simplifier les expressions suivantes dans lesquelles A, B et C' sont des ensembles non
vides.

a) AU(BUA) b) AN(BUA) c) (AUB)U(CUA)
d) (A\B)UA e) (A\B)\B f) (A\B)N(B\A4)

6) On donne les diagrammes de Venn des sous-ensembles d’un référentiel E. Griser les
parties correspondantes aux opérations indiquées.

a) (ANB)\C b) (ANB)\(BUC) ¢ (AAB)\C
d) (AAB)U(BAC) e) (A\ B)AC f) (AUB)UC
g) (AUB)A(BUC)  h) (AAC)NB

)

a b) ¢)

A B A B A B
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A B
C ? E

E

d

g

7) On considere les diagrammes de Venn ci-dessous. En utilisant uniquement les symboles
U, N, \ et A, définir le plus simplement possible les ensembles grisés.

b) c)
A B

@&

a
d

A B

g

)
B

A
E

)
A B
C? E

)
A B
C§ E

=
S
=

8) Quels sont les ensembles P({1}), P({1;2}), P({1;2;3;4})?

9) Soit A un ensemble contenant k éléments.
Combien P(A) en contient-il ?
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10)

11)

12)

13)

14)

Soit un ensemble E et deux ensembles A et B de P(E). Montrer que :
a) ANB=AUB
b) AUB=ANB

Décrire les ensembles suivants a l'aide d’intervalles.
a) A={reR|-3<x<5}
b) B={z € R[4 < x<5}
c) C={zreRlx <1}
d) D ={z € R|z > 10}
)
) F
)

@

E = {xER\x} 2et x <2}
f

g) G= {2}

On donne trois intervalles I, J et K de R. Déterminer I N J, IN K, I\ (JU K),
(I\J)U(I\ K) dans les cas suivants.

a) I =[-3;4] J=1-2;0[ K =]-5;3]
b) I =]—4;2] J=1-2,3] K =1]-3;1]
c) I =1]-5;3] J =1]-1;5] K = [-3;4]
Dans une classe, on a recensé les éleves quant a leurs loisirs : musique, sport, ciné-club.

On a obtenu les résultats suivants :

a) 9 éleves font seulement du sport.

b) 20 éleves font de la musique ou vont au ciné-club, éventuellement les deux.
c) 6 éleves font du sport et vont au ciné-club.
d) 18 éleves font du sport.
e) 2 éleves participent aux trois activités.
f) 7 éleves participent a deux activités exactement.
g) 12 éleves ne font pas de sport.
h) 19 éleves font soit de la musique, soit du sport, mais pas les deux.

Trouver leffectif de la classe, le nombre d’éleves qui font de la musique et le nombre
d’éleves qui vont au ciné-club.

Représenter graphiquement les ensembles-produits suivants :

a) |=2;1[ x [0;1] b) {-1;0;1} x ]-2;2]
) |=1;2[ x {0;1;2} d) ([=2;0]u{1}) x ]0;3]
e) [=3;3] x ]-3;3] f) Ry x R_

g) R x RYL h) R* x R*

i) {0} x R_ i) R ox {0;1}
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15) On donne les représentations graphiques de sous-ensembles de R x R. Indiquer les
ensembles-produits ainsi représentés :

Y Y
2 2
1 1
a) b)
\ o X X
-2 -1 1 2 -2 -1 1 2
1 -1
2 —2
Y Yy
2 o
Ly
c) d)
T : X
-2 -1 1 2 -2 -1 1 2
—1 —1
—2 —2 K
Y Y
2t Cl---k—----
|
1t : 1t
e) f) [}
- - - T ] T
-2 -1 1 2 2 -1 1 l
1k &
) —2
Y Yy
2 2
1 ® %
8) h) :
X i i X
-2 4 2 2 -1 1 ]
—1 &---1—----6
—9 -2
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Yy
0 o RO x
Pl

16) On lance trois fois de suite un dé dont les faces sont numérotées 1, 2, 3, 4, 5, 6 et on
note le résultat sous la forme d’un triplet (z;y; z).

a) A quel ensemble-produit ce résultat appartient-il ?
b) Combien cet ensemble-produit a-t-il d’éléments ?

¢) Parmi ces éléments, combien y en a-t-il pour lesquels x, y et z sont distincts ?

17) Les relations suivantes sont-elles réflexives, symétriques, transitives, antisymétriques,
connexe ?

a) l'inclusion dans P(FE)
b) xy > 0 dans R

¢) |z| < |y| dans R

d) 22+ =y*+y dans Z

18) On considere 'ensemble D des points d'une droite horizontale. On définit dans D la
relation g suivante :

x gy < (z est a gauche de y ou x = y)

Montrer que g définit un ordre total dans D.
19) Soit £ = {—3;—2;—1;0;1;2;3}. On définit dans F une relation % par
Ay (r=youzx+y=0)

a) Montrer que Z est une relation d’équivalence.

b) Faire une représentation fléchée de Z ; représenter le graphe de Z.
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c) Déterminer les classes d’équivalence de Z.

20) Dans Z, on envisage la relation Z :
aZb< a—0best un multiple de n

~Y

avec n € {2;3;4;...}, dite relation de congruence modulo n, notée également a =
b mod (n).

Etudier cette relation pour n =5 et n = 6.
21) Soit F = {—6;—3;1;5} et la relation % définie dans E par
r Xy < x est un multiple de y
a) Quels sont les couples de cette relation ?
b) Méme question pour la réciproque.
22) Dans I'ensemble des points du plan, on envisage la relation
AZB < A et B sont a égale distance d’un point fixe M du plan

a) Montrer qu’il s’agit d’une relation d’équivalence.

b) Quelles sont les classes d’équivalence ?
23) Soit £ ={1;2;3;4}. Dans F x E, on définit la relation
(a;0)Z (c;d) =b—a=d—c
Etudier Z.
24) Etudier la relation # définie dans R par
aZb<sa—-b=k-2n
avec k € Z.

25) Etudier la relation % définie dans Z x Z* par

(a;0) Z (c;d) < ad = be
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13.9 Solutions des exercices

1)

2)

3)

)

5)

a) A={—1:1;3;57;9}
b) B = { 1;0}

)
)
) C
) A={z e N*|z < 9}
)
)

C

&

b) B = {xE]R|:E—3n—I—1nENetn<7}
c) C={zreR|z= n €N et n <6}

n2+17
a) oui, oui b) oui, oui ¢) non, non
d) oui, non e) oui, oui f) oui, oui
a) A={a;b;c;d} et B={b;c;d;e}

b) A=1{1,3;4;6;8;9} et B ={2;4;5;6;7;9}

a) AUB b) A c) AUBUC
d) A e) A\ B f) 0
a) b) ¢)
A B A B A B
C E C E C )
d) e) f)
A B ) C A B
C E B E C E
g) h)
B B
A
C
E E
a) (A\B)U(C\ A) b) (ANB)\C)U(C\ (AUB))
¢) (ANBNC)U((AAB)\ C) d) (AUB)AC
e) (AA(BNC)N(BUC) f) (C\ A)AB g) (ANC)U(B\(AUC))
h) C\ (AAB) i) (AUC)N(BUD)
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8) — P({1}) = {0, {1}}
- P{1:2}) = {0; {1}; {2};{1; 2}}
= P{L;2:3:4}) = {0; {1} {2} {3}; {4} {12} {1, 3} {15 435 {2: 3}: {214} {34}
{1;2:3): {1 34} {2 3; 4} {1: 2:4}: {1 2; 3;4}}

9) 2%
11) a) A=[-3;5 b) B =[4;5] c) C=]—o0;1[ d) D=][10;400]
o) E=[-22 f) F=l-ooi+oo| g G=[7
12) a) [-2;0] [—3;3] ]3; 4] [=3; =2[UI[0; 4]
b) [-2;2] =31 ]=4-3] |—4-2[U[12]
¢)]—1;3 [=3;3] J=5 -3 ]—5—1]
13) 30; 11; 11
Yy Yy
r——— 1
14) a) [ ' . b) o ‘ .
i Yy i Yy
-
C) Co—) ) d) | _ 1 )
oy oy
| 2
2 | b, D | ,
o R L E & 2°F BB R F § 5 -3
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y y
g _ 1 . . hy 1 _ .
Ly _yI

I x
15) a) Ry x Ry b) R x R_

c) R x [0;1] d) R® x R

&) R x R* £) 1-2:2] x [~1;2]

g) [-L1] x R h) ]-2;2[ x |-1;1]

i) ({—2tu]-11]) x[-1;1] B A=50:152) x{-1;0;1;2}

k) {=1;0;1;2} x ]0;2] ) ]=2:1] x {0;1;2}

16) a) Ex Ex E avec E' = {1;2;3,4;5;6}
b) 6% = 216
¢) 6-5-4=120

17) a) oui, non, oui, oui, non
b

) oui, oui, non, non, non
¢) oui, non, oui, non, oui

d

oui, oui, oui, non, non
19) o) {=3;3}  {-22} {-L;1} {0}
20) Il s’agit d’une relation d’équivalence.

21) a) (_6; _6)7 (_3; _3)7 (1; 1)7 (5; 5)7 (_6; _3)7 (_6; 1>7 (_3; 1)7 (57 1)
b) (_6§_6)a(_3§_3)a(1;1)’(5;5)a(_3§_6)a(1;_6)7(1§_3)a(175)
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22) b) Des cercles de centre M.
23) Z est une relation d’équivalence.
24) % est une relation d’équivalence.

25) Z est une relation d’équivalence.
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Chapitre 14

Fonctions

14.1 Introduction

Le terme mathématique fonction apparait a la fin du XVII® siecle, quand le calcul
différentiel et intégral en était aux premiers stades de son développement. Cet important
concept est maintenant 1’épine dorsale des cours de mathématiques et il est indispensable
dans tous les domaines scientifiques.

Il y a fonction des qu’une quantité dépend d’une autre. Voici quatre situations.

A. L’aire A d'un cercle dépend du rayon r de ce cercle. C'est I'équation A = 7r? qui
exprime la regle qui lie 7 et A. A chaque valeur positive de r est associée une valeur
de A, on dit que A est une fonction de r.

B. La population mondiale P dépend du temps ¢. La table ci-dessous donne une estima-
tion de cette population P(t) au temps ¢, pour quelques années.

Population
Année | (en millions)
1900 1’650
1910 1750
1920 1’860
1930 2’070
1940 27300
1950 2’560
1960 3'040
1970 3’710
1980 4450
1990 57280
2000 6’080

A T'aide de ce tableau, on peut, par exemple, dire que :
P(1950) ~ 2'560'000'000

Mais a chaque valeur de la variable ¢ correspond une valeur de P et on dit que P est
une fonction de t.

C. Le cotut C' d’affranchissement d’une lettre dépend de son poids p. Bien qu’il n’existe
pas de formule simple qui lie C' et p, le bureau postal dispose d'un tarif qui lui permet
de déterminer C' des que p est connu.
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D. A une station-essence, le prix f, en francs, que sera payé a la caisse par un automo-
biliste dépendra du nombre de litres x d’essence qu’il aura déversé dans le réservoir
de sa voiture. Si le prix par litre est de 1,60 francs, le montant payé a la caisse sera
simplement f(x) = 1,6-x. Cette relation donne le prix a payer en fonction du nombre
de litres.

Chacun de ces exemples décrit une regle selon laquelle, & un nombre (7, ¢, p ou x) est

associé un autre nombre (A, P, C' ou f). Dans chaque cas, on dit que le deuxiéme nombre
est une fonction du premier.

14.2 Définitions

Définition 14.1
Une fonction ou application d’un ensemble D dans un ensemble A est une correspon-
dance qui associe a chaque élément de D un et un seul élément de A.

La fonction, qu’on nomme ici f, se note souvent :

f: D — A
z — f(z)

ou D est appelé 'ensemble de départ de f et A 'ensemble d’arrivée de f.

L’élément f(x) est la valeur de f en x et se lit 7 f de 2”7. Cet élément f(x) est appelé
I'image de x par f.

Une formule permettant de calculer les images f(x) est appelée expression fonction-
nelle de f.

L’ensemble image par f est I’ensemble des images des éléments de ’ensemble de départ.
On le note f(D) ou Im(f).

Remarques

1. On utilise souvent la lettre x pour représenter une valeur quelconque de ’ensemble de
départ de la fonction f. On appelle celle-ci la variable (ou variable indépendante) de
la fonction.

Pour désigner I'image, on utilise souvent la lettre y. On dit alors que y est fonction de
x et on note plus généralement y = f(x). Cela signifie qu’a droite du signe =, il n'y a
qu’une variable appelée x.

2. Il faut bien comprendre que x et y ne sont que des symboles et rien ne nous empéche

d’en utiliser d’autres. Par exemple, quand la variable est le temps, on utilise volontiers
t au lieu de z.

Il est instructif de comparer une fonction a une espece de machine. Lorsque x est une
valeur de I'’ensemble de départ de la fonction f, alors la machine ’accepte comme entrée
et produit a la sortie f(x), selon la regle qui définit la fonction. Des lors, I’'ensemble de
départ peut étre vu comme ’ensemble de toutes les entrées possibles de la machine et
I’ensemble image, comme ’ensemble des sorties possibles.

Les fonctions préprogrammées des calculatrices illustrent fort bien la notion de fonction
regardée comme une machine. Prenons l'exemple de la fonction activée par la touche
racine carrée de votre calculatrice. Vous enfoncez la touche /x, puis vous entrez la valeur
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de z. Si x < 0, il n’appartient pas a I’ensemble de départ de la fonction (ou au domaine
de définition de la fonction, voir paragraphe 3) et, de ce fait, ne sera pas accepté par
la calculatrice, qui du reste vous enverra un message d’erreur. Par contre, si x > 0, la
calculatrice affichera une valeur approzimative de \/x. La touche y/x de votre calculatrice
n’est donc pas tout a fait la méme chose que la fonction mathématique définie par f(z) =

N

Exemples

1. Considérons la fonction de R dans R donnée par [’expression fonctionnelle
f(z) =2 +5.
L’image de 3 est f(3) = 3%+ 5 = 14.
L’image de —2 est f(=2) = (=2)>+5=0.
L’ensemble image de f est lintervalle [5; +00].

2. Si l’on note P [’ensemble des polygones convexes et p un tel polygone, on peut
considérer la fonction

f: P — N

p +—— somme des angles intérieurs exprimés en degrés

On a ainsi : f(triangle) = 180, f(quadrilatere) = 360, f(pentagone) = 540.
Im(f) = multiples de 180 = {z € N|x = 180k, k € N*}.
3. Un diagramme sagittal, comme celui ci-dessous, est une bonne maniére de

représenter une fonction. Chaque fleche relie un élément de D a un élément de

A.

L’image de 1 est 1, celle de 2 est 4, 9 est ["image de 3.
Ensemble de départ : D = {1;2;3}.
Ensemble d’arrivée : A = {1;2;3;4;5;9}.
Ensemble image : Im(f) = {1;4;9}.
2

Ezpression fonctionnelle : par exemple f(x) = x*.

Définition 14.2
L’ensemble des couples (z; f(x)), ou z € D, est appelé le graphe de la fonction f.

Exemple

Pour la fonction de l’exemple 3 ci-dessus, le graphe est formé des couples (1;1),
(2;4) et (3;9).
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14.3 Fonctions réelles

Définition 14.3
Une fonction réelle (fonction d'une variable réelle et a valeurs réelles) est une fonction
de D vers R, avec D C R. Autrement dit :

f:D—R

Exemple

Un exemple de fonction réelle :

f: 0,5 — R
T — 22 —31r+2

L’image de 3 est f(3) =32 —3-3+2=2.
L’ image de —2 n’est pas définie car —2 n’est pas un élément de l’ensemble de départ.

Si, pour une fonction, les ensembles de départ et d’arrivée ne sont pas précisés, on choisit R
comme ensemble d’arrivée et le plus grand sous-ensemble de R possible comme ensemble
de départ. Ce dernier est appelé ensemble de définition ou domaine de définition
de la fonction. On le note Dy ou D(f).

Exemple

L’ensemble de définition de la fonction f(x) =& —1 est Dy = [1;400].
L’ensemble de définition Dy est, dans ce cas, l'ensemble des nombres réels tels que
xr — 1 > 0, puisque la fonction racine carrée n’est définie que pour des nombres
positifs ou nuls.

Définition 14.4
On appelle zéros d’une fonction f les valeurs de z telles que f(z) = 0.

Exemple

Le zéro de la fonction donnée par f(x) = 2z — 5 est la solution de l’équation

20 —5=0. On tmuvex:g.

14.3.1 Représentation de fonctions réelles

Il existe trois fagons principales de représenter une fonction réelle f. Nous allons les
décrire succinctement.

1. Le tableau de valeurs

Le tableau de valeurs permet de donner quelques valeurs possibles de la variable x sur une
ligne et les images, f(x), correspondantes sur une deuxiéme ligne. Chacune des colonnes
donne un des points du graphe (ensemble des couples (z; f(z)) ou x € D). Voici un
tableau de valeurs représentant la fonction f.

x -2 =15 | =1 [0 1]2 2.5 3 3.5 5

f@) || =4 | =175 0 | 2]2|0| =175 | -4 | —6.75 | —18
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Malheureusement, il ne permet pas de savoir quelles sont les valeurs de f en dehors de
celles qui y sont inscrites.

2. La représentation graphique

On peut également représenter le graphe d’une fonction dans le plan muni dun systeme
d’axes.

Définition 14.5
La représentation graphique d’une fonction f est I'ensemble des points (z; f(x)) du
plan Ozy avec x € Dy.

La représentation graphique d’une fonction est aussi appelé graphe de la fonction.

De maniere équivalente, la représentation graphique d’une fonction f est ’ensemble des
points du plan (z;y) qui vérifie I'équation y = f(x) avec x € Dy. On ajoute souvent
I'indication y = f(x) qui donne I’équation de la courbe associée au graphe de la fonction.

Si P(a;b) est un point de la représentation graphique, I'ordonnée b est donc la valeur
f(a) de f en a, comme le montre la figure ci-dessous. Cette derniere montre également le
domaine de définition de f (I’ensemble des valeurs possibles de x) et I’ensemble image de f
(les valeurs correspondantes de y). Bien que nous ayons dessiné le domaine de definition
et I’ensemble image comme des intervalles fermés, ceux-ci peuvent étre des intervalles
infinis ou d’autres ensembles de nombres réels.

Ensemble image de f

Domaine de définition de f

Exemple

Pour la fonction de l'exemple 3 de la page 253, le graphe est formé des trois points
(L;1), (2:4) et (3;9).
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Voici une représentation graphique de la fonction f. On décrira en détails, au point 4 de
ce paragraphe, la maniere de la dessiner.

f(x)
3
(0;5) (1;2)
f y = f(z)
(2;0) T
1 3 4
(25;—1]75)
(3;—4)
(3,5;—6,75)

Tres pratique et relativement précise, la représentation graphique reste néanmoins res-
treinte a une région. Ici, par exemple, le graphe ne montre pas comment la fonction se
comporte pour r < —3 et x > 4.

Lorsqu’on dessine le graphe d'une fonction, on s’arrange généralement pour montrer tout
ce qui est intéressant (points de coupe avec les axes, points particuliers, ...).

Proposition 14.1
Les zéros d’une fonction f (x telles que f(x) = 0) sont les abscisses des points d’inter-
section du graphe de f avec I'axe Ozx.

Le test de la droite verticale

Un courbe dans le plan Oxy est la représentation graphique d’une fonction si et seulement
si toute droite verticale la coupe en au plus un point.

La justification de ce test de la droite verticale se lit dans la figure ci-dessous. Si une
droite verticale quelconque z = a ne coupe une courbe qu'une fois, en (a;b), alors une
seule image b est associée a a par f. Si au contraire, une droite x = a coupe une courbe
deux fois, en (a;b) et en (a;c), alors cette courbe ne peut étre la représentation d’une
fonction car une fonction ne peut attribuer deux valeurs différentes a a.

Yy Yy
/ (a;b) (a;¢)
/
. (a;b) -
0] a 0 a
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3. L’expression mathématique
Voici I'expression mathématique de la fonction f :

f: R — R
r — f(z)= -2+ +2

L’expression mathématique est la meilleure fagcon de décrire une fonction, car en la
connaissant on peut construire un tableau de valeurs et une représentation graphique.
Alors que le contraire n’est pas possible (en tout cas pas de maniére unique). L’expression
mathématique contient toute I’'information a propos de la fonction.
4. Dessin de la représentation graphique d’une fonction
Soit f une fonction donnée par :

f: D — A

z — f(z)

Marche a suivre pour dessiner la représentation graphique de la fonction f :

1. résoudre l'équation f(x) = 0 — On obtient les n zéros de f : x1, xo,..., 2,
(abscisses des points d’intersection du graphe de f et de Ox),

2. calculer 'ordonnée y; = f(0) — ordonnée du point d’intersection du graphe
de f et de Oy,

3. calculer quelques couples (z; f(x)) du graphe de f en choisissant des x dans
D — tableau de valeurs,

4. dessiner un repere Oxy dans le plan en indiquant sur chacun des axes ’échelle

utilisée,
5. représenter dans le plan Ozy les points (z1;0), (22;0), ..., (x,;0); le point
(0;y1) et les autres points (x;y) (avec y = f(x)) associés aux couples du

graphe de f calculés en 3,

6. relier "intelligemment” et ”proprement” a main levé les points dessiner dans le
plan Oxy (sauf si les points sont alignés — utiliser la regle) de sorte a obtenir
une courbe d’équation y = f(z) qui représente la fonction f,

7. ajouter 'indication y = f(x) au graphique.

Remarques

1) 1l n’y a pas de régle au niveau du nombre de points du graphe de f a calculer pour
pouvoir dessiner la représentation graphique de f. Il faut trouver un juste milieu entre
trop peu (précision insuffisante) et trop (temps de calcul et de dessin trop important).

2) Sionn’a pas assez d’indication dans une région du plan pour dessiner la représentation
graphique de f, on peut a tout moment calculer de nouveaux couples du graphe et
dessiner les points correspondants de maniere a affiner notre dessin.
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Exemple

Nous allons considérer a nouveau la fonction :

f: R — R
r — f(z)=—2"+z+2
et décrire la démarche qui permet de dessiner son graphe donné a la page 256.

On commence par résoudre ’équation f(x) =0 :

—?+x+2 = 0|(-1)
2> —x—2 = 0| factorisation

(z+1)(z—2) = 0

Les deuz solutions de cette équation sont x1 = —1 et x9 = 2.
On calcule y; = f(0) = —0>+0+2=2

On calcule quelques couples du graphe. Ceci a déja été réalisé avec le tableau de
valeur de la page 255.

On suit ensuite les points 4 a 6 de la démarche pour obtenir la représentation
graphique donnée a la page 256.

14.3.2 Opérations sur les fonctions

Tout comme on associe deux nombres réels dans 1’addition, la soustraction, la multipli-
cation ou la division, on peut assembler deux fonctions f et g pour former de nouvelles

fonctions, f+g, f —g, f-get f/g.
La fonction somme f + g est définie par

(f +9)(x) = f(z) + g(z)

Le membre de droite n’a du sens que si f(x) et g(x) sont définies, autrement dit, si z
appartient a la fois au domaine de f et de g.

Le signe + du membre de gauche désigne une addition de fonctions tandis que le signe
+ du membre de droite désigne une simple addition entre les nombres réels f(x) et g(z).

Définition 14.6
Soit f et g deux fonctions définies sur D(f) et D(g) (deux ensembles de nombres réels).
Alors les fonctions f+ g, f — g, f-g et f/g sont définies comme suit :

(f +9)(x) = f(z) + g(z) domaine de définition : D(f + g) = D(f) N D(g)
(f —9)(z) = f(x) — g(x) domaine de définition : D(f — g) = D(f) N D(g)
(f-g9)(x)=f(x) -g(xr) domaine de définition : D(f - g) = D(f) N D(g)
_ : v . n(l)_
(—) (x) = —= domaine de déf. : D <§) ={x € D(f)ND(g)|g(x) # 0}
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14.4 Fonctions surjectives, injectives et bijectives

14.4.1 Fonctions surjectives

Définition 14.7
Une fonction f de D vers A est surjective si chaque élément de A est I'image d’AU
MOINS un élément de D.

f est surjective < f(D)= A

Autrement dit, pour tout y € A, il existe (au moins) un z € D tel que f(z) = y.

A Tinverse, f n’est pas surjective s’il existe un y € A qui n’est 'image d’aucun élément
x€D.

Exemples

1. La fonction f donnée par le diagramme sagittal ci-dessous est surjective car
chaque élément de A “recoit” au moins une fleche.

D

2. On considére les deuz fonctions de R dans R g(z) = 32° — 3z et h(z) = 22

On donne leur représentation graphique ci-dessous. La fonction g est surjective,
tandis que la fonction h n'est pas surjective car certaines valeurs de A (les
nombres négatifs) ne sont pas l'image d’au moins un élément de D.

Y )

| \ /

N \ |/

/ /. N A=)

surjective non surjective

Test de la droite horizontale

Une fonction réelle est surjective si et seulement si toute droite horizontale (dont la
hauteur est un nombre du domaine d’arrivée A) coupe son graphe AU MOINS une fois.
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14.4.2 Fonctions injectives

Définition 14.8

Une fonction f de D vers A est injective (est une injection) si chaque élément de A est
I'image d’AU PLUS une élément de D.

Autrement dit, la fonction f est injective si les images de deux éléments distincts sont
distinctes, quel que soit le choix de ces deux éléments. Mathématiquement, la condition
suivante est vérifiée pour tout xy, o de D :

Ty # 19 = f(21) # f(22)

ou, ce qui revient au méme :

f(x1) = f(22) = 11 = 23

A Tinverse, f n’est pas injective s’il existe x; et xo dans D tels que f(x1) = f(x2) et
T # To.

Exemples

1. La fonction f donnée par le diagramme sagittal ci-dessous est injective car
chaque élément de A "recoit” au plus une fléche.

D 9

2. On considére les deuz fonctions de R dans R g(z) = 2* — 2 et h(z) = 32%. On
donne leur représentation graphique ci-dessous. La fonction g est injective, tan-
dis que la fonction h n’est pas injective car certaines valeurs de A (les nombres

positifs) sont l'image de plus d’un élément de D.

Y )

/ \ /

/ \

/., N A=ht) ,

—/O/y = g(x) 0
imjective non injective

Test de la droite horizontale

Une fonction réelle est injective si et seulement si toute droite horizontale (dont la hauteur
est un nombre du domaine d’arrivée A) coupe son graphe AU PLUS une fois.
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14.4.3 Fonctions bijectives

Définition 14.9
Une fonction de D vers A est bijective (est une bijection) si elle est a la fois surjective
et injective.

Une bijection de D vers A vérifie donc la condition suivante :

Chaque élément de A est I'image
d’un élément de D exactement.

Exemples

1. La fonction f donnée par le diagramme sagittal ci-dessous est bijective car
chaque élément de A "recoit” exactement une fleche.

D

2. On considére les deux fonctions de R dans R g(z) = ta* et h(z) = 32°. On
donne leur représentation graphique ci-dessous. La fonction g est bijective, tan-
dis que la fonction h n’est pas bijective car elle n’est ni injective, ni surjective
(voir exemples précédents).

Y )

S~
//
d

bijective non bijective

(surjective et injective) (non surjective et non injective)

Test de la droite horizontale

Une fonction réelle est bijective si et seulement si toute droite horizontale (dont la hauteur
est un nombre du domaine d’arrivée A) coupe son graphe EXACTEMENT une fois.

14.4.4 Prouver l'injectivité et la surjectivité

On donne ci-dessous la maniere la plus simple de montrer l'injectivité et la surjectivité
d’une fonction.
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1. Pour montrer qu'une fonction f : D — A est injective, on prend x; et x5 QUEL-
CONQUES dans D tels que f(x;) = f(z2) et on montre que z; = xs.

2. Pour montrer qu'une fonction f : D — A est surjective, on prend y QUELCONQUE
dans A et on cherche x dans D tel que f(z) =y.
Exemple
Montrons que la fonction f : R — R; x — 2x + 1 est injective et surjective.
1. Preuve de linjectivité.

Soit xy et xo dans D =R tels que f(x1) = f(x2). A montrer xy = xs.
définition de f —1 2
f(LE'l) = f(.flfg) - 2LU1 +1= 2LU2 +1 = 2LU1 = 2(172 — I1 = T2

Remarquons qu’ici, on n’a pas besoin du sens “—==7.

2. Preuve de la surjectivité.

Soit y dans A = R. Il faut trouver x dans D = R tel que f(x) =y.

éfinition_de — . —]_
fla)=y “TEB x4 1=y S w=y—1 <& x:yT

Remarquons qu’ici, on a vraiment besoin du sens ““—=7.

14.5 Composition de fonctions

Le composition de fonctions est un fagcon de ”"mettre ensemble” deux fonctions pour en
obtenir une nouvelle. Supposons, par exemple, que y = g(u) = Vu et u = f(z) =
22 + 1. Comme y est une fonction de u et comme u est, & son tour, une fonction de z, il
s’ensuit que y est finalement une fonction de x. Cette relation entre x et y se calcule par
composition

y=g(u)=g(f(z)) = g(@* +1) = Va2 + 1
Cette opération s’appelle composition parce que la nouvelle fonction est composée des
deux fonctions initiales f et g.

Définition 14.10
Si f est une fonction de D dans A et g une fonction de A dans B, on note go f la

fonction composée de f et de g. La fonction g o f fait correspondre a tout élément de
D Vélément y = g(f(z)) de B.

On note g(f(x)) = (go f)(x) et on lit ”g rond f de z”.

v fa) S g(f(@) = (9o f)(@)
v Zh o g(f(@) = (go f)(@)

On peut visualiser la fonction composée a 'aide d’un diagramme sagittal :
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D A B
N S N
gof

On peut interpréter ce diagramme de la maniere suivante. Etant données deux fonction
f et g, on part d’'une valeur x dans ’ensemble de départ de f et on calcule son image
f(z). Puis, si le nombre f(x) appartient a 1’ensemble de départ de g, on peut calculer
la valeur g(f(x)). Le résultat est une nouvelle fonction (g o f)(z) = g(f(z)) obtenue en
introduisant f dans g.

Attention a 'ordre des fonctions. Dans la fonction g o f, on effectue f en premier mais

on note f en deuxieme place car :

— on note les lettres f et g dans le méme ordre que dans I'écriture g(f(x)),

— selon les regles de l'algebre, pour calculer g(f(x)) on calcule d’abord la partie interne
f(x), donc on considere d’abord la fonction f.

Exemples

1. On considére un ensemble : D = A = B = ensemble de personnes, et deux
fonctions f(x) = pere de x et g(x) = frere de . On a alors :
—(go f)(x) =g(f(z)) = g(pére de x) = frére du pére de x = oncle de x
— (fog)(x)= f(g(x)) = f(fréere de x) = pere du frere de x = pere de x
— (fof)lx) f( (x)) = f(pére de x) = pere du pére de x = grand-pére de x

2. On considére les fonctions f(x) = 2* et g(x) = x — 3. Alors :

~(go f)(x) = (f()) g(a?) = 2* — 3.
- (fog)) = flg(x)) = f(z —3) = (v = 3)".

Remarque

L’exemple ci-dessus montre clairement que, en général, fog # go f

Proposition 14.2

Soit trois fonctions :

— f une fonction de D vers A,
— ¢ une fonction de A vers B,
— h une fonction de B vers C.

On a:

ho(gof)=(hog)of

En particulier, la composition des fonctions d’un ensemble vers lui-méme est associative.

14.6 Fonctions réciproques

Les fonctions bijectives sont particulierement importantes car ce sont justement celles qui
possedent une fonction réciproque, comme nous allons le voir.
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Considérons une fonction bijective de D vers A. Alors, pour tout nombre y € A, il y a
EXACTEMENT un nombre z € D tel que f(x) = y. Nous pouvons, par conséquent, définir
une fonction g de A vers D qui fait correspondre x au nombre y.

En fait, pour représenter la fonction g dans un diagramme sagittal, il suffit d’inverser le
sens des fleches.

D D
fA. gA.
f- D — A g: A — D
r —  f(z) y — g(y)

On appellera cette fonction ¢ la fonction réciproque de f et on la notera 'f. Plus préci-
sément :

Définition 14.11
Soit une fonction f bijective de D vers A. Alors, sa fonction réciproque a A comme
ensemble de départ et D comme ensemble d’arrivée et est définie par

fly) =z flx)=y

quel que soit y dans A.

On peut visualiser la fonction réciproque a ’aide d'un diagramme sagittal :
D A
f
/\
~_
f

ensemble de départ de 'f = ensemble d’arrivée de f

Remarque

Il est a noter que :

ensemble d’arrivée de 'f = ensemble de départ de f

Proposition 14.3
Soit f : D — A une fonction bijective et 'f : A — D sa fonction réciproque. Les propriétés
suivantes sont vérifiées.

1. On a’f(f(x)) = = pour tout x € D.
2. On a f("f(y)) = y pour tout y € A.
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3. "f est bijective.

La premiere propriété (appelée équation d’annulation) dit que si on part de x et on lui
applique f, puis 'f au résultat, on revient au x d’ou on était parti. En quelque sorte, 'f
défait ce qu’a fait f.

Exemple

Si f(x) = 23, alors "f(x) = Yz est les équations d’annulation deviennent :

F(f) = Vai=a
1) = )=y

14.6.1 Calcul de la fonction réciproque

Si on a une fonction y = f(x) et qu’on peut résoudre cette équation par rapport a z,
alors, en accord avec la définition, on doit avoir z = "f(y). Si, maintenant, on désire
désigner la variable indépendante par la lettre = (pour conserver la notation classique des
fonctions), on échange x et y et on aboutit a I'équation y = "f(z).

En résumé, marche a suivre pour obtenir la réciproque d’une fonction bijective f :

1. Ecrire y = f(x).
2. Résoudre (si possible) I'équation en x.
3. Echanger x et y afin d’exprimer 'f comme une fonction de x.

L’équation finale est y = "f(z).

Exemple

On cherche a déterminer la réciproque de f(x) = z* + 2. On écrit d’abord :
y=a°+2
Ensuite, on résout cette équation par rapport a x :
2 = y—2
v = Yy 2
Enfin, on échange x ety :
y = vVa—2

La fonction réciproque cherchée est 'f(x) = v/x — 2.

14.6.2 Fonction réciproque et représentation graphique

Le fait qu’on doive échanger x et y pour obtenir la fonction réciproque intervient aussi
quand il s’agit d’obtenir le graphique de ' a partir de celui de f. Puisque f(a) = b si
et seulement si f(b) = a, le point (a;b) appartient au graphe de f si et seulement si le
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point (b; a) appartient au graphe de "f. Or les points (a;b) et (b;a) sont symétriques par
rapport a la bissectrice y = x du premier quadrant.

Ainsi le graphe d’ne bijection f et de sa réciproque 'f sont symétriques par rapport a la
bissectrice du premier quadrant.

Proposition 14.4
Le graphe de 'f s’obtient en prenant I'image symétrique par rapport a la droite y = x du
graphe de f.

Exemple

On considere la fonction bijective :

f . R+ — R+

T — 1’2

En utilisant ce qui a été montré a 'exemple précédent, on peut déterminer que sa
fonction réciproque est :

7f: R+ — R+
r — T

Les représentations graphiques de ces deux fonctions sont données ci-dessous. On
remarque bien la symétrie décrite précédemment.

Y
//’
7 2
y=a ot
6 //
5 St
YT
4 7
/
3 —f-
2 //
4 7/ :\/5
7,
4 1 2 3 4 5 6 7
V4

14.7 Fonctions paires et fonctions impaires

Pour les deux définitions suivantes, on considere que les fonctions sont des fonctions
réelles.

Définition 14.12
Soit une fonction réelle f de D (C R) vers A (C R). La fonction f est paire si deux
nombres opposés ont toujours la méme image par f.

f est paire <= | f(—x) = f(z)| pour tout z € D

page 266



Mathématiques, MAP 197 année 14. Fonctions

Remarque

Il est évident qu'une fonction f ne peut étre paire que si son ensemble de départ D est
centré a l'origine!

Exemple

La fonction f(z) = 3z* — 1, définie sur R, est paire.
En effet, on a bien que f(—z) = 3(—x)? — 1 = 32° — 1 = f(x) quel que soit le
nombre réel x.

Graphique d’une fonction paire

Graphiquement, la parité se traduit par une
symétrie du graphique par rapport a 'axe Oy.

En effet, si le point (z;y) fait partie du graphe,
alors le point (—x;y) en fait également partie.
— L Ce qui signifie qu’ayant déja dessiné le graphe

x
0
= ’obti i
f(—z) / \ f(x) de f pour z > 0, on l'obtient tout entier en

lui ajoutant simplement 1'image symétrique par
rapport a 'axe Oy.

Définition 14.13
Soit une fonction réelle f de D vers A. La fonction f est impaire si deux nombres opposés
ont toujours des images opposées par f.

f est impaire <= | f(—x) = —f(x) | pour tout = € D

Remarque

Il est évident qu’une fonction f ne peut étre impaire que si son ensemble de départ D est
centré a l'origine!

Exemple

La fonction f(z) = 22® — bz, définie sur R, est impaire.
En effet, on a que :

- f(=z) =2(—x)3 = 5(—z) = =223 + bx

~ —f(x) = —(22® — 5z) = =223 + 5z

et donc que f(—x) = —f(x) quel que soit le nombre réel .
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Graphique d’une fonction impaire

Le graphique d’une fonction impaire est symé-

trique par rapport a l'origine O des axes. En

effet, si le point (x;y) fait partie du graphe,

alors le point (—z;—y) en fait également par-
x tie. Ainsi, si on a déja dessiné le graphe de f

pour x > 0, on l'obtient tout entier en lui ad-
f(==) joignant simplement I'image obtenue apres une
rotation de 180° autour de 'origine.

]
&

Attention!

"Impair” n’est pas le contraire de ”pair”. La plupart du temps, une fonction n’est ni
paire, ni impaire.
14.8 Fonction croissante et décroissante

Définition 14.14 Ilustration
Une fonction réelle f est croissante sur un intervalle

s .. )
I (I C Dy) si 'implication

T < Ty = f(.i(fl) < f(l’g)

fl@a)f—==--
est vraie pour tout z1, xo dans I.
Une fonction réelle f est strictement croissante sur Flaa)
un intervalle I (I C Dy) si I'implication T
T, < Ty = f(l’l) < f(l’g)
est vraie pour tout x1, x5 dans I.
Parcouru de gauche a droite, le graphe d’une fonction strictement croissante ”monte”.
Définition 14.15 Ilustration
Une fonction réelle f est décroissante sur un inter-
e e Y
valle I (I C Dy) si I'implication
T < Ty = f(.i(fl) = f(l’g)
f@) |
est vraie pour tout z1, xo dans I.
Une fonction réelle f est strictement décroissante UACE e
sur un intervalle I (I C Dy) si I'implication T

Ty < 29 = f(21) > f(702)

est vraie pour tout x1, x5 dans I.

Parcouru de gauche a droite, le graphe d’une fonction strictement décroissante ”descend”.
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Définition 14.16 Illustration
Une fonction réelle f est constante sur un intervalle y
I (I C Dy) si I'égalité
= g
Flan) = (o) G
T
est vraie pour tout z;, x9 dans I. — | |
8
S
TR z

Parcouru de gauche a droite, le graphe d’une fonction constante est ”plat”.

Remarque
Les fonctions croissantes conservent 1’ordre et les fonctions décroissantes inversent 1’ordre.

Exemple

La fonction f(z) = sin(x) est strictement croissante sur l'intervalle [—g; g} (par-

tie verte de la représentation graphique) et strictement décroissante sur l'intervalle

3 . . : .
[g; g} (partie bleue de la représentation graphique).
Y
1
31 - | _op TN % T3
—1
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14.9 Exercices
1) Soit la fonction f(z) = —%5. Donner :

a) f(4) b) f(3) c) 4f(x) d) f(4x)
e) flz+4) ) f(4)+73) g) f(—x) h) —f(z)

2) Représenter graphiquement chacune des fonctions suivantes.

.fl : R — R f2 R — R
a) b)
r — —2x+4 r — 2243
fg : R \ {0} — R f4 : R+ — R
c) d)
z — % r — a3

3) On considere les fonctions f1, f2, f3 et fy de exercice précédent.

a) Déterminer, a l’aide des représentations graphiques, si ces fonctions sont injectives
ou surjectives.

b) Pour chacune de ces fonctions, vérifier ou infirmer algébriquement (sans le graphe)
si elles sont injectives ou surjectives.

¢) Indiquer quelles sont les fonctions qui sont bijectives.

4) Soit les fonctions de R dans R données par leur expression fonctionnelle :

T 1

f@) =7 s@ =g h@)=1-s

Donner 'expression fonctionnelle de :

a) gof b) hog c) ho(gof) d) (hog)of

5) Donner le domaine de définition ainsi que 1’expression fonctionnelle de foget go f
pour les fonctions suivantes :

a) f(z)=2*+4 glx)=x—1
b) flw)=1-- g(x)zlix
) fa)= gl =

6) Soit la fonction f de R dans R donnée par 'expression fonctionnelle f(z) = (z + 1)%

Trouver deux fonctions g et A de R dans R, différentes de 'identité, telles que f = goh.
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7) Soit la fonction f de R dans R donnée par I'expression fonctionnelle f(x) = (2 +1)2.

Trouver trois fonctions g1, go et g3, différentes de I'identité, telles que f = g1 0 gs 0 g3.

8) Soit les fonctions affines :

f+r R — R g: R — R
r — 2z r — —x+3

Représenter, dans un méme systeme de coordonnée et sur papier millimétré (en utili-
sant des couleurs différentes), les graphes de :

a) f b) c) f+g d) f-g

e) f-g f)

g) foyg h) 'f

L h(z) = f(-x) 2. i(z) = —f(z) 3. jz) =g(x+2)
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3 3
2
= X X
-4 = 1 1 2 -4 3. -2 1 1 2
-1 -1
-2 -2
-3 -3
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14.10 Solutions des exercices

4 1
1) a) 1 b) Non définie c) ——3 d) yp—
1 e 1 1
e) 1 f) Non définie g) 213 h) -
Y )
y = —2$+X6\ 2
4 10
2) ) 2 \ b) :
T 6
=3 =2 =1 1 2 3
—2 \ 4 =13
—4 2
—6 X
=3 =2 =1 1 2 3
)
12
10
c) d) :
T 6
4 =
2
x
=3 =2 =1 1 2 3
3) — f1 : injective, surjective, bijective.
— fo : non injective, non surjective, non bijective.
— f3 : injective, non surjective, non bijective.
— f4 @ injective, non surjective, non bijective.
B W) (g0 N)e) = e b) (hog)a) = =
A T PV =20
x? 22
c) (ho(gof))(ﬁ):m d) ((hOg)Of)(x):x2+16
5) a) D(fog) =R, D(go f) =R, (fog)(z) =2?—22+5, (go f)(z) =2" +3.
b) D(fog) =R\{1}, D(go f) =R\{0}, (fog)(z) ==, (g0 f)(x) = .
T —2 r—1
©) D(fog) =R\{23}, Dlgo f) = R\{1;3}, (fog)(x) = +—, (90 f)(z) = 3—-.

6) g(x) =22 h(z) =2+ 1.

7) g3(x) = 2%, go(w) =2 + 1, gu(2) = 2.
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9) a) q(x) b) i(x) c) p(x) d) u(z)
e) k() f) h(x) g) s(x) h) n(z)
i) () ) @)

page 275



Chapitre 15

Fonctions affines

15.1 Définition

Définition 15.1
La fonction définie par

f: R — R
r — y=mx+h

ou m et h sont des nombres réels, est appelée fonction affine.

Exemple

La fonction C(z) qui permet de convertir des degrés Fahrenheit, exprimés a l’aide
de la variable x, en degré Celsius :

1 y -3 — _ 160
est une fonction affine oum =g et h = —=g.

15.2 Représentations graphiques

La représentation graphique, dans un repere cartésien, de la fonction affine définie par
f(z) = mz + h est une droite passant par le point (0; k) et dont I'inclinaison dépend du
parametre m.

Définition 15.2

Le coefficient

— m est appelé la pente de la droite.

— h est appelé 'ordonnée a l’origine de la droite.

On donne ci-dessous les représentations graphiques de deux fonctions affines avec une
pente m positive, a gauche, ou négative, a droite.
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15.2.1 Quelques caractéristiques de la représentation graphique
Zéro de la fonction

L’abscisse g du point d’intersection de la droite représentant la fonction f(x) = mz+h

et de I'axe Oz est le zéro de f : xy = —%.

Pente de la droite

On rencontre parfois un panneau de circulation signalant une montée
ou une descente importante. Par exemple, le panneau ci-contre signale
une montée dont la pente est de 10%. Cela signifie que 1’on monte
verticalement de 10 metres pour un déplacement de 100 metres.

La notion mathématique de pente d’une droite est la

A C Ay
meéme. Elle est exprimée par le rapport m = X2 ou
Ax est un accroissement selon I'axe Ox et Ay 'ac-
croissement correspondant selon 'axe Oy. On l'ex-
prime généralement par un nombre sans unité et pas

en %.

Méthode de calcul de la pente

On choisit arbitrairement deux points A(z;y;) et
B(xs;y2) sur la représentation graphique de la droite
dont on désire déterminer la pente. On détermine
ensuite la différence des abscisses des deux points,
Ax = x9 — x1, et la différence des ordonnées, Ay =
Yo — y1. La pente est alors donnée par le quotient :

m

Ay  ya—u y=mx+h
== 15.1
m Az To — I ( )

Ce quotient est indépendant du choix de A et B.
L’angle a entre 'axe Ox et la droite peut facilement étre déterminé a I’aide de la pente
et de 1’égalité :

tan(a) = m
Cette égalité découle directement de la définition de la pente et de la définition de la
tangente dans un triangle rectangle.
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La pente m d’une fonction affine f(x) = mx + h détermine donc I'inclinaison de la droite
d’équation y = max + h et la croissance ou la décroissance de f :

— si la pente est positive (m > 0), la fonction affine est croissante.

— si la pente est négative (m < 0), la fonction affine est décroissante.

En résumé : sur la représentation graphique, lorsqu’on se déplace de 1 horizonta-
lement dans la direction de 'axe Oz, on monte d'une hauteur égale a m selon 1'axe
Oy si m est positif, ou on descend d’'une hauteur égale a |m| si m est négatif.

Exemple

On a représenté ci-contre la fonction affine f(x) =
—2x + 2. Par définition, la pente de la droite
représentant f est égale a —2 et ["ordonnée a [’ori-
gine a 2.

L’abscisse du point d’intersection entre la droite et
l’aze Ox est donnée par : xg = —_% =1.

On peut vérifier que la pente de la droite est égale
a —2. On choisit, par exemple, les points A(—1;4)

2 Y:_%H
T «
1 x

12 3 4 5

et B(3;—4) et on obtient, par la formule (15.1), _; 1
que : " 1 Lo
- 9 B
T3 (O
L’angle entre l'axe Ox et la droite vaut : a = arctan(—2) = —63,43°.

15.2.2 Représentation graphique a partir de I’expression fonc-

tionnelle

On peut mettre en oeuvre la méthode suivante pour dessiner, dans un repere cartésien,
la représentation graphique d’une fonction affine définie par f(x) = mz + h.

Méthode

1. Choisir deux valeurs z; et x».
Calculer f(x1) et f(x2).

la droite passant par ces deux points.

3. Reporter dans le repere cartésien les points (zy; f(x1)) et (z2; f(22)) puis tracer

Exemple
Soit la fonction affine f(x) = —x + 2.

On choisit arbitrairement x1 = 0 et x9 = 2.

Ona :

fle)) = —1-21742=-1-0+2=2
flzs) = —1loz942=-1-242=0

La droite passe donc par les points A(0;2) et B(2;0).

On obtient alors la représentation graphique ci-contre.
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15.2.3 Expression fonctionnelle a partir de la représentation
graphique
On peut mettre en oeuvre la méthode suivante pour déterminer I’expression fonctionnelle

d’'une fonction affine f a partir de sa représentation graphique ou, plus exactement, a
partir de deux points de son graphe.

On sait que la fonction affine f est de la forme f(z) = max + h. Pour obtenir I'expression
fonctionnelle de f, on doit donc déterminer les coefficients m et h.

Méthode

1. Choisir deux points A(z1;y;) et B(xa;y2) du graphe de f.

2. Calculer la pente m en utilisant la formule (15.1).

3. Déterminer h en résolvant I’équation a une inconnue y; = m - 1 + h.

Exemple

On donne ci-dessous la représentation graphique d’une fonction affine f.

= T

);(12345678

Les points A(3;1) et B(7;3) appartiennent au graphe de f.
3—1 1
La pente de la droite est donnée par : m = 373
Comme A(3;1) est un point du graphe, h est la solution de ’équation : 1 = %-3+h.
En résolvant cette derniere, on trouve h = —%.

L’expression fonctionnelle de f est donc : f(x) = 5 -z —

15.2.4 Intersection des graphes de deux fonctions affines

Soit deux fonctions affines f(z) et g(z). Pour déterminer I'intersection des graphes de ces
deux fonctions, on peut mettre en oeuvre la méthode suivante.

1. Résoudre I'équation f(x) = g(x) & une inconnue z. La solution xy de cette
équation correspond a l’abscisse du point d’intersection I des graphes de f et
de g.

2. Calculer yo = f(x0) (= g(z0)), 'ordonnée du point d’intersection.

Cette méthode permet ainsi de déterminer complétement le point d’intersection I(z; o).

On a supposé ci-dessus que ’équation f(x) = g(x) possede une seule solution. En
"réalité”, cette équation possede :
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— une unique solution si les droites représentant les graphes de f et g sont sécantes
(un seul point d’intersection);

— aucune solution si ces deux droites sont paralléles (aucun point d’intersection);

— une infinité de solutions si ces deux droites sont confondues (infinité de points
d’intersection).

Remarques

1. La méthode de résolution proposée ci-dessus est équivalente a la méthode qui consis-
terait a résoudre le systeme de deux équations a deux inconnues x et y suivant :

{y = f(2)

y = g(x)

2. On peut également appliquer la méthode proposée ci-dessus pour déterminer le ou les
points d’intersection des graphes de deux fonctions réels f et g, méme si ces dernieres
ne sont pas affines.

Exemple

Les graphes des fonctions f(x) =2z — 2 et g(x) = —x + 2 sont donnés ci-dessous.

Ces graphes se coupent en un point I.

L’abscisse de ce point est la solution de [’équation :

20 —2 = —x+2
3r = 4
4
Trg = g

L’ordonnée de I est alors l'image de 3 par f oug :yo= f(53)=2-3—2=

On obtient finalement le point : I(%; %)

15.3 Fonction linéaire

Définition 15.3
La fonction définie par

f: R — R
r — y=mx

ol m est un nombre réel, est appelée fonction linéaire.
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Remarque

Une fonction linéaire est une fonction affine particuliere ot 'ordonnée a 'origine vaut 0.

La représentation graphique, dans un repere
cartésien, de la fonction linéaire définie par
f(x) = maz est une droite passant par
I’origine et dont I'inclinaison dépend du pa- Yy =mz
rametre m.

On donne ci-contre la représentation gra-
phique d’une fonction linéaire avec une pente
m positive.

Exemple

On suppose qu’un litre d’essence cotute 1.70 francs. Le prix a payer pour une quantité
de x litres d’essence est donné par la fonction linéaire suivante :

plr) =17z

Proposition 15.1
Soit une fonction linéaire f et x1, 29, A € R. Les égalités suivantes sont alors satisfaites :

L f(z1+22) = f(z1) + f(22)
2. fAz) =X f()

Démonstration. Soit une fonction affine f(x) = mz et x1,x2, A € R.
1. A voir : f(x; + x2) = f(x1) + f(22).

Comme f(x) = m-x, on a, d’apres la distributivité de la multiplication sur I’addition :
f(r1+29) =m- (x1+x2) = (m-21) + (M- 22) = f(21) + f(22)

2. A voir : f(A-x1) =X f(z1)

Comme f(z) =m -z, on a, d’apres l'associativité et la commutativité de la multipli-
cation :

Remarque

Attention, ces propriétés sont souvent utilisées a tort pour des fonctions qui ne sont
pas linéaires. Par exemple, on voit souvent les erreurs suivantes : sin(3z) = 3sin(x) ou

VT =T+l

Ces propriétés ne doivent étre utilisées que pour des fonctions linéaires!
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15.4 Fonctions constantes

Définition 15.4
La fonction définie par

f: R
x

— R
— y=nh

ou h est un nombre réel, est appelée fonction constante.

Remarque

Une fonction linéaire est une fonction affine particuliere ou la pente vaut 0.

La représentation graphique, dans un repere Y
cartésien, de la fonction affine définie par

f(x) = h est une droite horizontale passant h
par le point (0; h). y=nh

On donne ci-contre la représentation gra- z
phique d’une fonction constante avec une or-
donnée a l'origine h positive.

Exemple

On suppose qu’un opérateur de téléphonie facture 0.70 francs la communication a
ses clients. Le priz a payer a cet opérateur pour une communication de t minutes
est donnée par la fonction constante suivante :

p(t) =0.7
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Chapitre 16

Fonctions quadratiques

16.1 Définition

Définition 16.1
La fonction définie par
f: R — R
r — y=ax’+br+c

ou a, b et ¢ sont des nombres réels et a # 0, est appelée fonction quadratique ou
fonction du deuxieme degré.

Exemple

Un corps en chute libre, laché avec une vitesse initiale égale a 2 [m/s|, parcourt en
t secondes la distance s(t) donnée en métre par

s(t) = gﬁ 42t

ot g = 9.81 [m/s?|, Uaccélération terrestre.

La fonction s(t) est une fonction quadratique otva =%, b =2 et c=0.

16.2 Représentations graphiques

La représentation graphique, dans un repere cartésien, de la fonction quadratique définie
par f(x) = axz® + bx + c est une parabole passant par le point (0; ) et dont I'orientation
dépend du parametre a.

On donne ci-dessous les représentations graphiques de deux fonctions quadratiques avec
un coefficient a positif, a gauche, ou négatif, a droite.
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Ake de symétrie

a>0 a<o0
Y Y
i |
: : Ake de symétrie
| S
[ | c
! |
: y=ax?+bxr+c T : \1’2
T x T T
1 [ /1’2 | y=azx?+br+c
' |
| s |
[
[
[
[
|

16.2.1 Quelques caractéristiques de la représentation graphique
Zéro(s) de la fonction

La ou les abscisses x1 et x5 du ou des points d’intersection de la parabole représentant
la fonction f(x) = ax?® + bx + c et de 'axe Oz sont les zéros de f.

Le nombre de zéros et donc de points de coupe avec 'axe Oz est donné par le signe de
A = b* — 4ac :

— st A>0: f possede 2 zéros (2 points de coupe);
— st A=0: f possede 1 zéro (1 point de coupe);
— si A <0 : f ne possede pas de zéro (0 point de coupe).

Les zéros de f, si A > 0, sont donnés par :

b+ VA

T2 =
’ 2a

Coefficient ¢

Le coefficient ¢ est égal a I’'ordonnée du point d’intersection entre la parabole représentant
f et laxe Oy car f(0)=a-0>+b-0+c=c.
On appelle également ce coefficient ’'ordonnée a I’origine.

Coefficient a
Le coefficient a détermine 1’écartement et 1'orientation de la parabole :

— sia > 0 : la parabole est ouverte vers le haut ;
— si a < 0 : la parabole est ouverte vers le bas.

a <0, |a|] grande | a < 0, |a| petite | a > 0, |a| petite | a > 0, |a| grande

N

~_
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Position de la parabole par rapport a ’axe Ox

La position de la parabole représentant la fonction f(x) = ax?® + bx + ¢ par rapport a
'axe Oz dépend uniquement de la valeur du coefficient a et de la valeur de A = b? —4ac :

A>0 A=0 A<O0
a>0 \ / \\/
|
xl\/$2 !E1;!E2
ZL‘ll/_\LL’Q xlTxQ

Sommet

Définition 16.2
Le sommet S d’une parabole est :

— le point le plus bas (d’ordonnée minimale) de la courbe si elle est ouverte vers le haut ;
— le point le plus élevé (d’ordonnée maximale) de la courbe si elle est ouverte vers le bas.

Pour déterminer les coordonnées du sommet S d’une parabole représentant la fonction
quadratique f(z) = az? + bx + ¢ (avec a # 0), on transforme tout d’abord I’expression
fonctionnelle de f :

ar’+br+c = a(@®+22+5) = a((z+L)°— (L) +59)

b\2 _ b2—4 b\2 b4
= a ((SL’ + %) — 4a2ac) = CL(I' -+ %) — 4aac
En posant p = —% et ¢ = —bQZj“C, I’expression fonctionnelle de la fonction quadratique

f peut s’écrire :
f(z) = a(z —p)*+q

, la parabole est ouverte vers le haut et le sommet est le point d’ordonnée
minimale. Or, Vo € R, 'expression a - (z — p)? est positive ou nulle (produit d’un nombre
positif et d’'un nombre positif ou nul) et ¢ est un nombre (constant). Ainsi, on obtient
que :

fx)=alz —p)’+q=>q

La valeur minimale de f est donc ¢ et elle est atteinte pour x = p. De plus, comme
f(p) = q, les coordonnées du sommet sont S = (p; q).

, la parabole est ouverte vers le bas et le sommet est le point d’ordonnée maxi-
male. Or, Vo € R, 'expression a - (z — p)? est négative ou nulle (produit d’un nombre
négatif et d’'un nombre positif ou nul). Ainsi, on obtient que :

fl@)=alz—p)*+q<q
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La valeur maximale de f est donc ¢ et elle est atteinte pour x = p. Les coordonnées du
sommet sont donc également S = (p; q).

En conclusion, quelque soit la valeur de a, le sommet de la parabole représentant f est
le point :

S=(—%:f(-%))

Axe de symétrie

La parabole représentant la fonction f(x) = ax?® + bx + ¢ posséde un axe de symétrie
d’équation :

Autrement dit, Vk € R, on a ’égalité :

ok +h) = f(=& —F)

b2—

Démonstration. En posant p = —%, q= —% et en utilisant ’expression fonctionnelle

équivalente f(z) = a(x — p)® + ¢ , on a les égalités suivantes :

flp+k) = alp+k—pP’+q = a-k*+q

fo—k) = ap—k—p)P’+q = a-(=k)’+q = a-k +q
Ainsi, f(p+ k) = f(p— k). O

16.2.2 Représentation graphique a partir de I’expression fonc-
tionnelle

On peut mettre en oeuvre la méthode suivante pour dessiner, dans un repere cartésien,
la représentation graphique d’une fonction quadratique définie par f(x) = ax?® + bx + c.

Méthode

1. Déterminer le ou les zéros de f en résolvant I’équation f(z) = 0 — on obtient
les points de la forme (z;;0) du graphe.

2. Calculer les coordonnées du sommet S de la parabole : S (—; f(—L)).

Calculer quelques couples (z; f(x)) du graphe de f en choisissant x dans R.

w

4. Dessiner sous la forme d’un trait discontinu, dans le repere cartésien, I'axe de
symétrie verticale d’équation x = —%.

5. Reporter, dans le repere cartésien, les points correspondant aux zéros de f, le
sommet de la parabole, le point (0;¢) et les points du graphe calculés en 3 et
dessiner les points symétriques correspondants (par rapport a I’axe représenté

en 4).

6. Relier les points dessinés dans le plan Oxy de sorte a obtenir une parabole.
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Exemple

Soit la fonction quadratique f(x) = 3a? —x — 4.

On détermine tout d’abord les deux zéros de f (comme A = (=1)*> —4-1.(—4) =

9=23%):
1-3 1+3
Ir = 1:—2 et To = +1 =4
2.1 2.1
Comme —21 = —;—i =1, les coordonnées du sommet sont données par :
2

S= (1L f(1) = (1;-) i

On calcule ensuite quelques points du graphe :

(2 £(2) = (Z-4) 5 (5:/(5)) = (5:5) 3 -

L’équation de l'axe de symétrie est : x = 1.

On reporte ensuite ces informations dans un
repere cartésien pour obtenir la représentation
graphique ci-contre.

16.3 Optimum d’une fonction quadratique

Comme la représentation graphique de f(z) = az?+bx +c, pour a # 0, est une parabole,
on peut utiliser 'ordonnée du sommet, f (—%) pour déterminer le maximum ou le mini-
mum d’une fonction quadratique. En effet, puisque la parabole est ouverte vers le bas si
a < 0, et vers le haut si a > 0, cette valeur de la fonction est respectivement le maximum
ou le minimum de f. On peut résumer ceci par le théoreme suivant.

Théoréme 16.1

Si f(z) = ax? 4+ br + ¢, ot a # 0, alors f(—2L) est :
1. le maximum de f si a < 0,

2. le minimum de f si a > 0.

On va utiliser ce théoreme dans I’exemple suivant.

Exemple

On dispose de 288 m de cloture grillagée pour construire 6 enclos pour un zoo selon
le plan ci-dessous. On aimerait déterminer les dimensions a donner a ces enclos
de maniere a maximiser leur surface au sol.

d

<L
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Sur ce dessin, on définit deux variables :
— x : la largeur d’un enclos

-y : la longueur d’un enclos

L’aire au sol est donnée par :

Aire = 3z - 2y

Or, comme on n’a a disposition que 288 m de cloture, il existe un lien entre x et y
donné par l'équation :
92 + 8y = 288

En transformant un peu cette équation, on obtient que y = @. On peut alors

exprimer l’aire uniquement en fonction de x. On définit ainsi une fonction
A(x) donnée par

288 — 9 27
VO 9160 — Za?

Alx) =3z -2
(r) =3z 3 1

On doit maintenant déterminer le maximum de cette fonction. Comme c’est une
fonction du deuziéme degré, on sait que la deuziéeme coordonnée du sommet donnera
le mazimum (le coefficient devant x* est négatif ) et que la premiére coordonnée sera
la largeur qui produira ce maximum.

La premiere coordonnée du sommet est donnée par s1 = Tpmae = —2.(2_127) =16 et
T

la deuziéme par sy = A(16) = 1728.

La longueur qui correspond a une largeur de 16 m est : Ymaz = w = 18.

Un enclos a donc comme dimension 16 m x 18 m et la surface totale recouverte
est de 1728 m.
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16.4 Exercices

1) On veut faire une gouttiere avec une longue feuille de métal de 12 ¢m de large en pliant
les deux cotés et en les relevant perpendiculairement a la feuille. Quelles doivent étre
les cotés relevés pour que la gouttiere ait une contenance maximale ?

2) Utilisons la formule de la chute libre en physique : y(t) = yo + vy 0t — % gyt? ol Yo, vy 0
et g, sont des nombres réels connus.
En lancant un objet avec une vitesse initiale de v, = 30 m/s depuis une hauteur
Yo = 0 m (on considére que g, = 10 m/s?),

a) combien de temps mettra 1'objet pour atteindre sa hauteur maximale ?

b)

¢) combien de temps mettra I'objet pour toucher & nouveau le sol ?
)

d

quelle sera la hauteur maximale atteinte par I'objet ?

combien de temps mettra ’objet pour atteindre 30 m ?

3) Une compagnie de cable-opérateur dessert actuellement la région. Imaginons que 5000
foyers sont desservis, chacun payant 20.- par mois. Une étude de marché indique que
chaque diminution de 1.- amene 500 nouveaux clients.

a) Déterminer la fonction R(x), revenu total quand le prix est de z.-.

b) Déterminer la valeur de z qui donne le revenu mensuel maximal.

4) Dans une forét, la population de souris varie en fonction du nombre = de hiboux qui
s’y trouvent. Le garde forestier estime que la population de souris est donnée par la
fonction suivante :

1,2 15
P(r)=—52°+ 7o + 3
a) Quelle est la population de souris lorsque 5 hiboux vivent dans la forét ?

b) Pour quel nombre de hiboux la population de souris est-elle la plus grande ? Quel
est alors le nombre de souris ?

¢) Pour quel nombre de hiboux les souris disparaissent-elles 7

5) Une entreprise produit des pieces métalliques pour les voitures. Le cout de production
journalier varie en fonction du nombre x de pieces produites, il est donné par la
fonction suivante :

_ 1,2
C(z) = 15z~ — 10z + 1500
a) Quel est le cout de production pour une quantité de 20 pieces par jour ?

b) Pour quel nombre de pieces le cout de production journalier est-il le plus bas? Quel
est alors ce cout ?

¢) Pour quelle quantité de pieces le cotit est-il égal a 1’610 CHF 7

d) Quel est le cott lorsque la production est arrétée ?

6) Une entreprise lance sur le marché un nouveau produit. Elle prévoit que son bénéfice
B, en millions de francs, évoluera dans le temps suivant la courbe donnée par I’équation

B(t) = —t* + 4.8t —2.76  ol1 t est exprimé en année.

a) Calculer dans combien de temps le bénéfice sera maximum et quel sera-t-il 7
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b) Trouver quand le bénéfice sera exactement de 2 millions, en déduire le nombre de

mois pendant lesquels le bénéfice sera supérieur a 2 millions.

7) Une société immobiliere possede un certain nombre d’appartements dont les loyers
sont tous identiques (z francs par loyer). La société estime que les loyers engendrent
un revenu mensuel (R(x), en francs) donné par la fonction suivante :

R(z) = 280z — +a°

Calculer le revenu mensuel lorsque le loyer est fixé a 1200 francs.
Pour quel loyer le revenu est-il maximum, et que vaut-il dans ce cas?

Représenter graphiquement la fonction R.
Unité sur Oz : 2 carreaux pour 200 fr., sur Oy : 2 carreaux pour 20’000 fr.

Pour quels loyers le revenu est-il égal a 187’000 francs ?
Résoudre cette question :  a) par graphique b) par l'algebre

La société immobiliere considere que les couts (C(z), en francs) administratifs,
d’investissement et autres charges peuvent étre estimés mensuellement par la fonc-
tion C'(x) = 180’000 — 10z. Déterminer, par calculs, les valeurs x du loyer pour
lesquelles la gérance de ces appartements est rentable.
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16.5 Solutions des exercices

1) 3em

2)

a)

34+3 s

R(z) = 15000z — 50022
r =15

30 souris
7 hiboux pour 32 souris

15 hiboux

1340.— CHF

50 pieces pour un cout de 1250.— CHF
110 pieces

1’500.— CHF

Au bout de 2,4 ans, le bénéfice sera de 3 millions

Au bout de 1,4 ans ou 3,4 ans. B(z) est > 2 millions pendant 24 mois.

192’000 CHF

1’400 CHF

1’100 CHF ou 1’700 CHF
entre 900 et 2000 CHF
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Chapitre 17

Fonctions polynomes et rationnelles

17.1 Fonctions polynomes

17.1.1 Définition

Définition 17.1
La fonction définie par

f: R — R

T Y=t F Ay 12" F ap 0"+ a0 + iz + ag

oun €N, a, € Reta, # 0, est appelée fonction polynéme de degré n ou, plus
simplement, polynome de degré n.

Le nombre a; est appelé le coefficient de rang i de f(x) et a, le coefficient dominant.

Exemples
1) La fonction définie par f(x) = 5x3 — 42® — 5x + 3 est une fonction polynéome de
degré 3. Le coefficient dominant est az3 = 5.

2) La fonction définie par g(x) = —6x% — 425 — 222 + 2 est une fonction polynome
de degré 6. Le coefficient dominant est ag = —6.

3) La fonction définie par h(x) = 42> —3z+1 est une fonction polynéme de degré 2.
On lappelle également fonction quadratique. Le coefficient dominant est as = 4.

4) La fonction définie par i(x) = =9z + 3 est une fonction polynome de degré 1.
On Uappelle également fonction affine. Le coefficient dominant est a3 = —9.

17.1.2 Représentations graphiques
Degré n impair

On donne ci-dessous les représentations graphiques de deux fonctions polynomes de degré
3 avec un coefficient dominant as positif, a gauche, ou négatif, a droite.

La forme générale, notamment le comportement a 'infini, de la représentation graphique
d’une fonction polynoéme de degré n impair ressemble a celles données en exemple ci-
dessous.
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Y

Qo

\

Zy $2\/$3

y=a3x3—|—...—|—a0

Degré n pair

Y

y:a3x3+...+a0

T $2/\$3
x

[

0

On donne ci-dessous les représentations graphiques de deux fonctions polynomes de degré
4 avec un coefficient dominant a4 positif, a gauche, ou négatif, a droite.

La forme générale, notamment le comportement a l'infini, de la représentation graphique
d’une fonction polynéme de degré n pair ressemble a celles données en exemple ci-dessous.

Y

Y

T /\:vz T3 T4
xXr

Qo

Quelques caractéristiques de la représentation graphique

Zéro(s) de la fonction

La ou les abscisses z; (0 < ¢
la fonction polynéme f(x)
zéros de f.

< n) du ou des points d’intersection de la courbe représentant
= 2" + Q12"+ ...+ ax + ag et de 'axe Oz sont les

Le nombre de zéros et donc de points de coupe avec 'axe Ox est inférieur ou égal au
degré n. Pour les déterminer, on peut utiliser la méthode de résolution des équations
polynomiales étudiée précédemment dans le chapitre (2.5) (recherche d’un zéro par essais
successifs puis division a 'aide du schéma de Horner .. .)
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Coefficient ag

Le coefficient ag est égal a 'ordonnée du point d’intersection entre la courbe représentant
f et I'axe Oy.

Ce coeflicient est également appelé 'ordonnée a l’origine.

Coefficient dominant a,,

Le coefficient a,, détermine 'orientation de la courbe représentant f. On doit différencier
ici les cas ol n est pair de ceux ol n est impair.

Pour un degré n impair, on observe que

— si a, > 0 : la courbe représentant f est au-dessous de 'axe Ox pour des valeurs de
x suffisamment petites et au-dessus de 'axe Ox pour des valeurs de x suffisamment
grandes.

— si a < 0 : la courbe représentant f est au-dessus de I'axe Ox pour des valeurs de x
suffisamment petites et au-dessous de 'axe Ox pour des valeurs de x suffisamment
grandes.

Pour un degré n pair, on observe que

— sia, > 0:la courbe représentant f est ouverte vers le haut, ¢’est-a-dire que celle-ci se
trouve au-dessus de 'axe Ox pour des valeurs de x suffisamment grandes ou petites.

— si a < 0 : la courbe représentant f est ouverte vers le bas, c¢’est-a-dire que celle-ci se
trouve au-dessous de ’axe Ox pour des valeurs de x suffisamment grandes ou petites.

Esquisse de la représentation graphique a partir de ’expression fonctionnelle

On peut suivre la méthode de représentation ” générale” étudiée au chapitre (14.3.1) pour
dessiner, dans un repéere cartésien, le graphe d’une fonction polynome.

Par contre, si on ne desire pas obtenir un dessin "tres” précis, on peut utiliser les
éléments caractéristiques de la représentation graphique d’une fonction polynéome définie
par f(z) = ap,2™ +an_ 12" 4. ..+ a1z + ag (zéros, coefficient aq et coefficient dominant)
pour 'esquisser, en s’aidant éventuellement d’'un tableau donnant le signe de I'image de
chaque valeur possible de z.

Méthode

1. Déterminer le ou les zéros de f en résolvant I’équation f(x) = 0 — on obtient
les points de la forme (z;;0) du graphe.

2. Etudier le signe de la fonction dans un tableau de signes (voir le chapitre (5)
portant sur les inéquations).

3. Reporter, dans le repere cartésien, les points correspondant aux zéros de f et
le point (0; ayp).

4. Relier les points dessinés dans le plan Oxy de sorte a respecter les informations

données par le tableau de signes : si f(z) > 0 la courbe est au-dessus de 'axe
Ozx et si f(z) < 0 la courbe est au-dessous de I'axe Oz.
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Exemple

Soit la fonction polynéome de degré 3 donnée par f(x) = + 2° — 4z — 4.
On détermine tout d’abord les trois zéros de f en résolvant I’équation polynomiale
3+ 2% —4x —4 =0 (voir le chapitre (2.5.3) pour la résolution compléte) :

1'1:—2; 1'2:—1; 1'3:2

On construit ensuite le tableau de signes de f en remarquant qu’on peut factoriser
Uexpression fonctionnelle de f : f(z) = (x4 2)(x + 1)(z — 2).

x —2 -1 2
x4+ 2 — 0 + + + + +
v+ 1 — — - 0 + + +
T —2 - - - - B 0 +
/(@) S N N U A L
Position en-dessous en-dessus en-dessous en-dessus
courbe / aze

On reporte enfin les points (—2;0), (—1;0), (2;0) et (0; —4) dans un repére cartésien
et on les relie en tenant compte de la position de la courbe par rapport a l'axe Ox
donnée dans le tableau de signes.

y = f(z)

£ 0)

(=2 0)/\(*1
(2;0)
(0; —4)

17.2 Fonctions rationnelles

17.2.1 Définition

Définition 17.2
La fonction définie par
f: R\{zeR|q(zx)=0} — R
. = p(z)
q(x)

ou p(z) et g(r) sont des polynomes, est appelée fonction rationnelle.
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Remarques

1. L’ensemble de définition Dy d’une fonction rationnelle comprend toutes les valeurs
réelles de z sauf celles qui annulent le dénominateur g(x).

2. L’ensemble des zéros d'une fonction rationnelle est donné par I’ensemble des zéros du
polynéme p(x) qui ne sont pas des zéros de q(z) : {z € R | p(z) =0 et g(z) # 0}

Exemples

1
1) La fonction définie par f(x) =
l’ p—

comme ensemble de définition Dy = R\ {2}. Cette fonction n’admet pas de zéro
(car 1 #0).
a3 —
2) La fonction définie par g(x) = P
comme ensemble de définition D, = R. L’ensemble des zéros de cette fonction
est l'ensemble : {~/8} (solution de x> —8 =0).
2

5 est une fonction rationnelle qui admet

est une fonction rationnelle qui admet

8) La fonction définie par h(z) = —
l’ —

comme ensemble de définition D, = R\ {—2;2}. L’ensemble des zéros de cette
fonction est l’ensemble : {0} (solution de x*> =0).

1 est une fonction rationnelle qui admet

Son graphe est représenté ci-contre.

On remarque que, quand x prend des va-
leurs arbitrairement grandes ou petites (on
dit que z tend vers £00), la courbe se rap-
proche de de la droite horizontale y = 1.
Cette droite est appelée asymptote hori-
zontale (voir ci-dessous).

De maniére analogue, les droites x = 2
et ©x = —2 sont appelées asymptotes verti-
cales.

Nous étudierons plus largement les représentations graphiques de fonctions rationnelles
quelconques (voir chapitre suivant pour un cas particulier) dans le cours de deuxiéme
année lorsque nous aurons a disposition certains outils d’analyse : limites, dérivées, ... De
plus, les notions d’asymptote verticale et horizontale seront introduites de maniere précise
et détaillée dans ce cours. Pour 'instant, on donne uniquement ci-dessous une premiere
idée de définition de ces deux notions en utilisant les notations suivantes :

e r—a (ou f(xz) —a) : x (respectivement f(z)) tend vers (s’approche
de) a,

e r—+oo (ou f(x) = 400): =z (respectivement f(x)) prend des valeurs posi-
tives arbitrairement grandes,

e r— —oo (ou f(r) — —o0): x (respectivement f(z)) prend des valeurs néga-
tives arbitrairement petites.

Les symboles +oo (plus infini) et —oo (moins infini) ne représentent pas des nombres
réels; ils précisent simplement certains types de comportement des variables et des fonc-
tions.
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Définition 17.3
La droite z = a est une asymptote verticale pour la représentation graphique de la
fonction f si
f(z) > 400 ou f(x) = —o0
lorsque x tend vers (s’approche de) a par la gauche (par des valeurs inférieures a a) ou

par la droite (par des valeurs supérieures a a).

La droite y = ¢ est une asymptote horizontale pour la représentation graphique de la
fonction f si

f(z) = ¢

lorsque x — +00 ou © — —o0.

Remarques

1. On représentera généralement les asymptotes en "traitillés”.

2. La notation f(x) — ¢ lorsque © — +00 (ou x — —o0) se lie 7 f(x) tend vers ¢ lorsque
x tend vers plus 'infini” (respectivement vers moins I'infini).

3. Sia est un zéro du dénominateur d’une fonction rationnelle f, alors il est possible que
le graphique de f ait une asymptote verticale en x = a. Il y a des fonctions rationnelles
pour lesquelles ce n’est pas le cas. Si le numérateur et le dénominateur n’ont pas de
facteur commun, alors f admet une asymptote verticale en z = a.

17.2.2 Fonctions homographiques

Définition 17.4
Une fonction homographique est une fonction rationnelle dont le numérateur est une
constante ou un polynome de degré un et le dénominateur un polynome de degré un.

Plus précisément, une fonction homographique est définie par

fr R\{-9} — R
ar +b

— =
o y cr +d

ou a, b, c et d sont des nombres réels tels que ¢ # 0 et ad — bc # 0.

Remarques

1. La condition ad — bc # 0 implique, entre autres, qu'une fonction homographique est
une fonction injective.

2. Sion restreint I’ensemble d’arrivée d’une fonction homographique f a ’ensemble image
de la fonction R\ {2}, la fonction f est alors une fonction surjective.

Exemple
4o —

3r —
comme ensemble de définition Dy =R\ {2}.

La fonction définie par f(x) =

est une fonction homographique qui admet
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Représentations graphiques

La représentation graphique, dans un repere cartésien, de la fonction homographique

définie par f(zr) = Z;EIS est une hyperbole (équilatere) passant par le point (0;3) (si

d # 0) et dont 'orientation dépend du nombre ad — be.

On donne ci-dessous les représentations graphiques de deux fonctions homographiques
avec ad — bc positif, a gauche, ou négatif, a droite.

) )

— a
y= c C
Rl— | ==
X X
T
axr+b
Y= cx+d

Quelques caractéristiques de la représentation graphique

Zéro de la fonction : L’abscisse x; du point d’intersection de ’hyperbole représentant

la fonction f(x) = ggfig et de 'axe Ox est le zérode f : x;y = —— si a # 0.
a

Asymptote verticale : La représentation graphique de f admet une asymptote verti-

cale d’équation r = ——.
c

Asymptote horizontale : La représentation graphique de f admet une asymptote
horizontale d’équation y = —.
c

. . a . . .
Symétrie : Le point C' | ——; —) (le point d’intersection des deux asymptotes) est le
¢ c

centre de symétrie de ’hyperbole représentant la fonction f.

Représentation graphique a partir de I’expression fonctionnelle

On peut mettre en oeuvre la méthode suivante pour dessiner, dans un repere cartésien,

, . . 5 . . , . b
la représentation graphique d’une fonction homographique définie par f(x) = %.

Méthode

1. Déterminer le zéro de f en résolvant ’équation ax + b = 0 — on obtient le
point (—2;0) du graphe (si a # 0).
2. Déterminer les coordonnées du point d’intersection de I’hyperbole avec ’axe

Oy : (0:£(0)) = (0:2) (si d #0).
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3. Calculer quelques couples (z; f(x)) du graphe de f en choisissant = dans le
domaine de définition : R\ {—4}.

4. Déterminer l'orientation de I'’hyperbole en calculant le nombre ad — bc —

-si ad—bc > 0, la ”"branche gauche” de I'hyperbole est au-dessus de 'asymptote
horizontale et la ”branche droite” au-dessous,

- si ad —bc < 0, la "branche gauche” de I’hyperbole est au-dessous de I'asymp-
tote horizontale et la ”branche droite” au-dessus.

5. Dessiner sous la forme d’un trait discontinu, dans le repere cartésien, I’asymp-

tote horizontale d’équation y = % et 'asymptote verticale d’équation x = —%.

6. Reporter, dans le repere cartésien, les points du graphe calculés en 1, 2 et 3 et
dessiner (éventuellement) les points symétriques correspondants (par rapport
au centre de symétrie C(—2;2)).

7. Relier les points dessinés dans le plan Oxy de sorte a obtenir une hyperbole
d’orientation déterminée en 4.

Exemple

z—3

2a+4°

On détermine tout d’abord le zéro de f, x1 = 3 (solution de x —3 =0), et le point

d’intersection avec Uaze des ordonnées, (0;—32).

On calcule ensuite quelques points du graphe :

(=3 f(=3)) = (=3;3) ; (=L f(-1)) = (=1;=2) 5 (L; f(1)=(L,—35); ...

Comme ad —bc=1-4—(=3)-2=10 > 0, la “branche gauche” de I’hyperbole est
au-dessus de l'asymptote horizontale et la "branche droite” au-dessous.

Soit la fonction homographique f(x) =

L’équation de ’asymptote horizontale est y = % et l’équation de [’asymptote verti-
cale v = —2.

On reporte ensuite ces informations dans un repére cartésien pour obtenir la
représentation graphique ci-dessous.

e G 11() e S
!/é/g 4 5 6 7 é 51.0 1.1 X
[ (0;+2)
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Chapitre 18

Fonctions puissances et racines

18.1 Fonctions puissances

18.1.1 Définition

Définition 18.1 (Rappel)
Un nombre a multiplié n fois par lui-méme, g-a-...-a, est appelé puissance n-eme
N—_—

a apparait n fois

de a et est noté a”. On dit également “a élevé a la puissance n” ou plus rapidement "a
puissance n”. Dans I’écriture a™, on appelle a la base et n 'exposant.

Exemple

D’apres cette définition, on peut écrire : 3-3-3-3-3-3 = 3.

W
3 apparait 6 fois

Définition 18.2
La fonction définie par

f: R — R
r — y=2a"
oun € N* (fixe), est appelée fonction puissance n-eme.

Exemple
1) La fonction définie par f(x) = x* est la fonction puissance 4-éme.

2) La fonction définie par f(x) = 27 est la fonction puissance T-éme.

18.1.2 Représentations graphiques et caractéristiques
Exposant n pair

On donne ci-dessous les représentations graphiques des fonctions puissances 2-eme (en
rouge) et 4-eme (en bleu).

La forme générale de la représentation graphique d’une fonction puissance d’exposant n
pair ressemble a celles données en exemple.
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-4 -3 =2 -1 1 2 3 4
—

Quelques caractéristiques de la fonction puissance n-eme pour un exposant n pair :

1) Symétrie : La représentation graphique de la fonction f(z) = 2" admet une symé-
trie axiale par rapport a l’axe des ordonnées car (—z)" = z", Va € R. Cette fonction
est donc une fonction paire (car f(—x) = f(x)).

2) Forme : On peut remarquer que, plus I'exposant n est petit, plus la courbe représen-
tant la fonction f ”s’éloigne” rapidement de 'axe Oy quand x augmente (x > 0)
ou diminue (z < 0), qu’elle passe par les points (0;0) (0 est le zéro de f) et (1;1),
et qu’elle est toujours au-dessus de 'axe des abscisses (f(x) > 0 Vz € R).

3) Bijection : La fonction f(x) = 2" n’est ni injective, ni surjective de R dans R. Par
contre en transformant les ensembles de départ et d’arrivée (réduction), on peut
obtenir une fonction bijective. En effet, f(z) = 2™ est bijective de R, dans R,.

Exposant n impair

On donne ci-dessous les représentations graphiques des fonctions puissances 1-eme (en
vert ; fonction linéaire de pente 1), 3-eme (en rouge) et 5-eme (en bleu).

La forme générale de la représentation graphique d’une fonction puissance d’exposant n
impair ressemble a celles données en exemple.
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Quelques caractéristiques de la fonction puissance n-eme pour un exposant n impair :

1) Symétrie : La représentation graphique de la fonction f(z) = 2" admet une symé-
trie centrale de centre O car (—z)" = —z", Vz € R. Cette fonction est donc une
fonction impaire (car f(—z) = —f(x)).

2) Forme : On peut remarquer que, plus I'exposant n est petit, plus la courbe représen-
tant la fonction f ”s’éloigne” rapidement de 'axe Oy quand x augmente (x > 0)
ou diminue (z < 0), qu’elle passe par les points (0;0) (0 est le zéro de f) et (1;1),
et qu'elle est au-dessus de I'axe des abscisses pour z > 0 (f(z) > 0 Vo € RY) et
au-dessous pour z < 0 (f(z) <0 Vx € R*).

3) Bijection : La fonction f(z) = 2" est bijective de R dans R.

Remarque

Selon ce qui précede, la fonction puissance n-emef(z) = 2 avec n € N* (pair ou impair)
est bijective de R, dans R,. Il s’ensuit que cette fonction admet une fonction réciproque
(voir chapitre suivant).

18.1.3 Propriétés (rappel)

Si a et b sont des nombres réels non nuls (a,b € R*) et n et m des nombres naturels
strictement positifs (n,m € N*), on a les propriétés suivantes :

a" =b" <= a=0>, aveca,b>0

Attention !
~(a+b)"#a"+b0" (pourn#1),eneffet : (3+4)?=T>=49#3>+4>=9+16=25

18.2 Fonctions racines

18.2.1 Définition

Dans le chapitre précédent, nous avons vu que la fonction puissance n-eme donnée par
x) = 2", n € N*, est bijective de R, dans R our n pair ou impair. La fonction
) ) + +
possede donc une fonction réciproque 'f.

Cette fonction réciproque de la fonction puissance n-eme est appelée fonction racine
n-eme et est notée p/ .
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Ry puissance n-eme Ry

racine n-eme

Définition 18.3
Soit » un nombre naturel positif (n € N*).

La racine n-éme de x, {/z, est défini par :

y=Vr=ur=y"

pour tous nombres réels z > 0 et y > 0.

La fonction racine n-éme est alors définie par :

3 . R+ — R+
r — y=<r telquey” ==z

Le symbole »/— est appelé radical, I'expression sous le radical est appelé radicande et
n l'indice.
Noter que les deux équations données dans la définition sont équivalentes. On dit que :

{/x EST LE NOMBRE POSITIF QUI ELEVE A LA PUISSANCE n DONNE z.

Exemples

1) V32 =2 car 2° = 32.
2) V125 =5 car 5% = 125.
3) La fonction définie par f(x) = </x est la fonction racine 5-éme.

Remarques

1) Sin =2, on écrit simplement f(z) = y/z et on la nomme fonction racine carrée.

2) Si n est impair, il est possible de définir la racine n-éme d’'un nombre négatif, car la
fonction puissance n-eme est alors bijective de R dans R.

Exemples

1) V/=27=3/(-3)3=-3
2) Sia >0 etn impair, on peut poser : V/(—a)" = Y/—a" = —/a" = —a.
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18.2.2 Représentations graphiques et caractéristiques
Indice n pair

On donne ci-dessous les représentations graphiques des fonctions racines 2-eme (en rouge)
et 4-eme (en bleu).

La forme générale de la représentation graphique d’une fonction racine d’indice n pair
ressemble a celles données en exemple.

3
y =Nz
2
1 y:4x
i
-1 1 2 3 4 5 6 T 8 9 10 11 12 13 14
—1

n pair

On peut remarquer que, plus 'indice n est petit, plus la courbe représentant la fonction
f(x) = /x 7s’éloigne” rapidement de 'axe Ox quand x augmente (x > 0), qu’elle passe
par les points (0;0) (0 est le zéro de f) et (1;1), et qu’elle est toujours au-dessus de I'axe
des abscisses (f(x) > 0 Vz € Ry).

Indice n impair
On donne ci-dessous les représentations graphiques des fonctions racines 3-eme (en rouge)
et 5-eme (en bleu).

La forme générale de la représentation graphique d’une fonction racine d’indice n impair
ressemble a celles données en exemple.

-9 -8 =7 -6 -5 —=4 -3 =2 -1 1 2 3 4 5 6 7 8 9

n impair

On peut remarquer que, plus 'indice n est petit, plus la courbe représentant la fonction
f(z) = /x "s’éloigne” rapidement de 'axe Ox quand x augmente (z > 0) ou diminue
(x < 0), qu’elle passe par les points (0;0) (0 est le zéro de f) et (1;1), et qu’elle est
au-dessus de I'axe des abscisses pour > 0 (f(x) > 0 Vo € R% ) et au-dessous pour x < 0
(f(z) <0VzeRY).
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18.2.3 Propriétés (rappel)

Si a et b sont des nombres réels strictement positifs (a,b € RY) et n, m, p des nombres

naturels strictement positifs (n, m,p € N*), on a les propriétés suivantes :

Va=Vb<=a=b

B

(”a)n:a Vab = /aV/b \

> e
S

IS

Vam = (/a)™ | )/ ¥a= "Ya | Yar = Jam

Attention !
~ Va2 + 2 #a+b eneffet : V32 +42=25=5#43+4="T
~Va+b#Ja+ Vb eneffet : VAI+9=V13#V4+/9=5

Cas particulier

Pour tout nombre réel a (a € R), on a 1'égalité suivante :

Va2 = |a|

Exemples

: f(_%;'j;ig } car 3° = (=3)> =9 et V9 = 3.

Attention a ne pas confondre :

a) la racine carrée de a® qui est 'unique nombre positif dont le carré vaut a?.

b) les deux solutions de 'équation 22 = a® : z; = a et 29 = —a. (Ezemple

comme solutions 19 = +v9 = £3)
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Chapitre 19

Fonctions exponentielles

19.1 De la fonction puissance a la fonction exponen-
tielle

Fonction exponentielle de N* dans R,

Dans le chapitre précédent, nous avons étudié les fonctions puissances ayant une expres-
sion fonctionnelle de la forme

(base Variable)pulssance constante

tels que 22, 23, ... Nous allons porter maintenant notre attention vers des fonctions ayant
une expression fonctionnelle de la forme

(base constante) puissance variable

tels que 2%, 1.04", 7, que nous appellerons fonctions exponentielles. Il ne faut pas
confondre ces deux types de fonctions. Dans le premier cas, la base est variable tandis
que dans le second c’est ’exposant qui est variable.

Pour pouvoir définir les fonctions exponentielles, on considere un nombre réel strictement
positif a (a € R, fixé) et on commence par restreindre 'ensemble de départ a I’ensemble
des nombres naturels strictement positifs. On obtient la fonction ezponentielle de base a :

f: N — RY
r +— y=a"
qui est bien définie pour chaque valeur de z € N*| puisque, pour un x fixé,

fey=a"=ga-a-... q

a apparait x fois

est équivalent a calculer I'image de a par la fonction puissance z-eme.

Une propriété fondamentale de la fonction puissance est, pour a € R% et n,m € N*, :

a’-am" = a”+m‘ (19.1)

On va maintenant étendre la définition de cette fonction f a Z, puis a Q et finalement a
R en imposant cette propriété a la fonction exponentielle de base a fixée.
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Prolongement a Z

Pour prolonger la fonction exponentielle de base a a Z et obtenir une fonction de Z vers
R* , on doit déterminer a° et a™™ (Vn € N¥).

Pour que la propriété (19.1) soit conservée, a® doit vérifier (m € N*) :
a-ad"=ad"=ad" = |d"=1

De méme, a™" doit vérifier (n € N*) :

On peut maintenant déterminer la valeur de a élevé a n’importe quelle puissance entiere.

Prolongement a QQ

Pour prolonger la fonction exponentielle de base a a Q et obtenir une fonction de Q vers
1 m
R, on doit déterminer a= et a» (Vm € Z et Vn € N*).

Pour que la propriété (19.1) soit conservée, an doit vérifier (neZ):

3=
3=

1 1 1 1 1
Lin L Lyly 41 1 L,
(am)*=gan -a -an =qn ' n "n=qa'=a = |a" = a

~~

1 . .
an apparait n fois

car la racine n-eme de a correspond au nombre qui élevé a la puissance n donne a (suite
d’égalités de gauche).

~ m . s
De méme, a~ doit vérifier :

33
I

Q
3

m m
n = am'% = (a%) = (%)m = \n/am — a

en utilisant la propriétés des racines : ({/a)™ = +/a™.

On peut maintenant déterminer la valeur de a élevé a n’importe quelle puissance ration-
nelle. Par contre, ces formules ne sont valables que si a est positif.

Prolongement a R

On ne peut pas utiliser la propriété (19.1) pour prolonger la fonction exponentielle de
base a a R. Comment définir alors a\/i, a®, a¥3 ou plus généralement a” avec x € R?

Si x est un nombre rationnel (z € Q), a” est clairement défini par ce qui précede. Par
contre si x est un nombre irrationnel, on utilise le fait que le nombre réel = peut étre
approché aussi pres que I’on veut par une suite de rationnels ¢, go, g3, . . . et on ”approche”
alors la valeur de a® par la suite de valeurs a?, a®, a%, ...

Exemple

On désire déterminer la valeur de 5V2. Comme V2 = 1,414 ..., on peut écrire la
suite d’approrimations successives :
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50 < 52 < 52
544 < BVZ < Bl
LAl 5\/5 < p5lL42
5lAld 5\/5 < 5lLAI5

On estime \/2 a gauche par une suite croissante de nombres rationnels qui s ap-
proche de (tend vers) \/2 et a droite par une suite décroissante de nombre ration-

nels. Ainsi, on peut affirmer que 5V est compris entre
51414 _ 5o — /5414 = 9 7352
et
51415 — 5100 = *V/51415 = 9 7509.

Pour plus de précision, on peut poursuivre la suite des approximations pour obtenir
des nombres rationnels aussi proches qu’on le souhaite de /2.

On peut maintenant ”déterminer” la valeur de a élevé a n’importe quelle puissance réelle
et définir la fonction exponentielle de base a de R vers R*..

Remarque

Il est possible de définir a* pour z € R de maniére plus précise, mais ceci fait appel a des
notions mathématiques complexes qui ne sont pas étudiées dans le cadre du lycée.

19.2 Définition

Définition 19.1
Soit @ un nombre réel positif différent de 1 (a € R% \ {1}).

La fonction exponentielle de base a est définie par :

exp,: R — R

T

r — y=exp,(r)=a

Exemple
1) La fonction définie par f(x) = 2% est la fonction exponentielle de base 2. On a :

f@Q) =22=4;f(-3)=23=L =1, f1)=22 = V22 1.414; 27 2 8825;

2) La fonction définie par f(x) = 7* est la fonction exponentielle de base 7.

19.2.1 Cas particulier : la base ¢

Dans le chapitre sur les progressions et les calculs financiers, nous avons rencontré la
formule des intéréts composés :

qui permet de déterminer le capital C), obtenu a partir d’un capital initial Cy placé durant
n années a un taux d’intérét annuel ¢ exprimé de maniere décimale (3% d’intérét = 0.03).
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Cette formule est valable si l'intérét est capitalisé une fois par année. Que se passerait-il
si ce méme intéret était capitalisé tous les trimestres, tous les mois, tous les jours, ... ?
Essayons de trouver une réponse a l'aide d’un exemple.

Capitalisation chaque an (une fois par année)

Imaginons un millionnaire qui place son argent dans une banque tres généreuse qui pro-
pose un taux d’intérét a 100% (i = 1), ce qui signifie que la fortune du millionnaire
doublera chaque année. S’il place un million a la banque 'année 0, voici comment aug-
mentera sa fortune :

Apres 1 année : Ci=1+1-1=1-(1+1)=2 millions
Apres 2 années : Co=2+2-1=1-(1+1)? =4 millions
Apreés 3 années : Cs=4+4-1=1-(1+1)> =8 millions
Apres 4 années : Cy,=8+8-1=1-(1+1)* =16 millions

En particulier, il aura 2 millions au bout d’une année.

Capitalisation chaque trimestre (4 fois par année)

Une banque concurrente apparait qui propose elle aussi un taux d’intérét a 100%, mais
avec des intéréts capitalisés tous les trimestres, au lieu de tous les ans, sur la base du
taux proportionnel correspondant a un trimestre : ¢ = i. Si notre millionnaire place un
million a la banque le trimestre 0, voici comment augmentera sa fortune :

Apres 1 trimestre : Ci=1+1-7=1-(1+1%)=1.25million

Apres 2 trimestres : Cy=125+125-7=1-(1+1)*=1.563 million
Apres 3 trimestres : C3=1563+1.563- 1 =1-(1+ 1)*=1.953 million
Aprés 4 trimestres : Cy=1953+1.953-1=1-(1+1)*=2.441 millions

Au bout d’une année, il aura, au lieu de 2 millions, (1 + i)‘l = 2.441 millions. Il a donc
intéret a choisir cette deuxieme banque.

Capitalisation chaque mois (12 fois par année)

Une troisieme banque apparait qui propose elle aussi un taux d’intérét a 100%, mais avec
des intéréts capitalisés tous les mois sur la base du taux proportionnel correspondant
a un mois : ¢ = % Si notre millionnaire place un million a la banque le mois 0, voici
comment augmentera sa fortune :

Apres 1 mois : Ci=1+1-%=1-(1+%) = 1.083 million

Apres 2 mois Cy=1.083+1.083- 55 =1 (14 15)? = 1.174 million
Apres 3 mois : C3=117441174- 55 =1- (1 + {5)* = 1.271 million
Apres 12 mois Clp=241242412- 5 =1- (1 + )" = 2.613 millions
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Au bout d’une année, il aura, au lieu de 2 ou 2.441 millions, (1 + 55)** = 2.613 millions.
Il a donc intérét a choisir cette troisieme banque.

Capitalisation chaque jour (365 fois par année)

Une quatriétme banque apparait qui propose elle aussi un taux d’'intérét a 100%, mais
avec des intérets capitalisés tous les jours sur la base du taux proportionnel correspondant
a un jours : ¢ = %5. Si notre millionnaire place un million a la banque le jour 0, voici
comment augmentera sa fortune :

Apres 1 jour : Ci=141-g==1-(1+ z=) = 1.003 million

Apres 2 jours : Cy =1.00341.003 - 5= = 1 (1 + 5z)* = 1.005 million
Apres 3 jours : C3 =1.005+1.005 36z = 1- (1 + 5=)* = 1.008 million
Apres 365 jours : Cses = 2.707 + 2.707 - % =1-(1+ %)365 = 2.714 millions

Au bout d’une année, il aura, au lieu de 2, 2.441 ou 2.613 millions, (1 4+ ==
2.714 millions. Il a donc intérét a choisir cette quatrieme banque.

Capitalisation chaque ”instant” (n fois par année, n — +00)

Si enfin nous supposons qu’une cinquieme banque propose de capitaliser la fortune a
chaque instant sur la base d'un taux d’intérét proportionnel correspondant a un taux
annuel de 100%, le capital au bout d’une année sera le nombre vers lequel s’approche
(1 + %)n quand n devient de plus en plus grand. En termes mathématiques, on parle de
limite quand n tend vers l'infini.

Pour n suffisamment grand, on peut démontrer que le nombre (1 + %)n n’est pas du tout
infini, mais aussi proche qu’on le souhaite du nombre 2.718281828459045 ... Il est facile
de constater ce phénomene sur une calculatrice. Depuis Euler, on désigne ce nombre par
la lettre e.

Définition 19.2
On écrit A
e= lim (1 + —) =~ 2.718281828459045 . . .
n—-+4o00 n

et on dit que "le nombre e est la limite de (1 + %)n quand n tend vers 'infini”.

La fonction exponentielle naturelle est la fonction exponentielle de base e. Son ex-
pression fonctionnelle est f(z) = e*

Remarques

1) e est un nombre transcendant, comme 7.

2) La fonction exponentielle naturelle est la plus utilisée des fonctions exponentielles.
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19.3 Représentations graphiques et caractéristiques

Base a > 1

On donne ci-dessous les représentations graphiques des fonctions exponentielles de base
2 (en vert), e (en bleu) et 10 (en rouge).

La forme générale de la représentation graphique d’une fonction exponentielle de base a,
avec a > 1, ressemble a celles données en exemple.

On peut remarquer que, si a > 1, la fonction est croissante dans R et toujours positive.
Plus a est proche de 1 plus la courbe ”s’éloigne” rapidement de ’axe Oy quand x augmente
(pour z > 0). Lorsque z diminue (pour x < 0), la courbe y = a” tend vers 'axe des
abscisses. Ainsi, cette axe est une asymptote horizontale lorsque = tend vers —oo. De
plus, cette courbe passe par le point (0, 1) quelque soit la base a de ’exponentielle.

Base 0 <a<1

On donne ci-dessous les représentations graphiques des fonctions exponentielles de base

1 (en vert), L (en bleu) et = (en rouge).

La forme générale de la représentation graphique d’une fonction exponentielle de base a,
avec 0 < a < 1, ressemble a celles données en exemple.
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On peut remarquer que, si 0 < a < 1, la fonction est décroissante dans R et toujours
positive. Plus a est proche de 1 plus la courbe ”s’éloigne” rapidement de I'axe Oy quand x
diminue (pour = < 0). Lorsque x augmente (pour x > 0), la courbe y = a” tend vers I’axe
des abscisses. Ainsi, cette axe est une asymptote horizontale lorsque  tend vers +o0o. De
plus, cette courbe passe par le point (0, 1) quelque soit la base a de 'exponentielle.

19.4 Equations exponentielles

Définition 19.3
Une équation exponentielle a une inconnue est une équation ou l'inconnue figure
comme exposant d’une ou plusieurs exponentielles de méme base ou de bases différentes.

Exemples

1) elr €5m2—3
2) 36"t =7

1

T _2232 - =
59 216

Proposition 19.1
La fonction exponentielle de base a donnée par exp,(x) = a” est bijective de R dans R*
pour 0 <a<loua>1.

Ainsi, les conditions équivalentes suivantes sont vérifiées pour tout nombre réels z; et
Ty

1) Si zy # x9, alors @™ # a™2.

2) Si a® = a®2, alors r1=xs.

19.4.1 Principe de résolution

Dans ce chapitre, nous allons nous restreindre aux équations exponentielles ”simples” ou
il est possible d’obtenir par transformations successives une équation avec uniquement des
exponentielles de méme base : a/®) = a9 Nous étudierons une méthode plus générale
dans le chapitre suivant.

Marche a suivre pour résoudre une équation exponentielle ”simple” :

1. transformer I’équation en utilisant les propriétés des exponentielles pour obte-
nir une équation de la forme :

W@ — o)

ou f et g sont des fonctions de I'inconnue z,

2. 7éliminer” les bases a en utilisant I'injectivité de la fonction exponentielle (voir
proposition ci-dessus) :

@ = @9 — f(2) = g(x)

3. résoudre I'équation a une inconnue f(x) = g(z).
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Remarques

Attention! Cette méthode de résolution permet uniquement de résoudre des équations
exponentielles de méme base (apres éventuellement quelques transformations).

Exemples

1) Résoudre : 2712 = 35718,

279c+2
(33)x+2
33x+6
3x+ 6
—2x

T

L’ensemble des solutions est : S = {—1}.

35x+8
35x+8

35x+8

ox + 8
2
-1
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Chapitre 20

Fonctions logarithmes

20.1 Introduction

Imaginons un millionnaire qui place son argent dans une banque tres généreuse qui pro-
pose un taux d’intérét a 100% ce qui signifie que la fortune du millionnaire doublera
chaque année. S’il place un million a la banque 'année 0 voici comment évoluera sa
fortune :

Années 0 1 2 3 4 bt 6 7 8
Fortune en millions (CHF) || 1 2 4 8 16 | 32 | 64 | 128 | 256

On pourrait définir une fonction qui donne la fortune en millions si le nombre d’années de
placement est connu. En observant le tableau ci-dessus, on remarque que cette fonction
correspond a la fonction exponentielle de base 2.

Exemple : Pour 4 ans, on obtient f(4) = 2% = 16.
On peut créer la fonction qui effectue le chemin inverse (on I'appelle fonction réciproque

de la fonction exponentielle) ; c¢’est-dire une fonction qui donne I’année lorsqu’on connait
la fortune. Cette fonction aura le nom de logarithme en base 2 et sera noté log,.

Ezemple : logy(1) =0, log,(2) =1, logy(4) =2, ...

On a la relation générale suivante :

logy(z) =y <=2V ==z (x > 0)

20.2 Définition et représentations graphiques

Dans le chapitre précédent, nous avons vu que la fonction exponentielle donnée par f(x) =
a®, a € R\ {1}, est bijective. La fonction f possede donc une fonction réciproque 'f.
Cette fonction réciproque de la fonction exponentielle de base a est appelée fonction
logarithme de base a et est notée log,.

R exponentielle de base a

logarithme de base a
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Définition 20.1
Soit @ un nombre réel positif différent de 1 (a € R% \ {1}).

Le logarithme en base a de z, log,(z), est défini par :

y =log, () <=z =a’

pour tout x > 0 et tout nombre réel y.

La fonction logarithme en base a est alors définie par :

log,: RE, — R
r +— y=log,(x) tel quea’ =z

Noter que les deux équations données dans la définition sont équivalentes. Il faut s’en-
trainer a passer d’une forme a l'autre. Le diagramme suivant peut y aider.

Forme logarithmique Forme exponentielle
exposant
log,(z) =y a’ =x
base

On remarque que, lorsqu’on passe d’une forme a l'autre, les bases des formes logarith-
miques et exponentielles sont les mémes. Le nombre y (c’est-a-~dire log,(z)) correspond &
Iexposant dans la forme exponentielle. On dit que :

log,(z) EST LA PUISSANCE A LAQUELLE IL FAUT ELEVER a POUR TROUVER .

Exemples

1) log,(64) = 3 car 43 = 64.
2) 1log(100) = 2 car 10% = 100,

Remarque

Attention! Le logarithme en base a d’un nombre négatif ou nul n’existe pas!!!

Bases particulieres

Base 10 : log,,(x) se note log(z) et s’appelle logarithme décimal de z.

Base ¢ =2,71828... : log.(z) se note In(x) et s’appelle logarithme naturel ou loga-
rithme népérien de x.
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20.2.1 Représentations graphiques
Base a > 1

On donne ci-dessous les représentations graphiques des fonctions exponentielles de base
2 (vert), e (bleu) et 10 (rouge), en traitillé, et des fonctions logarithmes de mémes bases,
leurs réciproques, en trait plein.

T 7
/’/4 7
= ,/ T
-5 =4 =3 =2 41, 1 2 3 4 5 6 7 8 9 10 11
A+

La forme générale de la représentation graphique d’une fonction logarithme de base a,
avec a > 1, ressemble a celles données en exemple ci-dessus.

On peut remarquer que plus a est proche de 1 plus la courbe ”s’éloigne” rapidement de
Ox quand z augmente (pour z > 1) et que la courbe passe par le point (1;0) quelque
soit la base a du logarithme.

Base 0 <a<1

On donne ci-dessous les représentations graphiques des fonctions exponentielles de base
1 (vert), L (bleu) et 1t (rouge), en traitillé, et des fonctions logarithmes de mémes bases,

leurs réciproques, en trait plein.

La forme générale de la représentation graphique d’une fonction logarithme de base a,
avec 0 < a < 1, ressemble a celles données en exemple ci-dessus.

On peut remarquer que plus a est proche de 1 plus la courbe ”s’éloigne” rapidement de
Ox quand z augmente (pour z > 1) et que la courbe passe par le point (1;0) quelque
soit la base a du logarithme.
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20.3 Propriétés

Proposition 20.1
Soit a € R% \ {1}.

Quels que soient u € R%, v € R, et r € R, on a :

o 8 =y o log,(a")=r
o log,(1)=0 o log,(a)=1

o log,(u-v) =log,(u) +log,(v)

o log, (#) = log,(u) —log,(v) log, (3) = —log,(v)

b loga(ur) =T loga(u)

Démonstration. Soient a € R% \ {1}, u € R, v € R} et r € R.

Par surjectivité de la fonction exponentielle, il existe x,y € R tels que :
u=a" et v=a"

Par définition de la fonction logarithme, ces égalités impliquent que :

log,(u) =z et log,(v) =y
— A voir : log,(a") =7
Cette propriété est immédiate a partir de la définition du logarithme de base a.
— A voir : log,(u - v) = log,(u) + log,(v).

Des égalités ci-dessus, on tire que :

log, (1 v) = log, (a” - a¥) "= log, a”*) "L

z+y = log,(u) +log,(v)
— A voir : log, (%) = log,(u) — log,(v).
Des égalités ci-dessus, on tire que :
o, () =tog () 77 o (a7 = tog () — o0
v a
— A voir : log,(u") = r -log,(u).

Des égalités ci-dessus, on tire que :

déf. log.

log, (u") = log,((a”)") ""="" log,(a"") rex=r-log,(u)

— Les autres égalités se démontrent de maniere immédiate a partir de la définition du
logarithme en base a et des propriétés démontrées ci-dessus.
O
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Exemple

1
A laide des propriétés ci-dessus, on peut exprimer 3 log, (z*—1)—log, (y)—4log, ()

sous la forme d’un logarithme :

o (02 = 1) = log, () — 4log, () = log,((2 = 1)) — log,(y) — log, ()
= log,(Va® — 1) — (log,(y) +log,(z"))
= log, (Va2 —1) —log,(y - 2*)

= log, <7x _1)

y- 2

20.4 Formule de changement de base des logarithmes

Une machine a calculer ne travaille qu’avec les logarithmes en base 10 et en base e. On
peut cependant utiliser comme base n’importe quel nombre strictement positif différent
de 1. La formule ci-dessous va nous permettre, a partir d’'une base quelconque, de nous
ramener a une de ces bases particulieres pour réaliser le calcul du logarithme.

Proposition 20.2
Siu >0 etsiaetbsont des nombres réels positifs différents de 1, alors

On appelle cette égalité la formule de changement de base des logarithmes.

Démonstration. Soient a,b € R* \ {1} et u € RY.
Par surjectivité de la fonction exponentielle, il existe x € R tels que : u = b”.

On obtient alors que :

C— b e bga(“):loga(bx):f”‘loga@} — log,(u) = logy(u) - log, (b)

x = log,(u)
1
et donc que : log,(u) = IZi“((Z)) O

Exemple
Calculer : log;(21).

A laide de la formule de changement de base des logarithmes, on trouve que :

log(21) _ 1,32222

log-(21) = = = 1,56457
ogr(2l) = 1@ S 0sm0 - v
On pourrait également effectuer le calcul suivant :
In(21 3,04452
log.(21) = 22D & 3 = 1,56457

In(7) ~ 1,94591
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20.5 Equations logarithmiques

Définition 20.2
Une équation logarithmique a une inconnue est une équation o 'inconnue figure dans
un ou plusieurs logarithmes de méme base ou de bases différentes.

Exemples
1) In(x +6) — In(10) = In(z — 1) — In(2)
2) log,(5+xz) =3

1
3) loge(z) = S logs(2* + 2)

20.5.1 Principe de résolution

Marche a suivre pour résoudre une équation logarithmique :

1. transformer I’équation en utilisant les propriétés des logarithmes pour obtenir
une équation de la forme :

log,(f(z)) = log,(g(7))

ou f et g sont des fonctions de I'inconnue z,

2. 7éliminer” les log, en utilisant l'injectivité de la fonction logarithme :

log, (f(x)) = log,(g9(x)) = f(x) = g()
3. résoudre I’équation a une inconnue f(x) = g(z),

4. vérifier les solutions obtenues dans I’équation de départ !

Remarques

1) Attention! Le fait d’éliminer les logarithmes par injectivité peut introduire des solu-
tions qui ne satisfont pas I’équation initiale. C’est pourquoi il est nécessaire de tester
les solutions trouvées dans 1’équation de départ.

2) f(x) = g(x) # log,(f(x)) = log,(g(z)) pour tout x € R car f(x) et g(x) pourraient
étre négatifs pour des x particuliers.

Exemples

1) Résoudre :log(x + 1) — log(3) = log(2z — 3) + log(7).

log(z 4+ 1) —log(3) = log(2x — 3) + log(7) | propriétés log
log (£H) = log(7(2z — 3)) éliminer log
= = 7(2z - 3) -3
r+1 = 422 —63 —x + 63
64 = 4lz =41
2 =1z
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Important! 1l faut maintenant vérifier la solution obtenue en la substituant a
x dans l’équation de départ.

Vérification
64 64
¥log [ — +1) —log(3) =log (2 — — 3] +1log(7) — O.K.
41 NS 41 e\l
—— 0477~ ~ ~ 0845
0,408 —0,914
0,069 0,069

L’ensemble des solutions, aprés vérification, est : S = {%}.

1) Résoudre : 2logs(x) = 1+ 2logg(4x + 15)

Pour pouvoir résoudre cette équation logarithmique, il faut choisir une base
unique entre 3 et 9. On conservera ici la base 3 (pas de régle précise pour
réaliser ce choix) et on utilisera la formule de changement de base pour modifier
loge(4x + 15).

De plus, il faut "transformer” le nombre réel 1 en une expression contenant un
log; — 1 = logs(3).

2log, () 1+ 2logy(4x + 15) | propriétés et formules log
log,(2?) log,(3) + % propriétés log
log,(2?) logs(3(4x + 15)) éliminer log,
z” 122 + 45 —122 — 45
% — 122 — 45 0

On résout alors I’équation du deuxiéeme degré x? — 12z — 45 = 0 a aide de la

formule de résolution.

— Discriminant : A = (=12)? — 4.1 (—45) = 324 = 182,
- A >0 :2 solutions distinctes :

—(—12) +v324 12+18

“ 2.1 2
—(~12) - /324 1218
* Tog = = = -3
2.1 2
Vérification

* 2logy(15) = 1 + 2logy(4 - 15 + 15) — O.K.
~—

J

-—
2,465 1,965
N ~ - N ~ -
4,930 4,930

* 2logy( —3) =1+ 2logy(4 - (—3) + 15) — Non

<0

g

L’ensemble des solutions, aprés vérification, est : S = {15}.

20.6 Equations exponentielles

On a vu, au chapitre sur les fonctions exponentielles, comment résoudre une équation
exponentielle ou il était possible d’obtenir par transformations successives une équation
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avec uniquement des puissances de méme base : a/®) = a9 ce qui représente un ” petit
nombre” d’équations.

On donne ci-dessous une méthode, s’appuyant sur les logarithmes, pour résoudre des
équations ou il est impossible d’obtenir des puissances de méme base (méthode de résolu-
tion plus générale).

20.6.1 Principe de résolution

Marche a suivre pour résoudre une équation exponentielle :

1. transformer I’équation en utilisant les propriétés des exponentielles pour obte-
nir une équation de la forme :

al @ = p9(@)

ou f et g sont des fonctions de I'inconnue x,
2. 7¢éliminer” les puissances en utilisant les logarithmes :
al® = 9@ — Jog(a’ @) = log(t¥™) <= f(z) - log(a) = g(z) - log(b)

3. résoudre I'équation & une inconnue f(z) -log(a) = g(z) - log(b).

Remarque

On peut utiliser une autre base a € R* \ {1} que la base 10 pour effectuer les transfor-
mations équivalentes de 2.

Exemples

1) Résoudre : 3** = 15

3¢ = 15 log(...) (éliminer les puissances)
log(3*) = log(15) | propriétés log
2z -log(3) = log(15) | +2log(3)
log(15)
21og(3)
——

1,232

xr =

L’ensemble des solutions est : S = {;g(m) }
og(3)

2) Résoudre : 9 287

3390 -
9 - .
pEn = 2-8" | propriétés exp
32-37% = 2.2% | propriétés exp
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32—3:c = 9l+3z log(. ) )
log(3273%) = log(2'13) propriétés log
(2 —3x)log(3) = (14 3z)log(2) +31log(3) - = — log(2)
2log(3) —log(2) = x-(3log(2)+ 3log(3)) | +(3log(2) + 3log(3))
21og(3) — log(2)
3log(2) + 3log(3)

20,321

2log(3)—log(2) }

L’ensemble des solutions est : S = {W
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20.7 Exercices

1) Mettre sous la forme mlog(a) + nlog(b) :

a) log(a®h™°) b) log ab—:,)
) log (%) D tog (20

2) Résoudre les équations suivantes.
a) 2log(3z—2) = 1+log(2)+log(z+1) b) log(vx + 1)+ log(v/z — 1) = log(5)
c¢) log(2z —5) +log(3z +7) = 4log(2) d) log(z*+3z+1) =2
e) log(20) 4 log(z* — 4) — log(z — 2) = 1 + log(2z + 4)
f) log,(x) = —3 + logy(z + 16) g) log(2?) = (log(z))?

h) logs(x) - logg(x) = 2
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20.8 Solutions des exercices

1) a) 2log(a) — 6log(b) b) 3log(a)+ 4log(b)

) %log(a) _ %log(b) d) 3log(a) — log(b) — log(c) — %bg(d)
2) a) 4 b) V26 «¢) 3 d) z; =8.66, x, = —11.66

e) x€)2;00] f) 16 g) 1 =1, 13 =100 h) mlzé, Ty =
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Chapitre 21

Fonctions trigonométriques

21.1 Définitions et représentations graphiques

21.1.1 Fonctions cosinus et sinus

Définition 21.1

Soit P(1;0) sur le cercle trigonométrique. Soit encore
M, Timage de P par une rotation de centre O et
d’angle a.

On appelle cosinus de l'angle «, noté cos(a), la
premiere coordonnée ou abscisse de M. Celle-ci cor-
respond a la mesure algébrique du segment OC', ou
C est la projection de M sur 'axe des abscisses.

On appelle sinus de I'angle «, noté sin(«), la seconde
coordonnée ou ordonnée de M. Celle-ci correspond
a la mesure algébrique du segment OS, ou S est la
projection de M sur I'axe des ordonnées.

On note : M(cos(«), sin(«))

Représentations graphiques

En général, le radian sera utilisé comme unité de mesure (sauf indication contraire).
Ainsi, si on parle de la fonction f(z) = sin(x), il est entendu que x est exprimé en
radians. Les calculatrices doivent donc étre convenablement configurées pour travailler
avec les fonctions trigonométriques.

La représentation graphique de la fonction cosinus :

cos: R — [-1;1]
x +— cos(x)

est donnée ci-dessous.
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La représentation graphique de la fonction sinus :

sin: R — [-1;1]
x +— sin(x)

est donnée ci-dessous.

L,
3
|
vl
|
[\
)
|
vl
|
3
|
w3
NTE
S
Y
RO
3
ol
w
3

Propriétés
La fonction cosinus possede les propriétés suivantes :

— son ensemble de définition est D..s = R.

son ensemble image est l'intervalle [—1; 1].

elle est une fonction paire car pour tout x € D on a cos(—zx) = cos(x).

— elle est une fonction bornée.

La fonction sinus possede les propriétés suivantes :

— son ensemble de définition est Dy, = R.

— son ensemble image est U'intervalle [—1;1].

— elle est une fonction impaire car pour tout z € Dy, on a sin(—z) = —sin(x).

— elle est une fonction bornée.

21.1.2 Les fonctions tangente et cotangente

Définition 21.2
Soit M (cos(a),sin(a)) sur le cercle trigonométrique.

On définit le point 7" comme l'intersection entre la droite passant par (0;0) et M et la
droite verticale tangente au cercle au point I(1;0).

On définit encore le point K comme l'intersection entre la droite passant par (0;0) et M
(la méme que ci-dessus) et la droite horizontale tangente au cercle au point J(0;1).
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Y

\
On appelle tangente de l'angle a, noté tan(a), J _otlo) K
l'ordonnée de T. Celle-ci correspond a la mesure T /
algébrique du segment IT. MX| <=
On appelle cotangente de 'angle «, noté cot(a), o) : .
I’abscisse de K. Celle-ci correspond a la mesure 0 I
algébrique du segment JK.
On note : T(1;tan(«)) et K(cot(a);1)).

Remarques

1. Lorsque la droite passant par (0;0) et M est verticale, la tangente de ’angle correspon-
dant n’est pas définie (il n’y a pas de point d’intersection comme les deux droites sont
verticales). Ceci se produit pour les angles de 'ensemble {z € R | v = § +k7, k € Z}.

2. Lorsque la droite passant par (0;0) et M est horizontale, la cotangente de 'angle
correspondant n’est pas définie (il n’y a pas de point d’intersection comme les deux
droites sont horizontales). Ceci se produit pour les angles de I’ensemble {z € R | z =

km, k € Z}.
Représentations graphiques

La représentation graphique de la fonction tangente :

tan: R\{rcR|z=F+kr, kecZ} — R
x —  tan(x)

est donnée ci-dessous.

l\)w________
B}

La représentation graphique de la fonction cotangente :

cot: R\ {zeR|z=kr, keZ} — R
x —  cot(x)

est donnée ci-dessous.
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Y

| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | 1 | | |

br R 7r T | 37 | r |

=37 N\ - XS ar N\ 2 (NG AN

] ] ] ] ] ] €
| | | | | |
| | | | | |
| | | | | |
| | | L ly = cot(x) |1 | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |

Propriétés

La fonction tangente possede les propriétés suivantes :

— son ensemble de définition est Dy, = R\ {z €R | x = § + krm, k € Z}.

— son ensemble image est ’ensemble des nombres réels, R.

— elle est une fonction impaire car pour tout x € Dy, on a tan(—z) = — tan(x).

— elle est une fonction non bornée.

La fonction cotangente possede les propriétés suivantes :

— son ensemble de définition est Doy = R\ {z € R | z = kn, k € Z}.

— son ensemble image est I’ensemble des nombres réels, R.

— elle est une fonction impaire car pour tout @ € Dy on a cot(—z) = — cot(x).

— elle est une fonction non bornée.

21.1.3 Fonctions périodiques

En considérant les figures qui nous ont permis de définir les fonctions cosinus, sinus,
tangente et cotangente, on constate que l'ajout a 'angle o d’un multiple entier de 27 ne
change pas le point M sur le cercle trigonométrique. De méme, 'ajout a l'angle o d'un
multiple entier de 7 ne change pas le point 7', ni le point K.

De méme, sur les représentations graphiques, on remarque que, en ”décalant” la fonction
sinus ou cosinus de 27 vers la droite ou vers la gauche, elle ne se modifie pas (le dessin reste
le méme). La méme observation peut étre faite pour les fonctions tangente et cotangente
avec un décalage de .

Ainsi, par définition des fonctions trigonométriques, on a

cos(a+ k- 2m
sin(o+ k - 27
tan(a + k-7
cot(a+k-m

) = cos(a), Vk € Z
) = sin(a), VkeZ
) = tan(a), VkeZ
) = cot(a), Vk € Z

On dit que les fonctions sinus et cosinus sont périodiques de période 27 et que les
fonctions tangente et cotangente sont périodiques de période 7.
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Remarques
1. Pour les fonction sinus et cosinus, le nombre k représente le nombre de tours entre
deux angles ayant, respectivement, le méme sinus ou le méme cosinus.

2. Pour les fonction tangente et cotangente, le nombre k représente le nombre de demi-
tours entre deux angles ayant, respectivement, la méme tangente ou la méme cotan-
gente.

Plus généralement, on a la définition suivante.

Définition 21.3
Une fonction f de D (D C R) vers R est périodique s'il existe p € R%, tel que, pour
tout x € D, on a

a) x+peD
b)  flz+p)=f(2)

Le plus petit nombre réel strictement positif p satisfaisant cette condition est appelé la
période de f. Pour tout multiple entier kp (k € Z) de p, on a :

r+kpeD et f(x+kp) = f(z) Vo e D.

La connaissance du graphe de f restreinte a un intervalle de longueur p permet de
représenter le graphe de f sur D tout entier, grace a des translations dans la direction
de l'axe Ox.

21.1.4 Fonctions sinusoidales

Définition 21.4
Une fonction f est dite sinusoidale s’il existe quatre nombres nombres réels a, b, ¢ et d,
tel que :

f(x)=a-sin(b- (x —c))+d
On appelle a 'amplitude et ¢ le déphasage.

Exemple
Le graphique de la fonction sinusoidale f(z) = 2 -sin(2(x — 7)) + 1 est donnée

ci-dessous.

)

A/\/\ﬂ /.

L3r— 5M —2m — % 3

Effets des parametres a, b, c et d

Durant les exercices, nous donnerons une interprétation des effets des parametres a, b, ¢
et d dans le cas d'une fonction sinusoidale en se basant sur les représentations graphiques
de quelques fonctions réalisées sur papier millimétré.
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21.1.5 Fonctions réciproques

Les fonctions trigonométriques ne sont pas bijectives si on considere comme ensemble de
départ R. En effet, elles ne sont pas injectives car plusieurs angles (une infinité) possedent
le méme sinus, respectivement, le méme cosinus ou la méme tangente. Par contre, on peut
obtenir des fonctions bijectives si on restreint ’ensemble de départ de ces fonctions.

Propriétés

1. La fonction sinus est bijective si on considere comme ensemble de départ I'intervalle
[5%; 5] et comme ensemble d’arrivée l'intervalle [—1;1].

2. La fonction cosinus est bijective si on considere comme ensemble de départ 'intervalle
[0; 7] et comme ensemble d’arrivée l'intervalle [—1;1].

3. La fonction tangente est bijective si on considere comme ensemble de départ I'intervalle

|55 5[ et comme ensemble d’arrivée 'ensemble des nombres réels R.

L’avantage d’avoir des fonctions bijectives réside dans le fait qu’il existe alors des fonction
réciproques.

Définition 21.5

1. On appelle arcsin(z), I'arc compris entre =* et Yy
5 dont le sinus vaut z. La fonction arcsinus est
alors la fonction réciproque de la fonction sinus yjar;sin(x)
restreinte a l'intervalle [57; 7]. bt
Yy = sin(x)
3 . . 7T . 7-‘- : T T g x
arcsin : [—1;1] — [—57 5] EEN B
x — y = arcsin(x) 4
tel que sin(y) =z —z |
2. On appelle arccos(x), 'arc compris entre 0 et 7 Y
dont le cosinus vaut x. La fonction arccosinus est
= arccos(z)

L
alors la fonction réciproque de la fonction cosinus y
restreinte a 'intervalle [0; 7).

arccos : [—1;1] — [0;7] 1\

x — y = arccos(z) 1 | g\ﬂ
1}

tel que cos(y) =z

y = cos(x)
3. On appelle arctan(z), I'arc compris entre 5" et § Y |
dont la tangente vaut x. La fonction arctangente S
est alors la fonction réciproque de la fonction tan- [
gente restreinte a l'intervalle |57; 7. 27 o= 1=1
—51 Y JI arctan(z)
T e 1 x
arctan : R —>]—§7§[ ! »7}15
r +— y = arctan(x) Y
| [| v A tan(z)
tel que tan(y) = x | i
|
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Exemples

1. arcsin(z) =

2. arcsin(—@) = —

™
6
s
4

3. arcsin(2) n’eziste pas.

21.2 Formules de symétries, d’addition, de duplica-
tion et de bissection

21.2.1 Formules de symétries

On peut lier les valeurs des fonctions trigonométriques pour certains angles en utilisant
des symétries axiales au sein du cercle trigonométrique.

La symétrie d’axe horizontal (y = 0)

Lorsqu’a un angle «, on associe 'angle —a,
les points correspondants sur le cercle trigo- Yy ¢ T
nométrique sont symétriques par rapport a 1’axe
horizontal.

Cette symétrie ne change pas la premiere coor-
donnée d’un point du plan, mais change le signe #
de la deuxieme coordonnée. «

On a ainsi les formules de symétrie horizontale @) —«
. |
sulvantes : Vs
|

|

cos(—a) = cos(a) et

sin(—a) = —sin(a)

tan(—a) = —tan(«) +T

Symétrie d’axe vertical (z = 0)

Y o T
Lorsqu’a un angle «, on associe 'angle m — «, A

les points correspondants sur le cercle trigo- J
nométrique sont symétriques par rapport a l’axe M’ g=#~ 1 —# "KM
vertical.

Cette symétrie change le signe de la premiere
coordonnée d'un point du plan, mais ne change
pas la deuxieme coordonnée.

Pour la tangente, on utilise la formule tan(a) =

i ¥
sin(a

(@) pour obtenir que tan(m — o) = — tan(«) =

cos()
(ce que montre également le dessin).

o T
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On a ainsi les formules de symétrie verticale sui-

vantes :
cos(m —a) = —cos(a)
sin(m —a) = sin(«)
tan(mr —a) = —tan(«)

Symétrie dont ’axe est la premiére bissectrice (y = x)

" . T
Lorsqu’a un angle «, on associe l'angle — — «

Y 2 Y
les points correspondants sur le cercle trigo-

nométrique sont symétriques par rapport a la
premiere bissectrice.

Cette symétrie échange les coordonnées : la
premiere devient la seconde et vice-versa.

Pour la tangente, on utilise a nouveau la formule

tan(a) = 2:;((2)) pour obtenir que tan(g —a) =
= cot(a). x
tan(a) cot()

On a ainsi les formules de symétrie dont l’axe
est la premiere bissectrice suivantes :

cos(g —a) = sin(w)

sin(g —a) = cos(a)
m 1

tan(§ —a) = tan(a)

21.2.2 Formules d’addition et de soustraction

Est-il vrai que sin(a + §) = sin(a) + sin(8) ? Un cas particulier permet de montrer que

ceci n’est pas le cas :
sin (E + z) = sin (E) =1
3 6 2

(T /Ty V31
sin (3) +5in (5) = 3 +3
On voit donc par cet exemple que la fonction sinus n’est pas linéaire. En fait, aucune des

fonctions trigonométriques ne 'est. Mais que vaut donc sin(a + 3) 7

mais

Propriétés

On a les formules d’addition et de soustraction suivantes pour chacune des fonctions
trigonométriques.
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1. sin(a+ B) = sin(a) cos(B) + sin(B) cos(a)
2. sin(a — ) = sin(a) cos(f) — sin(B) cos(«)
3. cos(a+ ) = cos(a) cos(f) — sin(a) sin(f)

4. cos(a — ) = cos(a) cos(B) + sin(«) sin(3)

tan(o) + tan(p)
1 — tan(«) tan(pB)

B tan(a) — tan(p)
0. tan(oz - B) - 14+ tan(a) tan(ﬁ)

5. tan(a+ ) =

Démonstration. Nous allons démontrer les 6 formules d’addition et de soustraction don-
nées ci-dessus.

1. A voir : sin(a + ) = sin(«a) cos(5) + sin(S) cos(a).

N
Q
M
Hh
E
a+p
o A
O F L C i

Par construction :

OM =1; OC = cos(a) ; MC = sin(a) ; OF = cos(f) ; NE =sin(f) ; NI =
sin(a + ) ;

—

HNE =« ; EL=HF ; NH = NE cos(a) = sin(f) cos(a).
De plus, les triangles OE'L et OMC' sont semblables, d’ou

EL OF .
i = o EL = sin(a) cos(f)

Finalement, sin(a+ ) = NF = NH + HF et donc

NH + HF = sin(f) cos(a) + sin(a) cos(/3)
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2. A voir : sin(a — §) = sin(«a) cos(f) — sin(B) cos(a).

5. + 6.

On a immédiatement :

sin(a — f) = sin(a+ (=f)) = sin(a) cos(—3) + sin(—7) cos(«)
= sin(a) cos(f) — sin(pB) cos(«)

. A voir : cos(a+ ) = cos(a) cos(f) — sin(a) sin(3).

En utilisant les propriétés de symétries et celles démontrées ci-dessus, on a :

. T . ™

cos(v + ) = sin <a+ﬁ+§) —sm(a+(5+§)>
. T , T
= sin(«) cos (B + 5) + sin (ﬁ + E) cos(a)
Or cos(8 + %) = —sin(f) et sin(B + §) = cos(53) et donc
cos(a + B) = cos(a) cos(B) — sin(a) sin(5)
(

. A voir : cos(a — ) = cos(a) cos() + sin(a) sin(3).

On a immédiatement :

cos(a — ) = cos(a+ (—f)) = cos(a) cos(—f) — sin(a) sin(—7)
= cos(a) cos(B) + sin(a) sin(5)
tan(a) £ tan(S)

1 F tan(a) tan(B)

En utilisant les formules démontrées ci-dessus et la définition de la fonction tangente,
on obtient :

A voir : tan(a + ) =

sin(a £ ) _ sin(a) cos() £ sin(f) cos()
cos(aw = 3)  cos(a) cos(B) F sin(a) sin(f)
Jeos(f) 4 sin(f) cos(a) tan(a) + tan(B)
(8

tan(a + ) =

sin(a
COs

(a
o
(
(

a) cos(f cos(a) cos(f

) cos(B) Jcos(B)
a)cos(B) _ sin(a)sin(8) ~ | ¢ t
Lol o A T tan(o) tan

cos
cos(a) cos(B

)

21.2.3 Formules de duplication

Propriétés

On a les formules de duplication suivantes pour chacune des fonctions trigonométriques.

1. sin(2a) = 2sin(a) cos(a)

2. cos(2a) = cos*(a) — sin?(a)

2 tan(«)

3. tan(2a) = T tan’(@)

Démonstration. Les démonstrations sont immédiates en utilisant les formules d’addition.

Ainsi, sin(2a) = sin(a + «) = sin(«) cos(@) + sin(a) cos(a) = 2 sin(«) cos(a)

Les autres démonstrations sont laissées au lecteur. O
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21.2.4 Formules de bissection
Propriétés

On a les formules de bissection suivantes pour chacune des fonctions trigonométriques.

.o [ 1 — cos(a)
Lo () = —5
5 cos? (g) 1 + cos(a)

2 2
3. tan? <g) = 1= costa) cos(a)
2 1+ cos(a)

Les démonstrations de ces formules sont laissées au lecteur.

21.3 Equations trigonométriques

Définition 21.6
On appelle équation trigonométrique toute équation comportant des fonctions trigo-
nométriques de I'inconnue (ou des inconnues).

Exemples

1. cos(z)

s
2
2. cos(2x) + 2sin(x) cos(x) = 0

21.3.1 Equations du type sin(z) = ¢
Equation : sin(z) = ¢

Pour résoudre une équation du type sin(x) = ¢, avec |c¢| < 1, on utilise I’équivalence (on
travaille en radians) :

X1
X2

arcsin(c)  +k-2m, keZ

sin(z) = ¢ < { 7w —arcsin(c) +k-2m, ke€Z

On obtient ainsi deux familles de solutions.

Illustration

Le schéma ci-dessous montre les intersections de la courbe y = sin(x) avec la droite
horizontale y = 0.5. Ces points d’intersections correspondent aux solutions de 1’équation :

sin(z) = 0.5

On remarque qu’il existe bien deux familles de solutions : les "ronds” et les ”carrés”.

Chaque famille comprend une infinité de solutions.
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|
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Equation : cos(z) = ¢
Pour résoudre une équation du type cos(x) = ¢, avec |c¢| < 1, on utilise 1’équivalence :

xy = arccos(c) +k-2m, keZ

cos(z) = ¢ = { xe = —arccos(c) +k-2m, keZ

On obtient ainsi deux familles de solutions.

Illustration

Le schéma ci-dessous montre les intersections de la courbe y = cos(z) avec la droite hori-
zontale y = —0.5. Ces points d’intersections correspondent aux solutions de I’équation :

cos(z) = —0.5

On remarque qu’il existe bien deux familles de solutions : les "ronds” et les ”carrés”.
Chaque famille comprend une infinité de solutions.

u = 2 31

Equation : tan(z) = ¢
Pour résoudre une équation du type tan(z) = ¢, avec ¢ € R, on utilise I’équivalence :
tan(z) = c<= x = arctan(c) +k-m, k€Z

On obtient ainsi une famille de solutions.

Illustration

Le schéma ci-dessous montre les intersections de la courbe y = tan(z) avec la droite
horizontale y = 1.5. Ces points d’intersections correspondent aux solutions de 1’équation :

tan(z) = 1.5
On remarque qu’il existe bien une famille de solutions : les "ronds”. Cette famille com-

prend une infinité de solutions.
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1
5%
4 El

Exemples

1. Résoudre léquation : sin(z) = 1.

Comme arcsin(3) = Z, on obtient immédiatement les deuz familles de solutions :

r, = 5 +k- 2w, keZ
— +k- 2w, keZ

— s
1’2—71'6

ou, en simplifiant ’expression des solutions :

Ty = § +k-2m k€eZ
Ty = ‘%” +k-2n, keZ

Remarque : on exprime, si cela est possible, les réponses sous forme exacte.

2. Résoudre ’équation : cos(2x) = —0.75.
Comme arccos(—0.75) = 2.4188, on obtient que :

2vy = 24188 4k 27w, keZ
20 = —2.4188 +k-2m, keZ

On isole alors x1 et xo en divisant par 2 chacun des membres des égalités données
ci-dessus pour obtenir les familles de solutions :

ry = 12094 +k-7, kelZ
o = —12094 +k-7, keZ

Attention : le terme k - 2w est également divisé par 2.

3. Résoudre I'équation : tan(% + I) = /3.

Comme arctan(v/3) = 1.0472, on obtient que :
DT o= 10472 +kem, keEZ

On transforme alors cette expression afin d’isoler x :
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T+% = 104712 +k-m, keZ|-%
7 = 04189 +k-m, keZ|4
T 1.6755 +k-4n, ke Z
21.3.2 Equations du type sin(z) = sin(«)
A
. . . _ . J
Equation : sin(z) = sin(«) A= T
On a deux familles de solutions pour une équation du type 1
sin(x) = sin(«) : L.
5 >
r = « +k-2m, k€Z (angles égaux)
Ty = m—a ~+k-2m, k € Z (angles supplémentaires)
A
Equation : cos(x) = cos(«) J
On a deux familles de solutions pour une équation du type :
cos(z) = cos(a) : o L,
ON—@ |~
r1 = « +k-2m, kE€7Z (angles égaux) !
Ty = —a +k-2m, k€7 (angles opposés) M
Y T
Equation : tan(z) = tan(«) 17
On a une famille de solutions pour une équation du type T+«
tan(z) = tan(a) : / 4 L.
r = a +k-m, k€EZ (angles égaux ou
de différence ) M
Exemples
1. Résoudre I’équation : sin(2x) = sin(x + 7).
On a deux familles de solutions :
211 T+ T +k-2m, keZ
209 = m—(xa+m) +k-2m, keZ
On 1sole alors x1 et xo dans les deux égalités :
201 = w+7 +k-2n, KEZ -2
2r9 = —T9 +k - 2T, kel +X9
r, = 7w +k-27n, keZ
3ry = 0 +k-27m, kel %
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ry, = w +k-2n, kel
ro = 0 —l—k"%ﬂ', keZ
2. Résoudre ’équation : cos(2x) = sin(3x).
On utilise les formules de symétrie dont l'aze est la 1 bissectrice pour se
ramener a une équation simple.
cos(2x) = sin(3x)

cos(2x) = cos(g—?)x)

On a deux familles de solutions :

2r, = 5 — 31 +k-2n, keZ +3x1
209 = —(§ —3x2) +k-2m, kcZ —31,
Sv1 = § +k-27, k€Z %

~Ty = —4 +k-2m, k€EZ (—=1)

—_

v = & +k-im, keZ
= +k- 2w, ke

v
T2 b)

21.3.3 Equations réductibles a une équation de degré 2 en sin(x)
ou cos(z) ou tan(x)

Pour ce type d’équations, on présente ici uniquement une méthode de résolution appliquée
a un exemple.

Exemple

Résoudre I’équation : 4sin®(x) — 3 cos(r) = 3
A Uaide de la relation fondamentale sin®(x) + cos®(z) = 1, on se raméne tout
d’abord a une équation du deuxiéme degré en cos(x).

4-(1—cos*(x)) —3cos(z) —3 =
—4cos?(z) —3cos(z)+1 = 0

On pose ensuite t = cos(x) et on résout l’équation :
A +3t—1=0

Les deuz solutions de cette équation sont t; = i et to = —12.

On résout ensuite chacune des deux équations simples :
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a) cos(z) = 3

ry = 13181 +k-2m, keZ

x9 = —13181 +k-2m, keZ
b) cos(x) = —3

T = %’r +k 27, keZ

Ty = —%’r +k-2m, keZ

21.3.4 Equations du type : acos(z) + bsin(z) = ¢
Idées d’une méthode de résolution
a) Sic=0,a#0,b#0,

on transforme 1’équation a cos(z) + bsin(z) = 0 comme suit :

acos(xr) = —bsin(x)
tan(z) = —%

On utilise ensuite la méthode usuelle pour résoudre une équation du type tan(x) = c.

Pour étre certain de ne pas oublier de solutions, il faut encore tester si la famille
d’angles § + k-7, k € Z, est solution de 'équation de départ (calculs pour 7 et 37”)

b) Sic#0,a+#0,b#0,

on transforme 1'équation a cos(x) + bsin(z) = ¢ en posant :

1 — tan?(%)

cos(x) = Tt (5 ta? (2)

et sin(x) =

On obtient alors une équation du deuxieme degré, au plus, en tan(s), qu'on peut
résoudre en utilisant les méthodes vues précédemment.

Pour simplifier les notations et les calculs, on pose généralement ¢t = tan(%) afin

d’obtenir I’équation

z
2

1—t2+b 2t
1+ t2 142

a =C

Pour étre certain de ne pas oublier de solutions, il faut encore tester si la famille
d’angles m + k - 2w, k € Z, est solution de I’équation de départ (calculs pour 7).

Remarques
1. Une équation du type acos(z) + bsin(z) = ¢ (du premier degré en cos(x) et sin(x))
est appelée une équation linéaire.

2. Les relations entre cos(x), sin(x) et tan(§) peuvent étre démontrées a partir des for-
mules de bissection.

3. D’autres méthodes de résolution sont possibles
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Exemple

Résoudre I’équation cos(z) 4+ 3sin(z) = 3
En exprimant cos(x) et sin(z) en fonction de tan(3) et en posant t = tan(3), on
obtient l’équation :
1—¢? 2t
- 43,2
1+¢2 1+t2
On peut résoudre cette équation en utilisant les techniques habituelles :

=3

1—t*4+6t = 3-(1+1?)
42 —6t+2 = 0

22 —3t+1 = 0
(2t—1)-(t—1) = 0

Les deux solutions de cette équation sont t, = % et to = 1.
On résout ensuite chacune des deux équations simples :
a) tan(%) = 3

L= 04636 +k-m, kel

1 = 09273 +k-27, kEZ

2 =1 +tk-m, keZ
T +k-2m, kel

Finalement, on teste si la famille d’angles : m + k - 2m, k € Z, est solution de
[’équation de départ.

cos(m) + 3sin(m) < 3
-14+0 # 3

T+ k2w, k € Z, nest donc pas solution.
Ainsi, ’équation cos(z) + 3sin(x) = 3 admet comme solutions :

ry = 09273 +k-27, keZ
Ty = 3 +k-2n, keZ
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21.4 Exercices

1) Représenter, dans un méme systeme d’axe Ozy, les fonctions sinusoidales suivantes
données par leur expression fonctionnelle (dessin sur du papier millimétré) :

a) f(x)=sin(x) b) g(x) = 2sin(x) c) h(x) = sin(2x)

d) i(z) =sin (m — g) e) j(z) =sin(zr) + 2

Interpréter les effets des parametres a, b, ¢ et d dans le cas d’'une fonction sinusoidale
a-sin(b- (x —c¢))+d sur la base des représentations graphiques des fonctions ci-dessus.

2) Sans machine, mais en utilisant les symétries du cercle trigonométrique, trouver I’angle

a) du deuxieme quadrant ayant le méme sinus que o = 20°.

b) du troisieme quadrant ayant le méme sinus que § = —50°.
. . . 3T

¢) du troisitme quadrant ayant le méme cosinus que vy = i
T

d) du quatrieme quadrant ayant le méme cosinus que 6 = r
e) du quatrieme quadrant ayant le méme sinus que e = 200°.
f) du deuxiéme quadrant ayant le méme cosinus que ¢ = 260°.

s . . T

g) du deuxieme quadrant ayant le méme cosinus que 7 = i

3) Exprimer les valeurs suivantes au moyen de cos(x) ou sin(x) uniquement :

a) cos(x + 2m) b) sin(z + 67) c) cos(—x) d) sin(—x)
e) cos(m+ ) f) sin(w + 2) g) cos(m — x) h) sin(m — z)
i) cos(§ — ) j) sin(§ — )

4) Sans machine, mais en utilisant les propriétés de périodicité et de symétries du cercle
trigonométrique, donner la valeur exacte de :

a) cos (%ﬂ) b) sin (%ﬂ) ¢) cos (_%ﬂ) d) sin (11?7?)
Val®) v o) ow(®)

5) Etablir les égalités toujours vraies suivantes :

a) sin(Z +1t) — sin(Z — ¢) = v/2sin(t)
sin(§ +t) + cos(3 +t) = cos(t)

_ cos(a) +sin(a)

)

) ~ cos(a) — sin(a)
d) cos(a + b) cos(a — b) = cos?(a) — sin?(b)
_ tan(?)
) ~ cos(2t)

tan(2t) — tan(t)
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6) Résoudre les équations suivantes en donnant les solutions en radians.

1 . (T V3
a) cos(3t —m) = 5 b) sin (5 — 2t> =
1
c) —cos(2t) = ? d) —sin(2t+1) = 5
t V2 (ot 1
e) COS<1_27T)+7—0 f) Sm<§_1>_§_0
g) tan(?)t—f):—E h) 1—tan<z—\/§-t)20
4 3 6
7) Résoudre les équations suivantes en donnant les solutions en radians.
: 4 (T t 27
a) sin (215 — 5) = sin (Z — 3t) b) cos(5t) = cos (6 — ?)
4
¢) sin <2t - z) = cos | =3t + on d) cos(4t) =sin | 3t — ll
3 6 5
. 7T ™ T . ™
e) sin <2t - 5) + cos <4t — Z) =0 f) cos <€ - 5t> + sin <3t - 6) =0
v v
g) tan(2t — 3m) = tan(3t — ) h) tan (21& + Z) + tan <g — t) =0
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21.5 Solutions des exercices

2) a) 160° b) 230° c) =& d) 4r
e) 340° f) 100° g) impossible
3) a) cos(x) b) sin(x) c) cos(x) d) —sin(x)
e) —cos(x) f) —sin(z) g) —cos(x) h) sin(x)
i) sin(x) j) cos(x)
V2 1 1 1
4 e b) = —= d) —=
) ) Y ) 3 ) ) -
1 V2 V3
- fn — ve h) 2
) 3 ) V3 0 Y ) ¥
t, = 4. 27 t, = 4+ L.
RO S b4 B
tg = 7—‘—]{3? t2 = —ﬁ—‘—kﬂ'
0 th = X +k-w Q ty = 2T +k-w
ty = =2 +k-w ty = T+ k-x
e) ty, = 3m+k-87 f) t 2?”%—1{:-87?
tg = —371'—'—]{7877' tg —277'—'—]{7877'
g t = Z+k-T h) ¢t = Y204 f. Y2
t, = 3T 4 f.20 t, = —4m 4 .12
7) a) 1 205j 5 b) 1 47r29 + 127r29
ty = —F+k-2m ty = ¥4k 2n
ty = k-2 ty, = B4k 3E
c) ! - " o d) ' 7013;L '
t2 = 3 + k 5 t2 = TT0 + k-2
SR R R
tg = 3 + k- 3 tg 15 + k-m
g) t = k-7 h) ¢t = -5 +k-n
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Chapitre 22

Limites

22.1 Notion de limites

22.1.1 Exemple introductif

Soit la fonction f(x) = % Le domaine de définition de cette fonction est
Dy =R\ {1}.

Nous allons examiner le comportement de la fonction f pour des valeurs de x proches de
a =1, car elle est indéfinie en ce point, puisqu’on aurait %.

Méthode numérique :

On construit un tableau de valeurs pour un certain nombre de valeurs de x proches de
1. On s’approche de @ = 1 en venant depuis la gauche (= en prenant des nombres
plus petits que 1) et depuis la droite (= en prenant des nombres plus grands que 1).
D’apres le tableau ci-dessous, on voit que lorsque x est proche de 1 (de part et d’autre),
les valeurs de f(x) sont proches de 2.

gauche — a — droite
x 0.9 0.99 | 0.999 | 0.9999 1 1.0001 | 1.001 1.01 1.1
f(x) || 1.6200 | 1.9602 | 1.9960 | 1.9996 | indéfini | 2.0004 | 2.0040 | 2.0402 | 2.4200

Méthode graphique :

On donne ci-dessous la représentation graphique de la fonction f sur un voisinage de
a = 1 (= intervalle ouvert qui contient 1). On peut effectuer le méme constat que ci-
dessus lorsque x s’approche de 1.

f(x) 1
s’approche 2 |-
de 2 T

|
|
F |
|
\ i
L I L L x

— ] —

quand x
I s’approche de 1
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Conclusion :

Il semble qu’on puisse rendre les valeurs de f(x) arbitrairement proches de 2 en choisissant
. . . c 2

x suffisamment proche de 1. C’est le sens de 'expression "la limite de f(x) = 2962%?

quand z s’approche de 1 est 2”7. Cela s’écrit :

203 — 222
lim =" =9
r—1 x€xr — 1
Remarques :

On a I'égalité suivante si x # 1 et donc si z € Dy :

22 — 2% 22%(x —1)
r—1  x-1

= 212

fz) =

En considérant g(z) = 2% au lieu de f(x), on retrouverait exactement le méme tableau
de valeurs et la méme représentation graphique, sauf pour x = 1. Cette remarque sera
importante pour le calcul de limites dans la suite du cours.

22.1.2 Définitions

Définition 22.1
On appelle un voisinage du nombre réel a un intervalle I ouvert contenant a.

Exemples

1) I =] —2;4] est un voisinage de 1,

2) I =]a—0d;a+ 90| est un voisinage du nombre réel a pour tout nombre réel § > 0.

Pour la suite de ce paragraphe, on considere une fonction f définie sur un voisinage d’un
nombre réel a, sauf éventuellement en a.

Définition 22.2

Le nombre L est limite de f en a si on peut rendre les valeurs de f(x) arbitrairement
proches de L (aussi proches qu’on le veut) en prenant x suffisamment proche de a (a
gauche ou a droite), mais non égal a a.

On note :

lim f(x) =L

Tr—a

On dit encore que f(x) tend vers L quand x tend vers a.

Remarque

Si elle existe, la limite de la fonction f en a est unique.

La proposition "mais x # a” dans la définition de la limite signifie que dans la recherche
de la limite de f(z) quand z est proche de a, on n’envisage jamais z = a. En fait, f(z)
ne doit méme pas étre définie en a. La seule chose qui importe est que f soit définie tout
a coté de a.

La notion de limite est particulierement utile pour déterminer le comportement du graphe
d’une fonction au voisinage d'un trou, d’'un saut ou d’'un bord de son domaine de
définition. Ces trois notions sont illustrées ci-dessous.
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Yy
y=f(z)
Ly |F----
Ly p----5 y
|
|
l
T — ('1 X x
trou saut bords

On a donné une définition de la notion de limite qui a du sens en frangais mais qui
ne s’appuie pas sur des concepts mathématiques formels. Il est possible de donner une
définition plus rigoureuse de cette notion, ce que nous faisons ci-dessous.

Définition 22.3 (Définition en ¢ - §)
Le nombre L est limite de f en a si, pour tout € > 0, il existe § > 0 tel que

O<|z—a<d=|f(x)—L|<e

Illustration

Les représentations graphiques ci-dessous illustrent cette définition formelle. Des que

e > 0 est fixé, on trace les droites horizontales y = L+¢, y = L —¢ et la courbe y = f(x)

(voir la figure de gauche). S’il est vrai que lim f(z) = L, alors on peut trouver un nombre
Tr—a

d > 0 tel que si z n’est autorisé a varier que dans l'intervalle Ja — §; a + [ tout en restant
différent de a, alors la courbe y = f(z) se trouve entre les droitesy = L —cet y = L+¢
(voir la figure de droite). On voit aussi que, dés qu’un tel ¢ est trouvé, n’importe quel §
inférieur convient aussi.

Il est important de prendre conscience que le résultat illustré dans les figures ci-dessous
doit étre vrai pour tout nombre positif €, aussi petit soit-il.

Y Yy
y = f(=) y = f(=)
L+5\ y=L+e L+5\ y=L+e
Sy f0) | ST —=—======
est ici
L—?A y=L—-¢ L_?l y=L—¢
: v ZERN o
a—0«a+9
quand x est ici
(2 # a)
Exemples

Soit la fonction h(x) définie sur R\ {2} et donnée par son expression fonctionnelle :
—2z+4+3 s oz <1
h(zx) =< 2 si x=1
—r+4 s l<z<2oux>2

On donne sa représentation graphique ci-dessous.
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Quelques limites :

1. liI% h(z) =1 — On peut rendre h(x) arbitrairement proche de 1 en prenant x
z—
suffisamment proche de 3. (Ici : h(3) =1.)

2. lin% h(x) =2 — On peut rendre h(zx) arbitrairement proche de 2 en prenant x
z—
suffisamment proche de 2. (Ici : h(2) n’est pas définie.)

3. lirr% h(z) n’existe pas — Si x est proche de 1 en étant strictement plus grand
—

que 1, h(x) est proche de 3, alors que si x est proche de 1 en étant strictement
inférieur a 1, h(z) est proche de 1. On ne peut donc par rendre h(x) arbitraire-
ment proche d’un nombre L en prenant x suffisamment proche de 1 avec x # 1.

(Ici : h(1) = 2.)

Limite a droite, limite a gauche

Définition 22.4
Soit f une fonction définie sur un intervalle de la forme ]a; d].

Le nombre L est limite a droite de f en a si on peut rendre les valeurs de f(x) arbi-
trairement proches de L en prenant x suffisamment proche de a et strictement supérieur
aa (x> a).
On note :

lim f(z)=1L

z—at

Soit f une fonction définie sur un intervalle de la forme |g; al.

Le nombre L est limite & gauche de f en a si on peut rendre les valeurs de f(x) arbi-
trairement proches de L en prenant x suffisamment proche de a et strictement inférieur
aa (r<a).
On note :

lim f(z)=1L

r—a
Proposition 22.1
Soit f une fonction définie sur un voisinage de a, sauf éventuellement en a.
La comparaison des définitions d’une limite et d’une limite a droite, respectivement a
gauche, implique que

lim f(z) =L <= lim f(x)=L et lim f(x)=1L

T—a z—at T—a—
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Exemples

On considere a nouveau la fonction h de l'exemple précédent. Quelques exemples

de limites :
2~ . B
e lim h(z) =2 = lim h(z) =2
z—2t
e lim h(z)=1
r—1— . , '
e lim h(z) = - 9101_{1} h(x) n’existe pas.

22.2 Propriétés et calculs de limites

22.2.1 Limites de fonctions élémentaires
A partir de la définition de la limite en a, on peut déterminer facilement celle-ci pour des

fonctions élémentaires.

Proposition 22.2
Soit a,c € R. Alors :

e limc=c o limzr=a
T—a r—a
e limsin(z) = sin(a) e lim cos(x) = cos(a)
T—a Tr—a
e lim |z| = |q o lim\z=+/a (sia>0)
T—a Tr—a
Exemples
1) limz =3
z—3
2) lim cos(z) = cos(m) = —1
T—T

22.2.2 Propriétés

Proposition 22.3
Soit A un nombre réel et f, g deux fonctions réelles. Supposons que les limites

lim f(z) et limg(z)

rT—ra T—ra

existent. Alors :

L lm{f(w) + g(@)] = lim f(a) + lim g(x)

rT—ra rT—ra

2. lim[f(x) — g(z)] = lim f(z) — lim g(x)

T—a T—a T—a
3. lim[Af(x)] = A-lim f(2)
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4 Hm[f() - g(e)] = I () - lim g(a)
 fw) B fl)
e T g Y EI7O

Il n’est pas difficile de croire que ces propriétés sont vraies. Par exemple, si f(x) est pres
de L et g(x) pres de M, il est raisonnable de penser que f(z) + g(x) est pres de L + M.
Par contre, toutes ces lois ne peuvent étre démontrées formellement qu’en utilisant la
définition rigoureuse d’une limite, ce que nous ne ferons pas ici.

En utilisant de fagon répétée la loi du produit dans le cas g(z) = f(x), on obtient les lois
données ci-dessous.

Proposition 22.4
Soit n € N* et f une fonction réelle tel que lim f(z) existe. Alors :
Tr—a

6. lim[f(2)]" = [lim f(z)]"

r—a r—ra

7. limz" =a"
r—ra

De maniere semblable, on a les lois suivantes pour les racines.

Proposition 22.5

Soit n € N* et f une fonction réelle tel que lim f(z) existe. Alors :
Tr—a

8. lim /f(z) = ¢/lim f(z)

Tr—a Tr—a
(Dans le cas ol n est pair, on suppose lim f(x) > 0)
r—a
9. lim ¥z = Va
T—a

(Dans le cas ou n est pair, on suppose a > 0)

22.2.3 Calculs de limites

Pour calculer les limites, on va les classer en différentes catégories, puis on développera
des techniques de résolution pour chacune de ces catégories.

Calcul d’une limite a ’aide des propriétés

Les propriétés des limites données au paragraphe précédent seront tres utiles pour calculer
certaines limites ou il est possible, par quelques transformations, de se ramener a des
limites de fonctions élémentaires.
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Exemples

1) Calculer : lin}’(2x2 — 3z +4).
T—

. 2 _ . 2y 1 . .
9161_>Iré(2x 3z +4) 9161_>Iré(2x ) il_)n}’(?)x) + il_)n})ll (lois 1, 2)
= 2lima2? — 3limaz + lim 4 (loi 3)
T—5 T—5 T—5
= 2-52-3-5+4 (lois 7, fct. élém.)
= 39

3+ 222 — 1
2) Calculer : lim ——————.
) Calculer Jim ————

On va utiliser la loi 5 au départ méme si on n’est pas certain que la limite du
dénominateur ne soit pas nulle. Ce n’est qu’a la fin qu’on pourra juger de la
validité des calculs.

lim (2% + 227 — 1)

23+ 222 — 1 o—2
i I — loi 5
eots 5 3z lim (5 — 32) (t0i 3)
T——2
lim2 342 lim2 x? — lim2 1
Tr—r— xr—— r——
— lois 1, 2, 3
lim 5— 3 lim (lots 1, 2, 3)
T——2 T——2
—2)3 42 (=22 — 1
= (=2)°+2-(=2) (loi 7, fct. élém.)
5—-3-(-2)
B 1
11

3) Calculer : lim /322 — 3

r—4
On va utiliser la loi 8 au départ méme si on n’est pas certain que la limite du
radicande soit strictement positive. Ce n’est qu’a la fin qu’on pourra juger de la
validité des calculs.

lim 322 -3 = /lim32? —3 (loi 8)
z—4 z—4
= 3limx? — lim 3 (lois 2, 3)
r—4 r—4
= 3-42-3 (loi 7, fet. élém.)
= /45

Remarque

Si f(x) = 22? — 3z + 4, alors f(5) = 39. En d’autres mots, on aurait obtenu la réponse
exacte dans la partie 1 de 'exemple ci-dessus en substituant 5 a x. De la méme maniere,
la substitution de —2 a z dans la partie 2 et de 4 a x dans la partie 3 conduisait a
la réponse correcte. Les fonctions de cet exemple sont une fonction polynomiale, une
fonction rationnelle et une racine d’une fonction polynomiale. L’application des lois des
limites dans de tels cas montre que la substitution directe marche toujours.
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Proposition 22.6
Si f est une fonction polynomiale ou rationnelle (quotient de deux polynémes) et a un
point de son domaine de définition, alors :

lim f(z) = f(a)

r—a

Calcul d’une limite du type g

On considere, dans ce paragraphe, une fonction f qui est le quotient de deux fonctions

N(x) et D(x),f(x) = ggg, et on cherche a calculer sa limite en un nombre réel a :

Trois cas peuvent se présenter :
e Cas 1:lim N(z)=cet limD(z) =d#0 (a € Dy)

r—a Tr—a

s NE _c

On peut utiliser la loi 5 et on obtient 9161231 f(z) = T D@ = g

e Cas 2 : lim N(z) =c# 0 et lim D(z) =0 (a ¢ Dy)

r—a r—a

La limite n’existe pas. On reviendra sur ce cas au paragraphe (22.3.3).

e Cas 3 : lim N(x) =0et lim D(x) =0 (a ¢ Dy)

Tr—a Tr—a

Définition 22.5
Si le numérateur N(z) et le dénominateur D(z) tendent tous les deux vers 0, on dit

0
que la limite a une forme indéterminée du type 0 (g est indéterminée car k-0 = 0,
Vk € R).

Lorsque le calcul d'une limite conduit a une ”expression” du type %, on ne peut conclure
de maniere immédiate, il est en général nécessaire de transformer I'expression de f(z).
a) Si N(z) et D(z) sont des polynémes

Comme N(x) et D(x) sont des polynémes, on a les égalités suivantes d’apres la pro-

position (22.6) :
lim N(z) = N(a) =0 et lim D(z) = D(a) =0

rT—a T—a

Ainsi, comme N(a) = 0, a est un racine de N(z) et donc N(z) est divisible par = — a.
De méme, comme D(a) = 0, D(x) est divisible par x — a.

Avec ce constat, on calcule lim f(z) de la maniére suivante :
Tr—a

1. factoriser N(z) et D(x) en faisant apparaitre le facteur z—a (toujours possible),

2. simplifier la fraction f(z) = % par  — a — on obtient une fraction plus

simple qu’on nomme g(zx),

3. calculer lim g(z).
T—a
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Exemple

2

—1
Calculer : lim * )

z——1 1+ 1

0

Forme indéterminée g avec un polynome au numérateur et au dénominateur.

2 10 1)z — 1
el S P U Cnit) NS H R L S S
z—=—-1 x4+ 1 z——1 x+1 z——1

Justification de la méthode de calcul utilisée dans ’exemple : Le procédé qui consiste
a remplacer f(z) = f:;ll par une fonction plus simple g(z) = = — 1 est valide car
f(z) = g(x) sauf quand = = 1 et car le calcul de la limite pour x tendant vers 1 est
indépendant de ce qui se passe lorsque z est €gal a 1. De fagon plus générale, on peut

s’appuyer sur le résultat suivant.

Proposition 22.7

Si f(z) = g(x) lorsque = # a, alors lim f(z) = lim g(x), & condition que ces limites
T—a Tr—a

existent.

b) Si N(z) et/ou D(z) ne sont pas des polyndémes

Dans certains cas, on peut suivre le méme schéma que ci-dessus et simplifier la fraction,
apres transformation de cette derniere.

Exemple

Calculer : lim Vo =2

r—4 r — 4 ’
Forme indéterminée : %. On peut factoriser le dénominateur en utilisant les iden-
tités remarquables :

lim Y2 =25

im
r—4 T — 4

Vo —2 . 1 1

Vi oWaty AhVETe 1

ou amplifier la fraction par le conjugué du numérateur :

VE<2} . (VE-D(WE+Y o w—d

1 1
lim ——— =
pol x4 aod (2 —4)(yT12) roi(z—4)(yT12) sivzt2 4

Dans d’autres cas, il faut une autre méthode, par exemple numérique (voir I’exemple intro-
ductif). Nous verrons dans le chapitre consacré aux dérivées, le théoréme de I’Hospital,
qui pourra également étre utilisé dans ces cas.

Calcul d’une limite par le théoréme des deux gendarmes

Théoreme 22.8
Soit f et g deux fonctions définies sur voisinage I de a, sauf éventuellement en a.

Si f(x) < g(x) pour tout = € I\ {a} et si lim f(z) et lim g(z) existent, alors
Tr—a T—a

lim f(z) < lim g(x)

rT—ra rT—ra

Théoréme 22.9 (Théoreme des deux gendarmes)
Soit f, g et h trois fonctions définies sur un voisinage I de a, sauf éventuellement en a.
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Si f(z) < h(x) < g(z) pour tout z € I\ {a} et si lim f(x) = lim g(x) = L existent, alors
T—a

r—a

lim h(z) = L

rT—ra

Ces deux théoremes peuvent se démontrer a partir de la définition formelle d’une limite.

Une illustration graphique du théoreme des deux gendarmes est donnée a I'exemple ci-
dessous.

Exemple

1

x) = 0. Comme

1
—1 <sin (—) <1
T

pour tout x € R\{0}, on a, comme le montre la représentation graphique ci-dessous,

Montrer que : lim 22 sin (
z—0

Par ailleurs, on a que

lim(—2%) =0 et limz® =0

z—0 z—0
Le théoréme des deuzx gendarmes, appliqué auz fonctions f(x) = —a?, g(x) = 2*
et h(z) = a?sin(L), conduit ¢ la conclusion

1
lim 22 sin (—) =0
z—0 x

Une limite importante pour la suite du cours peut aussi étre calculée a ’aide du théoreme
des deux gendarmes (voir les exercices)

sin(x)

lim

z—0 €x

=1
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22.3 Extensions de la notion de limite

22.3.1 Limites infinies

Exemple introductif

Prenons la fonction f(x) = (z_ll)g. Cette fonction est représentée graphiquement ci-

dessous.

-4 -3 -2 -1

|
|
|
|
|
|
|
|
|
|
|
:
|
|

D’apres cette représentation, les valeurs de f(x) = %1)2 peuvent étre rendues arbitrai-
rement grandes pourvu que x soit suffisamment proche de 1. Par conséquent, les valeurs
de f(x) ne s’approchant pas d’un nombre, lirri f(z) n’existe pas.

x>

On traduit ce comportement par ’écriture : lin% f(x) = +oo.
T—r

Le symbole de l'infini (00) ne représente pas un nombre réel. Ce symbole est employé pour
décrire le comportement d’une fonction lorsque les valeurs de son domaine de définition
ou de son image dépassent toute borne finie. On ne peut pas utiliser ce symbole de la
méme fagon qu'une valeur quelconque.

22.3.2 Définitions

Soit f une fonction définie sur un voisinage de a, sauf éventuellement en a.

Définition 22.6

On écrit lim f(x) = 400 si on peut rendre les valeurs de f(x) arbitrairement grandes
Tr—a

(aussi grandes qu’on le souhaite) a condition de prendre x suffisamment proche de a,
mais non égal a a.

On écrit lim f(z) = —oo si im(—f(x)) = +o0
T—a Tr—a
On définit de maniere semblable lim f(z) = 400, lim f(z) = —oo, lim f(z) = +o0 et
z—at z—at T—a~
lim f(x) = —o0.
Tr—a~

22.3.3 Propriétés et calculs de limites infinies
Propriétés

Les propriétés des limites (page 353) ne se généralisent pas sans autre aux limites infinies.
Cependant, un certain nombre d’entre elles restent valables. Par exemple
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1. lim f(z) = L et lim g(x) = 400 = lim[f(z) + g(z)] = +o0
T—a T—a T—a
2. lim f(x) =L <0etlimg(z) =400 = lm[f(z)- g(x)]=—o0
T—a T—a z—a
3. lim f(z)=L#0etlimg(z)=0 = lim J(2) = 400
T—a T—a z—a | g [L’)
o fla)
4. lim f(x) = L et lim g(z) = £oo = lim =0
r—a r—a r—a g(.ﬁ(})
On peut se convaincre intuitivement de ces propriétés.
Calcul d’une limite du type g
Soit f(z) = ggg avec N(x) et D(z) deux fonctions. On cherche a calculer lim f(x) dans
Tr—a
le
e Cas 2: lim N(z) =c#0et lim D(z) =0 (a ¢ Dy)
Tr—a Tr—a

de la page 356. D’apres la propriété 3 ci-dessus, cette limite est "00” (en considérant une
valeur absolue). Il reste a déterminer si f(x) tend vers +o0o, —oco (méme comportement
de f(z) a gauche et a droite de a) ou aucun des deux si le comportement de f(z) est
différent a gauche et a droite de a.

Pour ceci, on calculera les limites a gauche et a droite en a en se basant sur le
tableau ci-dessous résumant 1’ensembles des cas possibles.

N(x)
D(m) c>0 c<0
0t 400 —00
0~ —00 +00

avec les notations :
0% : la valeur de D(x) s’approche de 0 par des valeurs positives lorsque x s’approche de
a (par la gauche ou par la droite),

0~ : la valeur de D(z) s’approche de 0 par des valeurs négatives lorsque = s’approche de
a (par la gauche ou par la droite).

Exemples
1
]) Calculer : il_)ﬂ{ m
li ! = +
° im =
ol (12 0 1
1 0 :>3131_>Hi7(x_1)2:—|-00
e lim C 4o
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Tz —2
2) Calculer : lim
x—1  — 1
r—2 =
e lim L +o0 -
z—=1-xr —1 . = lim n’existe pas.
e lim = —o0
=1+ — 1

Formes indéterminées

Lorsqu'un calcul de lim f(z) conduit & des ”expressions” du type ci-dessous
r—a

el oo — OO

813

0
0

appelées formes indéterminées, on ne peut pas conclure de maniere immédiate ; il est
en général nécessaire de transformer I'expression f(z).

Exemple

1

Calculer : lim =72
z—1 27

Forme indéterminée : 2. Il faut donc transformer expression de f.

1
z—1 1 00- 2_1¢ 1 -1
lim o1 lim . (1’2 _ 1) :0 lim x 9 lim (SL’ + )(I )
ol 5y =12 — =1 x— 1 z—1 r—1

-1
lim(z + 1) =2
z—1

1318

22.3.4 Limites a Pinfini

Exemple introductif

Au paragraphe précédent, nous faisions tendre x vers un certain nombre et il en résultait
des valeurs arbitrairement grandes (positives ou négatives) pour f(x). Ici, nous rendons
x arbitrairement grand et regardons ce qui en résulte pour f(z).

Prenons la fonction f(z) = ii;} Cette fonction est représentée graphiquement ci-dessous.

Plus les valeurs de z sont grandes (négatives ou positives), plus les valeurs de f(x) sont
proches de 1. On peut méme rendre les valeurs de f(z) aussi proches qu’on veut de 1, a

condition de prendre des valeurs de z suffisamment grandes.
. , . , . . 2_ . 2_
Ceci s’écrit mathématiquement lim %= =1et lim &L= =1.
z—+oco T +1 x——o0 ¥ +1
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Définition

Définition 22.7
Soit f une fonction définie sur un intervalle de la forme [a; +o00].

On écrit lim f(z) = L si on peut rendre les valeurs de f(x) arbitrairement proches de
T—+00

L a condition de prendre z suffisamment grand.

Soit f une fonction définie sur un intervalle de la forme | — co; al.

On écrit xEerf(m) = Lsi xl_l}r_’l_loo f(—=z)=L.

Voici la représentation graphique de quelques fonctions qui vérifient lim f(x) = L.

T—+00
\\ y=1 \\

y=1 y = f(x)

Cas particulier : fonctions polynomiales et fonctions rationnelles

Théoreme 22.10
La limite d’'une fonction polynomiale lorsque x tend vers +oco (respectivement —oo) est
égale a la limite de son terme de plus haut degré.

Démonstration.

. . Qp—1 1 Ap—2 1 ag 1
lim (a,z2" +...+ @z +ay) = lim a,z"(1+ "——4+ "2 4. —0—)

x5 +oo z5+oo an, T ay T2 Qp X"

—— =
—0 —0 —0
= lim (a,z")
r—+o0o

Théoréme 22.11
La limite d’une fonction rationnelle lorsque = tend vers +oo (respectivement —oo) est
égale a la limite du quotient des termes de plus haut degré.

Démonstration.

an " <1+%—’11+a"’2x—12+...+a—°L)

apr” + ...+ a1+ ap . an an an T
T TRy NP b b

T—=+00 0,,T 1T 0 T—>L00 m m—1 1 m—2 1 bo 1
bmllf 1+ bmx+ bm m2+"'+bmmm

0 si n<m

. a,x" an .
= lim = — Sl n=1m
z—+oo b, L™ b

+o00 S n>m
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Exemple

. 222422 —15
CCZZC’LLZGT’ N m1—1>r-£loo m

1l suffit de calculer la limite des termes de plus haut degré.

222

lim

Une limite célebre : le nombre ¢

+2x — 15 . 212
- = lim — =
z—+oo 322 + 8x + 12 a—+oo 372

Dans le chapitre consacré aux exponentielles, nous déja déja rencontré une limite ” célebre”
en donnant la définition du nombre d’Euler, e (dont la valeur est 2.718281828459. . ) :

e =

1 x
lim <1 + —)
T——+00 €T

1 xX
De plus, on a aussi : e = lim <1 + —) )
x

T——00

1 €T
La représentation graphique de la fonction f(z) = (1 + —) est donnée ci-dessous.
x

W s O O 9
T

Remarque

On peut facilement se tromper en faisant des raisonnements qui semblent justes. On
pourrait en effet se dire que quand z tend vers I'infini, % tend vers 0, et qu’il reste alors
1 puissance infini, donc 1. Or ce n’est pas le cas comme le montre le calcul de quelques
valeurs de f(z) pour x suffisamment grand.

On a aussi : im(1 +y)v = e
y—0

1

En effet, en substituant y a _, on retrouve la premiere limite (a remarquer que, quand

x — Fo0, y — 0 car y = 1).
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22.4 Limite et convergence d’une suite
22.4.1 Définitions

Exemple

n
2n+ 1
On donne ci-dessous quelques termes de cette suite.

On considére la suite (u,) donnée par u, =

n| 1 2 3 | 10 | 20 | 50 | 100 | 500 | 1000

1 2 3 | 10 | 20 | 50 | 100 | 500 | 1000
e 5 7 | 21 | 41 | 101 | 201 | 1001 | 2001
=~ | 0.333 | 0.400 | 0.428 | 0.476 | 0.488 | 0.495 | 0.4975 | 0.4995 | 0.4997

On observe que les termes de la suite croissante (u,) s’approchent de plus en plus

du nombre — lorsque l'indice n devient grand. On peut alors déterminer les indices

1
n pour lesquels la différence entre 3 est inférieure a un milliardiéme, soit 1072)

On a
1 1 n 2n+1—2n 1
__un:__ — —
2 2 2n+1 2(2n+1) dn + 2

et la condition

9

< n = 249'999'999.5 < n

<10°=10<4n+2=
4dn + 2

Ainsi, cette différence est inférieure a 1072 pour n > 250000'000.

En suivant I'idée de la définition de la limite d’une fonction, on peut également définir la
notion de limite d'une suite.

Définition 22.8
Soit (u,) une suite infinie. Un nombre réel L est appelé limite de la suite (u,), et on

note L = lim w,, si u, est arbitrairement proche de a des que n est suffisamment grand.
n——+0o0o

Lorsqu’une suite infinie admet un nombre limite L, on dit qu’elle converge vers ce
nombre. Une suite infinie qui ne converge pas diverge.

Il est possible de donner une définition plus rigoureuse de cette notion.

Définition 22.9 (Définition en ¢ - §)
Le nombre L est limite de la suite (u,) si, pour tout € > 0, il existe p € N tel que

n>p=—lu,— L] <e

Illustration

Dans la représentation graphique ci-dessous, on a représenté une suite (u,) par un en-
semble de points. Chaque point admet comme premiere coordonnée le rang d’un terme
de la suite, n, et comme deuxieme coordonnée le terme de la suite associé, u,,.
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On a ensuite fixé une valeur de € arbitraire et on a tracé les droites horizontales y = L+¢,
y = L —e. Comme la valeur |u, — L| mesure la proximité du terme w,, de la limite L,
on peut remarquer que, si un point se trouve entre les deux droites horizontales (dans
la surface jaune), la condition |u, — L| < & est vérifiée. Si un point se trouve hors de la
surface jaune ou sur une des deux droites, on a alors que |u, — L| > «.

S’il est vrai que lim w, = L, alors on peut trouver un nombre p € N tel que, si n > p,
n——+0o00

les points représentant les termes de la suite se trouvent tous entre les deux droites. On
voit aussi que, des qu'un tel p est trouvé, n’importe quel p supérieur convient aussi.

Pour que la limite existe, il faut que le résultat illustré dans la figure ci-dessous soit vrai
pour tout nombre positif €, aussi petit soit-il.

L+a\ . o

(n, ugn)

L—E/ (O,UO)

L]
-
e
g
W —— —e] -

Exemples
2n —1

1. Soit la suite (u,) définie par u, =

Cette suite (u,) est convergente car elle admet 2 pour limite en +00. En effet,

1 1 1
=— et —<edés quen > - Le plus petit p possible est
n o n

alors la partie entiere de —.
€

An? +1

2. Soit la suite (v,) défini n =
oit la suite (v,) définie par v 52

4
Cette suite (v,) est convergente car elle admet 3 pour limite en +00. En effet,

L L o e s petit
—=| = — et — < e des que n > ——. Le plus peti
32 3| 32 32 1 Jae e pemp

on a que

possible est alors la partie entiere de ——.

V3e

3. Comme lirf (—1)™ n’existe pas, la suite((—1)") diverge.
n—-+00

22.4.2 Propriétés

Théoréme 22.12
Si une suite admet une limite, cette limite est unique.

On parlera donc de la limite d’une suite convergente.

page 365



Mathématiques, MAP 197 année 22. Limites

Théoreme 22.13
Une suite croissante et majorée converge.

Une suite décroissante et minorée converge.

Une suite monotone et bornée converge.

Ce théoreme permet de démontrer la convergence de certaines suites, mais non d’en
calculer la limite.

Démonstration. On considere, par exemple une suite (u,,) croissante et majorée. On note
L le plus petit de ses majorants. Etant donné un réel strictement positif, il doit exister
au moins un terme, noté u,, appartenant a l'intervalle |L — ¢, L], sinon L ne serait pas le
plus petit majorant de la suite (le nombre L — ¢ serait alors un majorant de la suite plus
petit que L).

La suite (u,) étant de plus croissante, on a u, < u, < L a partir du rang p. Ainsi, si
n > p, alors |u, — L| < e. O

Exemple

On consideére la suite (u,) définie par

(751 =1
Up+1 = 3un

Cette suite est croissante et majorée (démonstration par récurrence), donc conver-
gente.

Théoreme 22.14
Une suite convergente est bornée.

Remarques
1. La contraposée de ce théoreme est un critere de divergence. Une suite qui n’est pas
bornée diverge.

2. La réciproque de ce théoreme est fausse. La suite définie par u,, = (—1)", n € N*| est
bornée mais pas convergente.

Théoreme 22.15
Si (uy) et (v,) sont deux suites qui convergent respectivement vers L et M, et si A est
un nombre réel, alors :

1. la suite de terme général u,, + v,, converge vers L + M ;
2. la suite de terme général A - u,, converge \ - L;

3. la suite de terme général u,, - v,, converge vers L - M ;

. U L .
4. la suite de terme général — converge vers 2 S M # 0 et v, # 0 pout tout n.
n

Ces propriétés découlent directement des propriétés générales des limites.
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Exemples

On montre aisément que la suite (%), avec n € N*, converge vers 0 et que toute
suite constante (u, = \) converge vers \. Le théoreme précédent permet alors d’en
déduire que la suite de terme général

_3n+1 1

1. uy, = 3+ — converge vers 3 ;
n n
P 2n—-3 2 3 2
C Uy = =—- - — T TS = ;
u - =~ . converge vers

1 1\’
3. up =— = | —| converge vers0;
n n
m?—2m+3 nP(2-2+3) 2-243 2
= = = converge vers —.
Bn? — 7 n? (5 — 5 5— & J 5

_|_

4. Un
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22.5 Exercices

1) Calculer, si elles existent, les limites suivantes :

a) lim 522 — Tox — 52
a4 —222 + 51 + 12
322 — 142 — 5
<) s — 25
o) lim 2% — bxr — 12
=3 —x2 + 6x — 9
202 + 7w — 15
g)

o525 322 + 11z — 20

mx2—3x+2
1 —_—
z—4 32 — 6x + 8
o ot 4+ 322 -4
P e
—2%2 4+ 6x—9
f) 1
) e 318
222 + 122 + 18
im
t—-3 222+ Tz + 3

2) Calculer, si elles existent, les limites suivantes :

-1
\/ +3 2
¢) lim V2zrcr+1-3
1m
x—>4,/1’_2_\/§

.zt + |
e) lim ———
=0 12 — ||
. 2sin (%)
o 1"
o2
) lim 1 — cos®(2x)
z=0 x - tan(2x)
2
k) lim sin®(x)
z—m - (14 cos(x))
m) lim x - sin(z)

z—0 1 — cos(x)

V5 — =3+ 4z

b) :1:1—% 2 —4
/55 =9
d) hm
e=5/2x —1—3
f) lim u
==0 [22] — |3z]
h) lim 37 - sin (5)
z—0 6[1;'2
: 2
i) lim 1 + sin®(z)

z——32  cos(x)

. tan®(5x)
1) lim —————~
) ro0 1 — cos(4x)

n) lim —3 + cos(2z)
z—=2 1 — cos (% — x)

3) Calculer, si elles existent, les limites suivantes ( lim et lim séparément) :

(2x — 3)3

c) lim vVa?2+3x—1—x

r—+o0
V42 +1 -2
e) lim
z—Eoo /312 41 — 2

r——00 r——+00

, (fx— 3)? — 222

d) lim z—+Va2-8zr+1

r—*+00

£ 1 20 — /922 — 4
ortoo V2x% 4+ 5x — 3
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4) Calculer, si elles existent, les limites suivantes :

1 z+5 1 3z 2 T
a) lim (1 + —) b) lim (1 + —) c) lim (1 + —)
Tr——+00 €T Tr—r—+00 €T Tr——+00 €T
, 1\* , 1 , r \"
o g (1-5) o 0t (75)

z+1
g) lim (:c il 3) h) lim (1+ 3tan2(at))mt2(x)

z—+oo \ . — 1 z—0

5) En utilisant la définition de la limite d'une suite, puis en utilisant les criteres de
convergence, montrer que

2 1 1
a) lim nT =2 b) lim nt =0
n—+oo 1, + 3 n—+oo ’n,2
2n 2n*+1 2
Y _ . _2
o) Jm oy =0 4 s
sin(n? + 3) 5—n?
7 f 1 N
e) Jm N e B

6) Etudier la convergence des suites dont on donne le terme général

n?+1 b) nt+2n +2 0 n?+ 6
n?+n—1 n+ 4 n(n+1)(n+2)

a)

7) On définit la suite de terme général v, de la manieére suivante :

U1 =1
{ Un+1 = V 12 + Un
a) Montrer par récurrence que 0 < v, < 4 pour tout n strictement positif.

1
b) On pose 4 — v, = w,. Démontrer que w,; < an et en déduire la limite de w,,
puis celle de v,, quand n tend vers l'infini.

8) La suite de terme général u, est définie par u; = 0 et w, = /1+ u,_; pour n
strictement supérieur a 1.

a) Montrer que si (u,) a pour limite L, L est nécessairement solution de 1’équation

L=+vL+1

b) Montrer que (u,,) est croissante et majorée, donc convergente. En déduire la valeur
de L.
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22.6 Solutions des exercices

1) a) —3 b) — c) —
Q) - N -2 9 1
2) a) 2 b) ‘2%/3 ) ¥
) -1 s 9
i) 2 ) - W 2
m) 2 n) —oo
8 8
3) a) 3 et 3 b) V3
c) +oo et — d) —o0
4 5
e) 7 et 0 f) -5
4) a) e b) & c) ¢
e) et f) e g) et
6) a) converge b) diverge

7) b) lim w,=0et lim v,=4
n——+00 n——+0o
1 )
8) b) L= Z*f
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Chapitre 23

Statistique descriptive

23.1 Introduction et vocabulaire

La statistique est la branche des mathématiques qui s’occupe de rassembler, d’organiser,
d’analyser et d’interpréter des observations numériques. Ces observations portent sur
un ensemble d’objets de méme nature, que l'on désigne par le terme de population.
Ces objets présentent tous un certain caractere qu’il s’agit d’étudier pour en révéler les
tendances principales. Le caractére étudié est soit de nature discréte (c’est-a-dire qu’il
ne peut prendre que des valeurs réelles isolées), soit de nature continue (c’est-a-dire qu’il
peut prendre toute valeur d’un certain intervalle réel).

Exemple

On donne ci-dessous quelques exemples de populations et de caractéres étudiés.

Population Eleves d'une melets d’un Tiges usinées Ampoules
classe élevage
Note de
Caractére . Poids Longueur Durée de vie
francais
Nature Discret Continue Continue Continue

La phase de rassemblement des données est tres importante, puisque c’est sur la base
de ces données que vont se développer les phases ultérieures. Les données étant souvent
nombreuses et en désordre, il faut essayer de les représenter de maniere claire, a 'aide
de tableaux et de graphiques : c’est I'organisation des données. L’analyse essaie de
résumer un tableau de données a l'aide d’un petit nombre de valeurs caractéristiques.
Parmi celles-ci, les mesures de tendance centrale (aussi appelées parameétres de
position) jouent un role essentiel. La plus connue est la moyenne, mais on utilise aussi
la médiane ou le mode. Les mesures de tendance ne suffisent pas a donner une idée de la
maniere dont les valeurs sont distribuées au voisinage de ces valeurs centrales. Ainsi, il est
souvent utile d’introduire une mesure de dispersion. La plus utilisée est I'écart-type.

Ces trois phases ont en commun le fait que les renseignements que 1’on essaie de tirer des
données se rapportent justement a I’ensemble soumis a ’observation. Elles constituent la
statistique descriptive, dont nous parlerons ici.
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Le probleme de l'interprétation est différent. L’ensemble soumis a observation est un
sous-ensemble convenablement choisi, que 'on appelle échantillon, d'un ensemble plus
vaste, et on voudrait, a partir de I’étude de cet échantillon, arriver a tirer des conclusions
sur ’ensemble total d’ou est issu cet échantillon. Il est clair que ces conclusions auront
d’autant plus de chances d’étre valables que la taille de 1’échantillon sera grande. Cette
interprétation, basée sur le calcul des probabilités, constitue un aspect de la statistique
inductive ou inférentielle, que nous n’étudierons pas ici.

23.2 Symbole de sommation (Rappel)

Dans la suite de ce cours, nous allons fréquemment utiliser le signe : ¥ (Sigma). Il est
défini comme suit :

Définition 23.1
Le symbole de sommation, noté a ’aide de la lettre grecque 3, s’utilise pour désigner
de maniere générale la somme de plusieurs termes.

Soit n termes 1, X, ..., T,. La somme de ces n termes s’écrit de la maniere suivante a
I’aide du symbole de sommation :

x1+x2+...+xn:Zxk
k=1

On appelle k£ I'indice de sommation. Il permet de décrire la maniere dont on somme
les éléments.

Le nombre se trouvant a droite de 1’égalité sous le symbole de sommation est la valeur
de départ de I'indice de sommation, ici 1, et le nombre au-dessus du symbole la valeur
finale de l'indice, ici n. La somme porte sur toutes les valeurs de k comprises entre ces
deux bornes (bornes comprises).

Le symbole de sommation permet donc d’écrire des sommes d’un nombre important de
termes de maniere précise et condensée sans utiliser les points de suspension.

L’indice de sommation peut étre utilisé pour décrire les termes de la somme de maniere
directe et les bornes sur I'indice de sommation peuvent avoir d’autre valeurs que 1 et n.

Par exemple, la somme des puissance de 2 comprises entre 2% et 227 peut s’écrire
27
> 2
k=6

au lieu de 20 + 27 4 ... 4 2% 4 277,
Donnons d’autres exemples pour bien comprendre cette notation.

Exemples

8
1. Zk:3+4+5+6+7+8:33

k=3

4
2. Z2’f:21+22+23+24=30
k=1
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E-1)=1-D+2*-D+ -1+ -1)=0+3+8+15=26

M-

e
Il
—

(*—1)=0+3+8+15+...+(n*—1)

-
bl
[

el
—

5 ) (k=1P=02-1P+B-1P+4-1)P=1"+2°+3%=36

Eonl
[|
N

Proposition 23.1
Soient n € N*; zy,....2, €ER; y1,...,y, ERet a € R.

Le symbole de sommation possede les propriétés suivantes :

LY (@ntye) =Y a+ Yt
k=1 k=1 k=1
2. Za-xk:a-Zxk
k=1 k=1
3. Za:n-a
k=1

Ces propriétés du symbole de sommation découlent directement de 'associativité et de
la commutativité de ’addition ainsi que de la distributivité de la multiplication sur I'ad-
dition.

23.3 Tableaux des données et principales représenta-
tions graphiques

Le caractere que ’on étudie est soit de nature discrete soit de nature continue. Dans le cas
discret, on regroupe les données en un tableau ou figurent les k valeurs possibles zy, s,
x3, ..., T du caractere et le nombre "d’individus” n; (i = 1,2,3,..., k) correspondant
qui prennent cette valeur. Ce nombre est appelé effectif. Dans le cas continu, on regroupe
les valeurs possibles du caractere en classes de méme amplitude (de méme ”largeur”).
En regle générale, on choisit un nombre de classes compris entre 8 et 15.

Exemple - Cas discret

On donne ci-dessous l’ensemble des résultats du concours d’Innsbruck lors de la
Tournée des Quatre Tremplins, le 4 janvier 2012.

| | Nom | Saut 1 | Saut 2 | Note | Nom | Saut 1 | Saut 2 | Note
1. Stoch Kamil 132,5 108,0 232,0 26. Janda Jakub 125,5 121,5 224,4
2. Mechler Maximilian 119,0 126,0 235,1 27. Hocke Stephan 122,5 118,5 218,0
3. Freund Severin 118,5 116,5 211,8 28. Gangnes Kenneth 124,5 111,5 206,2
4. Schlierenzauer Greg 130,5 123,0 247,6 29. Happonen Janne 122,5 112,2
5. Bardal Anders 128,0 125,5 244,4 30. Ito Daiki 129,5 91,5 193,6
6. Koudelka Roman 123,5 122,5 239,5 31. Hayboeck Michael 116,5 121,5 213,0
7. Velta Rune 115,5 123,5 225,0 32. Tepes Jurij 107,0 90,7
8. Kranjec Robert 117,0 105,0 192,8 33. Meznar Mitja 106,5 86,0
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| | Nom | Saut 1 | Saut 2 | Note || | Nom | Saut 1 | Saut 2 | Note
9. Morgenstern Thomas 120,5 123,0 237,1 34. Sklett Vegard Hauk 119,5 109,5
10. Zauner David 119,5 116,5 218,5 35. Unterberger David 111,0 94,0
11. Neumayer Michael 132,0 121,5 234,4 36. Matura Jan 118,0 106,4
12. Prevc Peter 129,5 118,0 227,9 37. Takeuchi Taku 131,5 124,0 246,7
13. Ammann Simon 119,5 120,5 221,0 38. Hula Stefan 101,5 82,6
14. Kasai Noriaki 118,0 107,5 39. Boyd-Clowes Mack 121,0 109,6
15. Damjan Jernej 122,5 113,5 211,6 40. Vassiliev Dimitry 133,0 120,0 222,4
16. Kot Maciej 118,5 101,0 185,4 41. Ito Kenshiro 117,5 110,5
17. Koivuranta Anssi 123,0 102,0 192,1 42. Hautamaeki Matti 116,0 108,6
18. Koch Martin 113,5 122,0 210,6 43. Colloredo Sebastia 114,5 104,2
19. Loitzl Wolfgang 115,0 115,5 209,0 44. Roensen Atle Pede 111,5 92,6
20. Kaliniteschenko Ant 108,0 89,3 45. Mueller Lukas 107,5 94,1
21. Freitag Richard 128,5 114,0 227,2 46. Evensen Johan Re 110,5 98,7
22. Hlava Lukas 126,0 118,0 229,5 47. Morassi Andrea 110,0 94,5
23. Romoeren Bjorn Ein 120,0 103,5 48. Kobayashi Junshiro 107,0 95,6
24. Watase Yuta 124,0 113,5 208,7 49. Fettner Manuel 110,5 98,0
25. Kornilov Denis 128,0 114,0 212,9 50. Kofler Andreas 127,5 131,5 252,8

Pour la suite, on considérera uniquement le premier saut. On regroupe alors ces
résultats dans le tableau ci-dessous. Dans la premiére colonne de ce tableau (colonne
i), on numérote les observations possibles (de 1 a 66). Dans la deuziéeme colonne
(colonne x;), on inscrit les valeurs que prend le caractére longueur du premier saut
en meétres (de 101,0 a 133,5). Dans la troisieme colonne (colonne n;), on inscrit
Ueffectif de chaque observation (le nombre de fois qu’apparait chaque observation,).
Le tableau a été découpé en trois parties pour des questions de lisibilité.

Obs. Long. Eff. Obs. Long. Eff. Obs. Long. Eff.
k2 Z; n; k2 T ng k2 g ng
1 101,0 0 23 112,0 0 45 123,0 1
2 101,5 1 24 112,5 0 46 123,5 1
3 102,0 0 25 113,0 0 47 124,0 1
4 102,5 0 26 113,5 1 48 124,5 1
5 103,0 0 27 114,0 0 49 125,0 0
6 103,5 0 28 114,5 1 50 125,5 1
7 104,0 0 29 115,0 1 51 126,0 1
8 104,5 0 30 115,5 1 52 126,5 0
9 105,0 0 31 116,0 1 53 127,0 0
10 105,5 0 32 116,5 1 54 127,5 1
11 106,0 0 33 117,0 1 55 128,0 2
12 106,5 1 34 117,5 1 56 128,5 1
13 107,0 2 35 118,0 2 57 129,0 0
14 107,5 1 36 118,5 2 58 129,5 2
15 108,0 1 37 119,0 1 59 130,0 0
16 108,5 0 38 119,5 3 60 130,5 1
17 109,0 0 39 120,0 1 61 131,0 0
18 109,5 0 40 120,5 1 62 131,5 1
19 110,0 1 41 121,0 1 63 132,0 1

20 110,5 2 42 121,5 0 64 132,5 1
21 111,0 1 43 122,0 0 65 133,0 1
22 111,5 1 44 122,5 3 66 133,5 0

> 50

Par la suite, on va ajouter quelques colonnes a ce tableau afin de réaliser plus
simplement le calcul de certaines mesures de tendance centrale ou de dispersion.
Dans la derniere ligne du tableau, on peut indiquer la somme des valeurs contenues
dans la colonne correspondante.
66
On note parn = Z n; l'effectif total (qui correspond a la taille de la population).
i=1
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Digramme en batons

Afin de rendre plus lisible les données observées, il est intéressant de les représenter
graphiquement. Plusieurs représentations sont possibles dans chaque situation. Il faut
souvent chercher la plus adaptée a la situation donnée.

Dans le cas de I'exemple précédent, on pourrait représenter les données par un dia-
gramme en batons. On associe alors a chaque observation un rectangle fin (ou baton)
dont la hauteur est proportionnelle a I'effectif de ’observation.

Diagramme en batons

Effectif

- - - Y Y &Y &Y v v ™ ™ ™™ ¥™ ¥™ ™ ™ ™ ™ ™ * * ¥ ¥ +* ™ ™ ™ ™ +“ “ “« “« +

Longueur des sauts

Dans cet exemple, on remarque que cette représentation graphique n’apporte pas une
lisibilité supplémentaire. Elle n’est donc pas adéquate.

Pour améliorer la lisibilité des données, on peut regrouper les longueurs observées en
classes.

Exemple - Cas continu

Dans notre exemple, on peut regrouper les sauts en classes de largeur 3 m et obtenir
le tableau suivant.

Observations Longueur des sauts | Centres des classes Effectifs
1 [100,25; 103, 25] 101,75 1
2 [103, 25: 106, 25] 104,75 0
3 [106, 25: 109, 25] 107,75 5
4 [109, 25: 112, 25] 110,75 5
5 [112,25: 115, 25] 113,75 3
6 [115,25; 118, 25] 116,75 7
7 [118,25: 121, 25] 119,75 9
8 [121,25: 124, 25] 122,75 6
9 [124, 25: 127, 25] 125,75 3
10 [127,25: 130,25 128,75 6
11 [130,25; 133, 25 131,75 5
> 50
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Histogramme

On représente généralement les données, dans le cas continu, par un histogramme dans
lequel chaque classe se voit attribuer un rectangle dont 1’aire est proportionnelle a ’effectif
de la classe.

Le graphique suivant est dessiné d’apres les données présentées a I’exemple précédent.

Histogramme
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Longueur des sauts

Polygone des effectifs

Une autre représentation graphique équivalente est le polygone des effectifs dans lequel
on trace une ligne brisée passant par les points qui ont pour abscisses les centres des
classes et pour ordonnées les effectifs de ces classes. On fait précéder et suivre les classes
considérées par deux classes d’effectif zéro.

Polygone des effectifs

-
o

Efectif
o = N W » O O N 0 ©

98.75
101.75
104.75
107.75
110.75
113.75
116.75
119.75
122.75
125.75
128.75
131.75
134.75

Longueur des sauts

Polygone des fréquences cumulées

Il est souvent intéressant de faire figurer dans un tableau statistique, pour chaque valeur
x; que peut prendre le caractere (ou pour chaque classe, dans le cas d'une distribution
continue), la proportion f; des individus qui présentent cette valeur z;. Ces proportions
sont appelées fréquences.
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Définition 23.2

Si n représentent leffectif total (n = >  n;), alors la fréquence f; de I'observation i
i=1
(1=1,2,...,k) est donnée par

n;

f="

n

La proportion F(z), appelée fréquence cumulée, est la proportion des observations
qui présentent des valeurs x; du caractere inférieures ou égales a . Elle se calcule en
additionnant toutes les fréquences f; correspondant aux z; tels que z; < x.

On peut également considérer la proportion des observations qui présentent des valeurs x;
du caractere supérieures ou égales a une valeur . On les appelle les fréquences cumulées
décroissantes.

Exemple

On reprend ici les longueurs des premiers sauts des 50 participants au concours de
saut d’Innsbruck et on ajoute les valeurs des fréquences et des fréquences cumulées.

Ob.serva— Longueur Centres des Effectifs Fréquences Fréquer}ces
tions des sauts classes cumulées
1 [100.25;103.25] 101.75 1 0.02 0.02
2 [103.25;106.25] 104.75 0 0.00 0.02
3 [106.25;109.25] 107.75 5 0.10 0.12
4 [109.25;112.25] 110.75 5 0.10 0.22
5 [112.25;115.25] 113.75 3 0.06 0.28
6 [115.25;118.25] 116.75 7 0.14 0.42
7 [118.25;121.25] 119.75 9 0.18 0.60
8 [121.25;124.25] 122.75 6 0.12 0.72
9 [124.25;127.25] 125.75 3 0.06 0.78
10 [127.25;130.25] 128.75 6 0.12 0.90
11 [130.25;133.25] 131.75 5 0.10 1.00

> 50 1

On peut remarquer, dans ce tableau, que la somme des fréquences est égale a 1.
Ceci sera toujours le cas. En effet, on a

Ny =1 n

k
- n n n
=1

k
Y fi=

i=1
Dans le cas continu, on représente souvent les fréquences cumulées par le polygone des
fréquences cumulées. Ce dernier est obtenu en reliant chacun des points (s;; F'(s;)), ou
s; est la borne supérieure de la classe ¢, par un segment de droite. Pour réaliser ceci, on
suppose que les observations se répartissent de maniere uniforme dans leur classe. Pour
le polygone des fréquences cumulées décroissantes, on considere les bornes inférieures des

classes.

Pour I'exemple précédent, on obtient les représentations graphiques ci-dessous.
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Polygone des fréquences cumulées
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Diagramme circulaire

Pour le diagramme circulaire, on associe a chaque observation un secteur circulaire dont
I’aire est proportionnelle a I'effectif de I'observation.

On donne ci-dessous 'exemple des dépenses de 1’état jurassien par catégorie.

Diagramme circulaire

2% 3% 49,

5%

B Culture, sport
6% B Enseignement
30% Prévoyance
6% B Santé
M Trafic
Sécurité
9% B Administration
Finances
B Environnement

14% Economie publique

21%

Diagramme en bandes

Le méme exemple, que celui donné ci-dessus, peut étre représenté par un rectangle séparé
en plus petits rectangles dont 'aire est proportionnelle a 'effectif de 1’observation.
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Diagramme en bandes

100%
90% B Economie publique
] i
80% B Environnement
70% Finances
60% - B Administration
50% Sécurité
M Trafic
40% M Santé
30% Prévoyance
20% ® Enseignement
10% M Culture, sports
0%

Diagramme polaire

Le diagramme polaire est surtout utilisé pour représenter des données chronologiques.
Pour ce diagramme, on associe a chaque observation une demi-droite ayant pour origine
un point fixe O, deux demi-droites consécutives formant toujours le méme angle. Pour
représenter les effectifs, on place sur chaque demi-droite un point dont la distance a O
est proportionnelle a 'effectif de I'observation.

On donne ci-dessous I'exemple des précipitations mensuelles mesurées durant ’année 2011
a Payerne.

Diagramme polaire

janvier

décembre 1400 février

1200
1000

novembre 800 mars
600
400
200

octobre 0 avril

septembre mai

aolt juin
juillet

Diagramme figuratif

Dans un diagramme figuratif, les observations sont représentées a I’aide d’images plus ou
moins grandes selon la valeur des effectifs.

On donne ci-dessous un exemple de diagramme figuratif représentant 1’évolution du prix
du carburant.
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]
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NP = jl ]
8 AE

On peut également représenter les observations a I'aide d’'images de méme taille en quan-
tités proportionnelles aux effectifs.

On représente ci-dessous le nombre de véhicules vendus en Suisse en 2011 par marque.
Une voiture équivaut a 5’000 véhicules neufs vendus.

Vente de voitures neuves en Suisse en 2011

vw e e §e § e 6% 6% 6w
Audi & & & &

Ford e 6 £ &

Renault & £ 5 &

Skoda e e 86 &8

Opel e e 6

Peugeot & & &

Mercedes &Pa &8 &%

Pyramide des ages

La pyramide des ages est un double histogramme représenté horizontalement. Les classes
d’ages d’une population sont représentées en vertical et les effectifs en horizontal. A
gauche, on représente les effectifs des personnes de sexe masculin et, de 'autre coté, ceux
des personnes de sexe féminin.

Ci-dessous, on donne la pyramide des ages de la population du canton du Jura en 2008.
Pyramide des ages

90-95

80-85

70-75

60-65 |

50-55 |

40-45 |

30-35 |

20-25 |

10-15 |
0-5

O Hommes

Age

B Femmes

3000 2000 1000 0 1000 2000 3000
Population

Ce type de graphique porte le nom de pyramide car sa forme était (ce qui n’est plus le
cas aujourd’hui) celle d'un triangle presque isocele.
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23.4 Mesures de position ou de tendance centrale

Les tableaux et les graphiques donnent une bonne idée de la maniere dont un caractere
est distribué. Cependant, on cherche souvent a illustrer cette distribution de maniere plus
sommaire par quelques nombres caractéristiques.

23.4.1 Moyenne arithmétique
Cas discret

La moyenne arithmétique, plus communément appelée moyenne, est la plus utilisée
des mesures de tendance centrale. Elle s’obtient en divisant la somme des valeurs par le
nombre de valeurs.

Définition 23.3
La moyenne arithmétique T d'un caractere prenant les valeurs x1, xs,..., T avec les
effectifs respectifs ny, no, ..., n; est définie par

k
2 n;x;
=1

n

T =

k
oun =Y n; est leffectif total.
i=1

Le calcul de la moyenne peut se faire également a partir des fréquences f; :

k
T = Z fiz;
i1

Remarques

1) La moyenne est influencée par toutes les valeurs z; et n; observées et, a ce titre, tres
sensible aux valeurs extrémes, au point d’en perdre parfois une bonne partie de sa
représentativité, surtout dans les échantillons de petite taille.

Ainsi la moyenne des six salaires mensuels suivants :
3’500 4200 4’600 5’000 6200 36’500

est égale a 10’000, alors qu'un seul salaire dépasse cette moyenne.

2) Les deux définitions données de la moyenne sont bien équivalente. En effet :

k k k

n; 1 _
E fizi = E —Tp =~ E Ny =T
y n n -
i=1 i=1

i=1

3) La moyenne des écarts x; — T est nulle. En effet :

7

Ti
|
8
3

k k k
=1 i=1 i :
n n

3
3
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Exemple

Dans une classe de 25 éleves (population), on a relevé les notes suivantes :
4534235653446055435425345

Pour effectuer le calcul de la moyenne et de la variance des notes, on reprend le
tableau statistique présenté précédemment pour le cas discret (numéro de l’obser-
vation, i, valeur du caracteére, x; et effectif, n;) et on le compléte par les notes
pondérées nix; (4™ colonne). Pour calculer la moyenne, on peut aussi compléter
le tableau par les fréquences fi (5™ colonne)et les fréquences pondérées fix; (6™

colonne).
i ;i n; n;iT; i fiti
1 0 1 0 0,04 0,00
2 1 0 0 0,00 0,00
3 2 2 4 0,08 0,16
4 3 5 15 0,20 0,60
5 4 7 28 0,28 1,12
6 5 8 40 0,32 1,60
7 6 P 12 0,08 0,48
D 25 99 1,00 3,96

On obtient facilement la valeur de la moyenne en utilisant les résultats contenus
dans ce tableau.

7
n;T;

Z-Zzl 99
n 25

On peut également lire directement la moyenne 3,96 comme somme des f;x;.

3,96

T =

Cas continu

Dans de le cas d’un caractere continu, la moyenne se calcule comme dans le cas discret
en utilisant comme valeurs x; les centres de classes.

La moyenne changera légerement selon la maniere dont on aura formé les classes.

23.4.2 Autres moyennes

Nous venons de présenter la moyenne arithmétique. Or, il existe d’autres types de mesure
de tendance centrale aussi appelés moyennes.

Moyenne géométrique

Définition 23.4
La moyenne géométrique g d'un caractere prenant les valeurs xq, s, ...,z avec les
effectifs respectifs ny, no, ..., n; est définie par
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k
ou [] représente le produit des éléments qui suivent ce symbole, avec i variant de 1 a k.
i=1
Exemple

Si laugmentation d’un pays est de 5% la premiere année et de 15% la suivante,
l’augmentation moyenne des priz se calcule grace a la moyenne géométrique des
coefficients multiplicateurs 1,05 et 1,15 soit une coefficient moyen de

G=1/1,05-1,15 =1,0988

et une augmentation moyenne de 9, 88%.

Moyenne harmonique

Définition 23.5

La moyenne harmonique h d’un caractere prenant les valeurs x1,xs,..., T, avec les
effectifs respectifs ny, no, ..., n; est définie par

— n

h =

k
oun =Y n; est leffectif total.
i=1

Lorsqu’on parle de vitesse moyenne sur un parcours, on fait parfois référence a la moyenne
harmonique.

Exemple

Un automobiliste roule sur 1 km a 30 km/h, 7 km a 60 km/h, puis sur 16 km a
80 km/h et encore 48 km a 120 km/h. Il aura donc parcouru 72 km en 2+ 7+ 12+
24 = 45 min, soit une vitesse moyenne de

72
s
60

=96 km/h

v =

qui est bien la moyenne harmonique des vitesses :

72

U= 1w — 6 km/h
3 T80 T80 T 120
Moyenne quadratique
Définition 23.6
La moyenne quadratique g d’un caractere prenant les valeurs xy, o, ...,z avec les
effectifs respectifs ny, no, ..., n; est définie par

k
oun =Y n; est leffectif total.
i=1
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Moyenne pondérée

Définition 23.7
La moyenne pondérée T d’'un caractere prenant les valeurs zy, xs, . . ., avec les poids
respectifs py, po, ..., pr est définie par

k
Z DiZ;
i=1

p

T =

k
oup =Y p; est le poids total.

=1

Le role des p; est d’accorder une importance plus grande a certaines observations qu’a
d’autres. Ils jouent en quelque sorte le role de leffectif. Un enseignant qui donne différents

poids a ses travaux écrits utilisera la moyenne pondérée.

23.4.3 Meédiane
Cas discret

La médiane est une valeur telle que la moitié des valeurs z; de la population (ou de
’échantillon) lui soient inférieures ou égales et I'autre moitié supérieures ou égales.

Définition 23.8
La médiane = d’un caracteére prenant les valeurs 1, xs, ..., x, (ou n représente 'effectif
total), rangé dans l'ordre des grandeurs croissantes, est la valeur du ”milieu” :

— si n est impair, on considere la valeur centrale :

T = Tnt1
2

— si n est pair, on considere la moyenne arithmétique des deux valeurs centrales :

Tr =

($% + $%+1)

N | —

Remarques

1) La médiane n’est pas affectée par les valeurs extrémes de la distribution.
2) Dans le cas des six salaires (voir remarque 1 moyenne), la médiane vaut 4'800.

3) Dans les distributions asymétriques la médiane donne également une idée plus " équili-
brée” de la tendance centrale.

Exemple

Nous reprenons ici les données de ['exemple sur les notes d’une classe. On com-
mence par trier les 25 valeurs par ordre croissant :

0223333344444445555555566

On peut ensuite déterminer la médiane comme étant la 13°™ note : ¥ = T2t =
2
Tr13 = 4
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Cas continu

Définition 23.9
Dans le cas d'un caractere continu, dont le polygone des fréquences cumulées est donné
1

par la fonction F'(z), la médiane est la valeur 7 telle que F'(7) = 3

Pour son calcul, on repere la classe [i,;s,[ ou la fréquence cumulée dépasse pour la
premiere fois 0, 5 et on ne considere alors plus que le segment du polygone des fréquences
cumulées qui correspond a cette classe. On détermine ensuite x par interpolation linéaire
en posant, d’apres le schéma ci-dessous, que (grace au théoreme de Thales sur les triangles
semblables ou a la définition de la pente d'une droite) :

¢ _ ou 0,5 — F(ig) _ F(sq) — F(ig)
a T — 1, Sq — g
F(Sg) oo
0.5
c
F(ig) - #==2 a__ _
iq TS,
Ainsi : 0.5 F(i,)
~ . ) - 7/q
P B Fy T
Exemple

On donne ci-dessous le polygone des fréquences cumulées des longueurs des sauts
donné dans un précédant exemple en indiquant la maniere de déterminer graphi-
quement la médiane.

Polygone des fréquences cumulées

1.1
1.0

0.9
o
S 0.8
E o7
=
O 06
3
5 0.5 >
3 04
o
:hj 0.3
0.2
0.1
0.0
0 0 0 0 0 0 0 0 ~ 0 [Te] [Te) [Te) [Te) [Te]
3] 3] 3] 3] 3] I3 I3 X I3 3 3 3 3
N =) © © o)) [N [Te] ) -~ < N~ =} v} ©
(<2} o o o o ~ ~— ~— [a\] N N I} lae} I}

Longueur des sauts

Par lecture graphique, la médiane vaut environ 119,5 m. On peut la calculer plus
précisément selon la méthode donnée ci-dessus.
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La classe ot la fréquence cumulée dépasse 0,5 0,60 A
est : [118,25;121,25[. On peut donc poser,
d’apres la représentation ci-contre, que

0,50 —-0,42 0,60 —0,42

= C
T —118,25 121,25 — 118,25 0,49 ¢ a
et donc en isolant T :
~ 0,08 ' L :
¥ =118,25+ ~— -3 = 119,58 118,25 = 121,25

0,18

23.4.4 Mode

Cas discret

Définition 23.10
Le mode est la valeur la plus fréquente dans une série de données.

Remarques

1) Dans certaines distributions, il y a plusieurs modes.
2) Le mode est insensible aux valeurs extrémes.

3) Il est moins utilisé que la moyenne ou la médiane.

Exemple

Pour les données de l’exemple sur les notes d’une classe, le mode vaut 5 car 8 ob-
servations (mazimum au niveau du nombre d’observations par valeur du caractére)
ont été réalisées de la valeur 5.

Cas continu

Définition 23.11

Dans le cas d’'un caractere continu, le mode se trouve dans la classe [i,,; s,,[ ayant le plus
grand effectif, appelée la classe modale. Il se calcule a partir de I'histogramme (voir
exemple ci-dessous pour une représentation graphique) en tenant compte comme suit du
7gain” en fréquence de la classe modale par rapport aux deux classes voisines (d’apres
théoreme de Thales sur les triangles semblables) :

x b
c—x d
et ainsi, en isolant x dans cette expression :

be
b-+d

mode = a +

ol a4 = %y,.

page 390



Mathématiques, MAP 197 année 23. Statistique descriptive

Exemple
On donne ci-dessous [’histogramme des longueurs des sauts vu dans un précédant
exemple.
Histogramme
10 =
9
. "
8 b=24| *2..
i o"\ Id=3
7 .
.
=6 4
k5
95
Y
i 4
3
2
1
0 A 4
& & & & & a=118,25 & & & &
o [50] © (o2} N < ~ o ™
2 2 Q =] han mode Q a @ e

Longueur des sauts

Dans ce cas, on voit que la classe modale est la classe [118,25;121,25[ et que le
mode est €gal a environ 119,5. 1l se calcule exactement a partir de la classe modale
de la maniere suivante :

2.
mode = 118,25 + 23 = 119,45
2+3

23.5 Mesures de dispersion

Pour affiner I'analyse des données, il faut pouvoir évaluer la dispersion plus ou moins
grande des données autour d’une valeur centrale. En effet, un méme valeur centrale ne
permet pas d’affirmer que deux jeux d’observations sont identiques, comme le montre
I’exemple suivant.

Exemple

Un éleéve francais a obtenu les notes suivantes a sept travaux écrits de mathéma-
tiques :
12 15 11 8,5 10 14 10

Cette série de notes pour étre "résumée” en calculant la moyenne qui vaut 11,5.

Un éléve de la méme classe a obtenu les notes :
15 14 5 9,5 8 12 18

La moyenne est encore ici de 11,5. Mais, le premier éleve a des notes moins dis-
persées que le second. Par exemple, [’écart entre la note la plus basse et la note la
plus haute est de 6,5 pour le premier et de 13 pour le second.

Pour différencier ces deux jeux de données, on peut utiliser une mesure de dispersion.
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23.5.1 Variance et écart-type
Cas discret

Si I'on désire se faire une idée de la maniere dont les valeurs du caractere s’écartent de
la moyenne T de ce caracteére, on peut calculer la moyenne des écarts absolus |x; — Z|.
Pour des raisons essentiellement théoriques et pratiques, on préfere néanmoins calculer
la moyenne des écarts quadratiques.

Définition 23.12
La variance v d’un caractere prenant les valeurs z1, o, . . ., x; avec les effectifs respectifs
ni,Na, ..., N, est définie par

k
>oni(z; —T)°
i=1
= -

n

L’écart-type o est défini comme la racine carré de la variance :

o=\

Remarques

1) Si l'on utilise la moyenne pour mesurer la tendance centrale, on lui associe naturelle-
ment ’écart-type pour mesurer la dispersion (par rapport a la moyenne).

2) Le calcul de la variance est plus simple si I'on utilise la formule suivante :

k

> iy

=1 —

v="b — 7
n
qui se justifie comme suit :
k , k , & k ,
> ni(z; — ) DM T D oni 2L T Y N T
i=1 i=1 i=1 i=1
L — — _|_
n n n n

= ! 27! +7° -
n n n
k k
Z LS Z LA
= = i ==0 7
n n

La variance d’'une série statistique est donc égale a la moyenne des carrés moins le carré
de la moyenne. Cette formule simplifie énormément les calculs puisque Z n’intervient
qu’une fois. Si on avait utiliser la moyenne des écarts absolus, une formule de ce type
n’existerait pas. Il faudrait donc pour chaque observation calculer la différence a la
moyenne et en prendre la valeur absolue.

3) Lorsqu’on calcule la variance d’'un échantillon et non de la population entiere, le
dénominateur est n — 1 dans la formule de la définition.

4) Dans le cours de troisieme année, nous verrons que lorsque la population a une distri-
bution "normale”, alors :

page 392



Mathématiques, MAP 197 année 23. Statistique descriptive

—  68,3% des valeurs sont situées entre T — o et T + o
— 95,4% des valeurs sont situées entre T — 20 et T + 20
— 99, 7% des valeurs sont situées entre T — 30 et T + 30

5) Les calculatrices modernes comprennent des touches spéciales pour calculer efficace-
ment la moyenne et 1’écart-type.

Exemple

Nous reprenons ici les données de 'exemple sur les notes d’une classe. Pour ef-
fectuer de la variance et de [’écart-type des notes, on reprend le tableau statistique
donné dans cet exemple et on le compléte par le carré des notes x7 (4™ colonne)
et par le carré des notes pondérées niz? (5™ colonne).

1 0 1 0 0
2 1 0 1 0
3 2 2 4 8
4 3 5 9 45
5 4 7 16 112
6 5 8 25 200
7 6 2 36 72
> 99 437

On obtient facilement les valeurs de la variance et de l’écart-type des notes en
utilisant les résultats contenus dans ce tableau.

k
2
5w

= = —7=—-3,9"=1,80
g n T s Y ’

o = /1,80=1,34

On peut remarquer que dans cet exemple 20 notes sur 25, soit le 80%, sont situées
entre T — o et T + o et 24 notes sur 25, soit le 96%, sont situés entre T — 20 et
T+ 20.

Cas continu

Dans de le cas d'un caractere continu, la variance et I’écart-type se calculent comme dans
le cas discret en utilisant comme valeurs z; les centres de classes.

La variance et 1’écart-type changeront légerement selon la maniere dont on aura formé
les classes.

23.5.2 Intervalle semi-interquartile

Définition 23.13
L’intervalle semi-interquartile = d’'un caractere prenant les valeurs x1, xs,...,x, est
calculé de la maniere suivante :

1. Trier les données dans 'ordre croissant.
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2. Diviser les données en deux groupes de taille égale : le groupe A avant la médiane, le
groupe B apres la médiane (si la population de départ a une taille impaire, rajouter
la médiane en téte du groupe B).

3. Calculer la médiane du groupe A, que l'on appellera le premier quartile et qu'on
notera ().

4. Calculer la médiane du groupe B, que I'on appellera le troisieme quartile et qu’on
notera ()s.

5. L’intervalle semi-interquartile (isi) vaut alors :

i — Q3 — Q1
2
Remarques

1)
2)

3)

Le deuxieéme quartile, noté (), est égal, par définition, a la médiane z.

Si on utilise la médiane pour mesurer la tendance centrale, on lui associera l'intervalle
semi-interquartile pour mesurer la dispersion.

On peut encore affiner la caractérisation de la distribution en réalisant une boite a
moustache (ou box plot) qui indique les emplacements respectifs des quartiles et de
la médiane relativement a la plus petite et a la plus grande des valeurs de la population
(on nomme étendue la distance Z,,40 — Timin)-

LTmin Tmax

Ql z QB

Ce type de diagramme peut étre utilisé, par exemple, pour comparer un meéme ca-
ractere dans deux populations de tailles différentes. On peut également représenté les
boite a moustaches verticalement.

On donne ci-dessous la représentation sous forme de boites a moustaches des tempé-
ratures mensuelles moyennes a Berne de 1826 a 2004.

Boites a moustaches
25

15 L,
7 Ty

Température
)

Jan Fev Mar Avr Mai Jui Jui Aol Sep Oct Nov Déc
Mois
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Exemple

0 n nné ‘cé no paron U
Nous reprenons les données de 'exemple précédent et nous les séparons en deux
groupes comme indiqué dans la définition de l'intervalle semi-interquartile :

Groupe A Groupe B
022333334444 4445555555566
343
Qi ="1"=3 Qs =5
5—3
isi 5

Cas continu

Définition 23.14

Dans le cas d'un caractere continu, dont le polygone des fréquences cumulées est donné
par la fonction F'(x), on appelle respectivement premier, deuxieme et troisieme quartile
les valeurs (01, (02 et Q3 telles que

1 3

F(Ql):i%F(Q2)=§;F(Q3):1

L’intervalle semi-interquartile est égal a la moitié de la longueur de l'intervalle
[Q1; Q3]

2
Remarque

L’intervalle [Q1; Q3] contient le 50% des valeurs de la population.

Exemple

On donne ci-dessous le polygone des fréquences cumulées des longueurs des sauts
donné dans un précédant exemple en indiquant la maniére de déterminer graphi-
quement les premier, deuxieme et troisieme quartiles.

Polygone des fréquences cumulées

1.1

1.0
0.9
0.8

[}
o
=]
E o7
=
O 06
8
S 0.5
3 04
o
:L: 0.3
0.2
0.1
y
0.0 \
I 0 0 0 0 0 Ite) Ite) Ite) Ite)
N N N N N N N N N N
N S e} © o o Q’ QZ Q3r\ =] V) ©
@ =] =] =] =3 pas o o e e

Longueur des sauts
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Par lecture graphique, la premier quartile vaut environ 113,7 m, le deuzieme envi-
ron 119,5 m et le troisieme environ 125,7 m. On peut réaliser les calculs suivants
pour déterminer plus précisément ['intervalle semi-interquartile.

La classe ou la fréquence cumulée dépasse
0,25 est : [112,25;115,25[. On peut donc po- 0.28 - oo '
ser que

0,25-0,22  0,28-0,22 022 ==—0-
Q — 112,25 115,25 — 112,25 :

et donc en isolant @y :

0,03
=112,2 T .3=11
Q1 ,5+0063 3,75

La classe ou la fréquence cumulée dépasse
0,75 est : [124,25;127,25[. On peut donc po- 0TS oo '
ser que

0,75-0,0,72 0,78 0,72 0.72 - ===2-
Qs — 124,25 127,25 — 124,25 :

et donc en isolant Q3 :

0,03

0,06

125,75 — 113,75 _
; -

12425 Qs 127,25

Qs = 124,25 + .3=125,75

Et finalement : isi =
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23.6 Exercices

1)

On donne les valeurs de z1,...,x7 et ny,...,n; dans le tableau ci-dessous.
Indice ¢ | Valeur de z; | Valeur de n;
1 0 2
2 1 5
3 2 3
4 3 6
5 4 2
6 5 9
7 6 1

Avec les données ci-dessus, calculer les expressions suivantes :

5 6 4
1= =1 = - -

=1 7=1

Les trois éleves suivants ont 4 de moyenne. Et pourtant, ils sont tres différents. Calculer
I’écart-type de leurs quatre notes et réaliser un digramme en batons pour chaque
situation. Quels constats peut-on réaliser ?

a) 4444 b) 2266 c) 2356

Au laboratoire de physique, une série de mesures de I'accélération de la pesanteur
terrestre a donné les résultats suivants :

9,95 9,85 10,13 9,69 947 998 987 9,46 10,00

Calculer la moyenne et I’écart-type de ces résultats.

On a pesé 100 poussins agés de deux semaines. Les résultats de ces pesées ont été
regroupés par classe (de centre x; et d’effectif n;) dans le tableau suivant

x; | 7818318819398 | 103|108 | 113 | 118 | 123 | 128 | 133
ng| 1| 1149 (1420 |17 | 15 | 10 | 5 3 1

Représenter ces données sous forme d'un diagramme en batons. Calculer la moyenne
et I'écart-type du poids.

Lors d’une journée, on a relevé les ages de 20 personnes venant se présenter a I’examen
théorique du permis de conduire :

18 19 19 23 36 21 57 23 22 19
18 18 20 21 19 26 32 19 21 20

Calculer la moyenne, la médiane, le mode, la variance, I’écart-type et I'intervalle semi-
interquartile de ces valeurs.

Les températures mensuelles moyennes de cinq villes suisses ont été les suivantes (entre
1901 et 1960) :
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Bale 02 14 52 89 134 166 184 176 14,3 92 43 14
Neuchatel 0,0 1,0 49 88 134 16,6 186 179 147 92 43 1.3
Geneve 02 1,1 49 87 13,1 16,5 183 176 143 9,1 45 1,5
Lausanne 0,2 1,2 50 85 13,0 16,2 182 17,6 14,5 95 45 44
Sion -0,2 16 6,2 10,3 149 18,0 19,6 18,6 153 10,0 4,6 0,8

Calculer pour chaque ville la température moyenne annuelle, I’écart-type, la médiane,
les premier et troisieme quartiles et l'intervalle semi-interquartile.

7) L’enseignant de mathématiques dit a un éleve : " Tu as réussi a obtenir 4,5 de note
de semestre”. Quelle est sa derniere note, sachant que dans les quatre premieres il a
obtenu 5,1, 4,6, 3,2 et 4,37

8) 41'250'000 personnes d’un pays ont atteint leur taille définitive (1,67 metres de moyen-
ne). Si P'on dit que, dans ce pays, la femme moyenne mesure 1,61 metre et '’homme
moyen 1,74 metre, quel est le nombre de femmes dans ce pays?

9) Chaque éleve de la classe est prié de relever le prix de trente articles différents
choisis au hasard, soit en se promenant dans un grand magasin, soit en parcourant
un catalogue de vente par correspondance. Il notera ensuite combien de fois apparait
chaque premier chiffre significatif (le chiffre tout a gauche, 0 excepté), i.e. combien de
fois le prix des articles commence par 1, par 2, ..., par 9.

Les résultats seront rassemblées et analysés en classe.

10) Calculer la moyenne arithmétique, la moyenne géométrique, la moyenne harmonique
et la moyenne quadratique pour 'exemple des longueurs des sauts lors du concours
d’Innsbruck. Utiliser les données regroupées en classes.

11) Les salaires mensuels payés aux ouvriers d’une entreprise se répartissent comme suit :

4 ouvriers gagnent entre 3'400 et 3'700 francs
21 ouvriers gagnent entre 3700 et 4’000 francs
104 ouvriers gagnent entre 4’000 et 4’300 francs
163 ouvriers gagnent entre 4’300 et 4600 francs
121 ouvriers gagnent entre 4600 et 4’900 francs
57 ouvriers gagnent entre 4’900 et 5’200 francs
22 ouvriers gagnent entre 5200 et 5’500 francs
10 ouvriers gagnent entre 5’500 et 5’800 francs

a) Dessiner I'histogramme et le polygone des fréquences cumulées.

b) Calculer le mode, la médiane et l'intervalle semi-interquartile.

c¢) Calculer le salaire mensuel moyen et 1’écart-type.

12) Lors d'un controle de vitesse on a relevé les vitesses suivantes (arrondies a l'entier
inférieur ou égal) :

117 134 130 113 127 125 98 110 124 122 126 101
106 121 121 104 124 117 109 128 134 146 111 139
123 124 130 123 120 133 111 143 145 111 110 119
114 104 126 99 140 105 119 134 128 119 137 109
122 130 92 104 113 130 120 &4 166 138 129 119
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a) Grouper ces données par classes : [80;90[, [90; 100], ...

Calculer le mode, la médiane et l'intervalle semi-interquartile.

)
b) Dessiner le diagramme & secteur correspondant
c)

)

d) Calculer la vitesse moyenne et I'écart-type.

13) Un fabricant de cigarettes souhaite commercialiser une nouvelle sorte de cigarettes.
Pour cela, il a fait mesurer la quantité de goudron (en mg) d’un échantillon de 50 de
ces cigarettes. Voici les résultats :

11,70 11,02 11,24 11,12 12,23 10,32 10,33 10,89 11,88 10,72
10,86 11,05 11,23 9,67 10,88 11,36 10,65 11,33 12,00 10,71
10,90 10,74 11,42 10,03 10,35 10,31 11,85 10,88 10,97 10,77
11,06 11,68 10,82 10,16 9,89 10,66 10,94 11,14 10,28 10,35
10,87 11,14 10,79 10,65 11,07 11,43 10,98 10,92 11,20 11,49

a) Réunir ces données en 9 classes d’amplitude égale entre 9,60 mg et 12,30 mg.

b) Dessiner 'histogramme en utilisant les classes du point a).

c¢) Calculer la valeur moyenne de la quantité de goudron par cigarette ainsi que ’écart-
type en utilisant 1) les 50 mesures, 2) les 9 classes.

d) La qualité de cette nouvelle cigarette est jugée stable si la quantité de goudron
d’au moins % des cigarettes se situe entre T — o et T + 0. Est-ce que cet échantillon
donne satisfaction ?

14) On donne, dans le tableau suivant, la population du canton du Jura en 2009 et la
population (estimée) du Sénégal en 2010.

Classes Jura Sénégal
[0; 5] 3073 2060535
[5;10] 3832 1656892
[10;15] 4321 1486441
[15;20] 4585 1397139
[20; 25] 4300 1228971
[25; 30] 4009 1028779
[30; 35] 3858 791366
[35;40] 4670 653021
[40;45] 5267 525850

[45; 50] 5439 419856

[50; 55] 4911 338742

[55; 60] 4559 277726

[60; 65] 4356 211036

[65;70] 3450 147084

[70;75] 2900 119899

[75;80] 2538 68501

[80; 85 2039 84462

[85;90] 1233

90; 95] 469

[95;100] 219

a) Calculer la moyenne, la médiane, 1’écart-type et les premier et troisieme quartiles
pour la population du Jura.
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b) Calculer la moyenne, la médiane, I’écart-type et les premier et troisieme quartiles
pour la population du Sénégal.

15) Lors d’un concours de Mathématiques sans Frontiéres, le nombre de points obtenus
par les écoles de Suisse se répartit selon ’histogramme suivant :

16
14
12
10

Nombre d'écoles

- T

5 156 25 35 45 55 65 75 85 95 105 115

Nombres de points

o N A OO 0

a) Calculer la moyenne de cette série.

b) En utilisant I'histogramme, trouver le pourcentage des écoles qui ont moins de 64
points.

16) Apres avoir constaté que la moyenne de classe était catastrophique, I’enseignant décide
de monter tout le monde d’un demi-point. Laquelle de ces mesures statistiques ne
changera pas : la moyenne, 1’écart-type, le mode ou la médiane ?
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23.7 Solutions des exercices

1) a) 10 b) 27 ¢) 29 d) 96

3) T=9,82 0 =0,22

4) T = 106,25, o = 10, 52

5) %= 23,55, 7 = 20,5, mode = 19,
v =79,74, o = 8,93, isi =2

z g T Ql Qg isi

Bale 9,24 6,43 9,060 2,85 1545 6,30
Neuchatel | 9,23 6,61 9,00 2,80 15,65 6,43
Geneve 9,15 6,42 890 3,00 15,40 6,20
Lausanne | 9,40 6,13 9,00 4,45 15,35 5,45
Sion 9,98 6,98 10,15 3,10 16,65 6,78

7) note : 5,3
8) environ 22211538 femmes

10) Moyenne arithmétique : 119,51, moyenne géométrique : 119,26, moyenne harmo-
nique : 119,00, moyenne quadratique : 119,76

11) b) mode = 4475, T = 4’525, isi = 260 ¢) T = 4559, o = 393,6

12) ¢) mode=123,6,F =122,2,isi=9,4 d) T=121,7,0=14,5

13) ¢) 1)T=10,938, 0 = 0,530 2) 7 = 10,944, 0 = 0, 545 d) non
14) a) T=41,9, ©=142,2, 0=23,4, @ =22,0, Q3=059,7

b) T=22,9, F=18,7, 0=183, Qi =820, Qs=33,2
15) a) T =55,37 b) 68,52% des écoles

16) Iécart-type
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Chapitre 24

Ajustements

Dans beaucoup de recherches statistiques, on ne s’intéresse pas qu’a un seul caractere
mais a plusieurs en méme temps. On s’occupe alors fréquemment de leur dépendance les
uns avec les autres.

Quand on considere deux caracteres z et y, un couple de valeurs (x;;y;) (i =1,2,...,n)
correspond a chacun des n individus de la population. L’ensemble des couples obtenus
est appelé série statistique double.

On représente généralement cette série dans un repere cartésien. Cette représentation
graphique de tous les couples (x;;y;) de la série est appelée nuage de points. Quand il
existe une relation entre les deux caracteres, on peut résumer le nuage de points par une
courbe telle que le nuage de points a une forte densité au voisinage de la courbe et faible
ailleurs.

Définition 24.1
La démarche d’ajustement consiste a déterminer une courbe C' qui résume un nuage de
points.

La courbe C' permet d’estimer les valeurs d’un caracteére en fonction de valeurs de 'autre
caractere. Les valeurs ainsi estimées sont des approximations.

Lorsque cette courbe est une droite, on parle d’ajustement linéaire.

24.1 Ajustements linéaires

On considere ici les n points d'un nuage représentant la série des n couples de valeurs
(x;,y;) de deux caracteres = et y déterminés a partir d'une population de n individus.
L’ajustement d’une droite D a ce nuage de points consiste a remplacer chaque point
(x;; ;) par un point de méme abscisse et d’ordonné ¢;, les points (z;, g;) étant alignés sur
la droite D.

Il existe plusieurs possibilités d’effectuer ceci. Le probleme qu’on peut se poser est de
trouver la "meilleure” droite qui résume le nuage de points.

Une fois I'équation de la droite D déterminée, on pourra l'utiliser pour faire des in-
terpolations (calculs de valeurs intermédiaires) et des extrapolations (calculs de valeurs
futures).
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24.1.1 Ajustement linéaire graphique

Nous allons travailler sur un exemple pour donner l'idée de la démarche a mettre en
oeuvre.

Lors d’une expérience, on a étudié les caracteres taille (caractére x) en cm et masse
(caractere y) en kg de 9 personnes (expérience fictive). On a obtenu les résultats suivants :

Taille (z;) | 155 | 158 | 160 | 161 | 164 | 167 | 169 | 170 | 172
Masse (y;) | 60 | 58 | 62 | 64 | 62 | 70 | 71 | 68 | 72

La méthode graphique consiste a tracer, a 1’ceil, a ’aide d’une regle transparente, une
droite y = max + h s’ajustant le mieux possible au nuage de points.

Y
74
72
70
68
66
64
62
60
58
56

4

)Ag'g 1521154156 158 160162164166/ 168170172174

Une fois la droite tracée, on choisit sur le dessin deux points A et B quelconques de
la droite pour en déterminer I’équation. Ces points ne doivent pas obligatoirement faire
partie du nuage de points.

L’équation de la droite passant par les points A(za;y4) et B(zp;yp) est donnée par :

YB — YA
—(x

—ZEB)
Tp —TA

Y—Ysp =

Les points A et B choisis dans notre exemple ont comme coordonnées (152;56) et
(166;67). La droite passant par ces deux points est :

(z — 166)

On obtient apres simplification : y = 0, 78x — 63, 43.

L’équation de la droite étant déterminée et les valeurs de x étant fixées, on peut en
déduire les valeurs ajustées correspondantes du caractere y et extrapoler la masse
d’une personne mesurant 180 cm.

Taille (z;) | 155 | 158 | 160 | 161 | 164 | 167 | 169 | 170 | 172 | 180
Masse (7;) | 58,4 | 60,7 | 62,3 | 63,1 | 65,4 | 67,8 | 69,4 | 70,1 | 71,7 | 78,0
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24.1.2 Ajustement linéaire par la méthode de Mayer
Remarque préliminaire

On considere a nouveau les n points M;(z;;y;) d'un nuage de points. Soit maintenant
une droite D quelconque d’équation y = max + h. On appelle ¢; ’écart du point M; a la
droite D :

Yi

Ui =mx; + h

e

A quelle condition doit satisfaire la droite D pour que la somme des écarts des points M;
e; = 07 Cette relation s’écrit :
=1

a la droite soit nulle :

(2

n

> (yi —mai — h) =0

i=1

iyi—m~ixi—n~h20
i=1 i=1

ou .

ou enfin : . .
1 1
E-;yi—m-g-;xi—hzo

Yy T
Elle signifie donc que la droite D passe par le point moyen w, ayant pour abscisse la
moyenne T des abscisses et pour ordonnée la moyenne 7 des ordonnées.

n

Ainsi la condition ) e; = 0 ne suffit pas a déterminer la droite D, puisqu’elle lui im-
i=1
pose uniquement de passer par un point. De plus, cette condition n’est pas satisfai-

sante du point de vue de 'ajustement : elle exige seulement que les écarts s’équilibrent
algébriquement (les écarts peuvent étre grands en valeur absolue).

Droite de Mayer

Une droite étant déterminée par deux points, le résultat ci-dessus conduit au procédé
suivant.

On divise I’ensemble des points M; en 2 sous-ensembles ;, a peu pres d’égale importance,
et tels que ’abscisse de tout point du premier soit inférieure a 1’abscisse de tout point du
second. On les appelle sous-ensemble de gauche et sous-ensemble de droite.

La droite D d’ajustement de Mayer doit alors vérifier les deux conditions :
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— la somme des écarts des points du sous-ensemble de gauche est nulle = D passe par
le point moyen w, du sous-ensemble de gauche,

— la somme des écarts des points du sous-ensemble de droite est nulle = D passe par le
point moyen wy du sous-ensemble de droite.

Remarques

1) Comme la somme des écarts pour I'ensemble total est nulle, la droite de Mayer passe
par le point moyen w de I’ensemble total.

2) On sépare I'ensemble de points en sous-ensemble de gauche et sous-ensemble de droite
pour que les points moyens de ces sous-ensembles soient les plus éloignés possible, de
fagon a augmenter la précision dans la détermination de la droite.

Exemple

On reprend ici les données du paragraphe précédent sur la taille et la masse de 9
personnes. On divise tout d’abord ’ensemble des couple en deuzr sous-ensembles :
— sous-ensemble de gauche : longueur de 155 cm a 164 cm,

— sous-ensemble de droite : longueur de 167 c¢cm a 172cm.

On calcule ensuite les points moyens de ces deux sous-ensembles :

wy(159,6:61,2) et wy(169,5;70,25)

La droite de Mayer cherchée passe par ces deux points :

70.25 — 61,2
_6l2= L 1
y =61, 169,5—159,6@ 59,6)

On obtient apres simplification : y = 0.91x — 84, 70.

Graphiquement, on obtient l'ajustement suivant :

Y

a
148 A52 154 156158 160 162164 166168 170172174

24.1.3 Ajustement linéaire par la méthode des moindres carrés

On considere toujours les n points M;(z;;y;) d’'un nuage de points. L’ajustement linéaire
par la méthode des moindres carrés consiste a déterminer la droite (que l'on appelle
aussi droite de régression) telle que la somme des carrés des n écarts e; = y; — ; soit
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minimale (ce qui explique le nom de la méthode), ou y; est 'ordonnée du point de la
droite de régression d’abscisse x;. On veut donc minimiser la quantité

q—Ze > (w0

=1

Mise en place de la méthode

1)

On s’intéresse d’abord au probleme restreint suivant.

Parmi toutes les droites de pente donnée myg, trouver celle pour laquelle la somme des
carrés des écarts est minimum.

Pour commencer, on pose que ’équation de la droite cherchée est :
Yy =mox + h

ou h est le coefficient a déterminer. A partir de ceci, on peut poser que, pour tout ¢,
lécart e; est donné par e; = y; — (moz; + h). La somme des carrés de ces écarts est
donc :

E e = E ((yi — mow;) — h)?
i=1 =
= E (y; — mox;)* — 2h - E — mox;) +n - h?

Cette expression est un trinome du second degré en b. Il est représenté par une parabole
ouverte vers le haut car le coefficient b? est multiplié par n, un nombre positif. Ce
trinome est donc minimal pour® :

n n n

hmin:_ 2ZZ:1(2?7J; mon):%Z?JZ_mO%ZIZ:y_mOf
i=1 1=1

Cette relation signifie que parmi toutes les droites de pente my, celle d’équation y =

moZ + homin, pour laquelle la somme des carrés des écarts est minimum, est celle qui

passe par le point moyen w(Z;y). En effet, ce dernier vérifie I’équation de la droite

comme § = moT + hyin. On en déduit que la droite de régression passe nécessairement

par le point moyen w.

Nous sommes donc ramenés au probleme : parmi toutes les droites qui passent par w,
trouver celle pour laquelle la somme des carrés des écarts est minimum.

Pour ceci, on réalise une translation du systéme d’axe (ou un changement de variables)
de maniere a obtenir un nouveau systeme de coordonnées tel que I'origine de ce dernier
corresponde au point w. On note (X;,Y;) les coordonnées des n points du nuage dans
ce nouveau systeme d’axes. Ainsi, pour ¢ = 1,2,...,n, on a la relation suivante entre
anciennes et nouvelles coordonnées :

T, =T+ X; et vyi=9y+Y;

1. Le trinéme az? + bx + ¢, avec a > 0, est minimum pour zy = —% qui correspond & 'abscisse du

sommet de la parabole
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Dans ce nouveau systeme d’axes, la droite recherchée passe donc par ’origine et admet
une équation de la forme :

Y =mX
ou m est le coefficient a déterminer. Les écarts e; sont donc donné par e¢; = Y; — mX;.
La somme des carrés de ces écarts est :

n

z": ¢ = Y (Yi—mX,)’
i=1

=1
= iyf —2m-zn:YiXi+m2 : anxf
=1 =1 i=1

Cette expression est encore un trindome du second degré en m. Comme le coefficient
de a? est positif, ce trindme est minimum pour

(2

23, XY,
=1

2

XiY;
=1

Mpmin = —

29 X2 Y X2
=1 i=1

En revenant aux coordonnées (z;;y;) (voir exercices pour la démonstration), la droite
D,,, d’ajustement de y par rapport a x passe par le point w(7;%) et a pour pente

1 — —
n 2o LY — 1Y
7 ny
m = —

2

_ o

LN~ g2 — 72 x
n 1

1

)

On appelle le nombre o,, la covariance de z et y. Le nombre ¢ correspond lui & la
varaince de x.

Méthode de calcul et représentation graphique

1. Dans un tableau, on effectue le calcul des moyennes :
I I
Tr = — i = — i
- Z z; et y - Z Y
=1 =1
2. On calcule :
1 < 1<
Opy = — Ty, —TY et ol == 2 — 72
Yy n ; Y Yy x n ; 1

ce qui nécessite, dans le tableau, le calcul des valeurs z;y; et 2.

On en déduit :
_ Oay
m = 0'—%
qui est la pente de la droite.
3. On écrit I'équation de la droite D,/ d’ajustement de y par rapport a = (elle passe par
le point w(Z; 7)) :
y—y=m(zr—1)
4. On trace cette droite sur le graphique. Pour cela, D, /, passant par w(Z,¥), il suffit de
trouver un autre point de cette droite.
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Remarques

1) Certaines calculatrices ont des fonctions statistiques qui fournissent ces valeurs tres
rapidement. Consultez le mode d’emploi de votre machine!

2) On pourrait également calculer la pente m en utilisant les X; et Y; définis dans la partie
mise en place de la méthode. Cette démarche peut étre intéressante si les valeurs des
x; et y; sont "grandes”, mais regroupées autour des moyennes, afin d’obtenir obtenir
des produits et des carrés, dans le tableau, moins ”grands”.

Exemple

On reprend [’exemple sur la taille (caractére x) et la masse (caractére y) de 9

personnes. On compléte tout d’bord le tableau suivant :

1 155 60 9’300 | 24’025
2 158 58 9’164 | 24’964
3 160 62 9’920 | 25600
4 161 64 10’304 | 25921
5 164 62 10’168 | 26896
6 167 70 117690 | 27889
7 169 71 11’857 | 27889
8 170 68 11’560 | 28900
9 172 72 12384 | 29584
> 1'476 587 96’489 | 242'340
D’apres ce tableau, on peut calculer :
1’4
- = 76:164@1537:@:65,22
9 9
96489 242'340
— Oy = — 164 - 65,22 = 24,55 et 02 = — 1642 = 30, 66
- Doim =22 =0,80.

T

Equation de Dyp :y—165,22=0,80- (x — 164), d'ot ‘ y = 0,80z — 66, 10].

Graphiquement, on obtient l'ajustement suivant :

Y
74
72
70
68
66
64
62
60
58
56

1
o2

T

152154156158 160 162 164 166/ 168170172174
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24.2 Coeflicient de corrélation linéaire

Jusqu’a maintenant, nous avons vu comment ajuster une droite a un nuage constitué
de n points (z;;y;). Par contre, nous ne nous sommes pas demandé si les points était
"suffisamment” alignés pour que cette démarche ait un sens ou, de maniere équivalente,
si la relation qui lie chaque z; et y; est bien linéaire (du type y; = maz; + h).

Le coefficient de corrélation linéaire est une mesure possible de ce lien. Il détermine s’il
existe une relation linéaire entre les deux caracteres et donne également une indication
sur la valeur de I'ajustement linéaire.

Définition 24.2
On appelle coefficient de corrélation linéaire relatif aux caracteres = et y, le nombre
réel :

Oy
040y

r =

1 & 1 &
avec Opy = — Ty — TY, Op= .| — 2 -2, o
Ty n iYi Y, T n A ’ Y

i=1 i1

Propriétés du coefficient de corrélation

1. r est un nombre réel compris entre —1 et 1.

2. Quand |r| = 1, tous les points sont alignés.

Remarques

1. Si |r| est voisin de 1, la corrélation entre les caracteres x et y est forte. Ainsi, si
augmente y va également augmenter, si r est positif, ou diminuer, si r est négatif.
Les points (x;,y;), représentés dans un graphique, seront pratiquement alignés.

2. Si |r| est voisin de 0, la corrélation entre les caracteres x et y est faible. On ne pourra
pas dégager une relation linéaire entre les caracteres x et y.

3. r > 0 indique une corrélation positive, r < 0 indique une corrélation négative.

Méthode de calcul

1. Dans un tableau, on effectue le calcul des moyennes arithmétiques :

n

!EZ%Z% et y:%;yi

1=1

2. On calcule :
Oy, Oz, Oy

ce qui nécessite, dans le tableau, le calcul des valeurs x;y;, 22 et y?2.

Oy

3. On en déduit le coefficient de corrélation r = )
040y
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Exemples

1. Les criquets ont un organe spécial sur leurs ailes qui produit un son lors-
qu’ils frottent leurs ailes les unes contre les autres. En regle générale, plus la
température est élevée, plus ils frottent leurs ailes rapidement. On a relevé les
mesures suivantes :

Température (°C) (x;) 15 17 | 20 23 27
Nbre de pulsations par sec. (y;) | 13,5 | 14,1 | 14,5 | 16,3 | 17,1
On wutilise le tableau de calcul suivant :
1 €y Yi TilYi %2 %2
1 15 13,5 202,5 225 182,3
2 17 14,1 239, 7 289 198, 8
3 20 14,5 290, 0 400 210,3
4 23 16,3 374,9 529 265,7
5 27 17,1 461,7 729 292. 4
> 102 75,5 | 1'568,8 | 2172 | 1'149,5
D’apres ce tableau, on peut calculer :
102 75,5
ff:?:20,4et§: . :15,1
1568, 8 2'172
— Oy = '~ —20,4-15,1 = 5,72, 02 = —20,4* = 18,24 et 0, =
114
95 _ 15,1 = 1,87
~ Dioiir = 22—, 98.
0.0y

On donne ci-dessous, la représentation graphique du nuage de points considéré
dans cet exemple.

18
16 *
14 .

12

=2 27468 1071271416 1820 227242628

8

2. On a représenté deux jeuxr de données dans les graphiques ci-dessous.
— Le coefficient de corrélation entre les caracteres x et y est de —0.98. Les
points sont pratiquement alignés. On peut supposer qu’il existe une dépendance
linéaire entre les caracteres x et y.
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..
5t : * e
.
[ ]
1 °y
-®
3 o8
3 * .
oo
b
2 .....
. .
]
1 * D“ L ]
»
e ®
N
1 2 3 4 5 &

— Le coefficient de corrélation entre les caractéres x et y est de 0.53. 1l est difficile
de conclure a une dépendance linéaire entre les caractéres x et y.

o,
7 . .

6 * .

5 [ .

24.3 Ajustements non-linéaires

Lorsque le nuage de points manifeste en tendance courbe et que le coefficient de corrélation
linéaire n’est pas proche de 1 en valeur absolue, 'ajustement de ce nuage par une droite
est hasardeux et aboutira a des estimations de mauvaise qualité. Dans ce cas, on peut
tenter d’utiliser un des modeles proposés dans ce chapitre.

En fait, chacun de ces modeles utilise le principe d’ajustement par la méthode des
moindres carrés (donc ils utilisent tous une droite) mais en ”transformant” au préalable
les données pour obtenir un modele linéaire a partir du modele non-linéaire considéré.

24.3.1 Ajustement par une fonction homographique

Les n points (x;; y;) ne sont pas alignés, mais plutot proches d’une certaine hyperbole de

la f = )
a forme y p——

Pour utiliser la méthode des moindres carrés, on doit transformer cette expression pour
obtenir une expression de la forme v = A-u+ B. On réalise ceci de la maniere suivante :

1
- = _a,_ v +_0b
y ~— M~

(2

Méthode de calcul

1. Calculer u; = x; et v; = yi

2. Déterminer I’équation de la droite de régression de v par rapport a u par la méthode
des moindres carrés.
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1

3. De I'équation v = Au + B, déduire I'équation de 'hyperbole d’ajustement y = —.,

en utilisant que a = A et b = B.

Par exemple, on obtient ’ajustement ci-dessous si on applique cette méthode aux données
de l'exercice 6.

e

24.3.2 Ajustement par une fonction puissance

Les n points (z;;y;) ne sont pas alignés, mais plutot proches d’une courbe représentant
une fonction puissance de la forme y = b - x°.

On transforme cette expression pour obtenir une expression de la forme v = A-u+ B de
la maniere suivante :

In(y) = In(b-2z%)
In(y) = In(z*) + In(b)
.

Méthode de calcul

1. Calculer u; = In(x;) et v; = In(y;).

2. Déterminer ’équation de la droite de régression de v par rapport a u par la méthode
des moindres carrés.

3. De I’équation v = Au + B, déduire ’équation de la courbe d’ajustement y = b- 2%, en

utilisant que a = A et b = e”.

Par exemple, on obtient ’ajustement ci-dessous si on applique cette méthode aux données
de l'exercice 7.

22 ¢
20
18
16
14
12

16

N s
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24.3.3 Ajustement par une fonction exponentielle

Les n points (z;;y;) ne sont pas alignés, mais plutot proches d’une courbe représentant
une fonction exponentielle de la forme y = b - a”.

On transforme cette expression pour obtenir une expression de la forme v = A-u+ B de
la maniere suivante :

In(y) = In(b-a”)
In(y) = In(a®) + In(d)

Méthode de calcul

1. Calculer u; = z; et v; = In(y;).

2. Déterminer ’équation de la droite de régression de v par rapport a u par la méthode
des moindres carrés.

3. De I’équation v = Au + B, déduire I’équation de la courbe d’ajustement y = b-a”, en
utilisant que a = e? et b = e”.

Par exemple, on obtient ’ajustement ci-dessous si on applique cette méthode aux données
de l'exercice 8.

24.3.4 Ajustement par une fonction logarithme

Les n points (z;;y;) ne sont pas alignés, mais plutét proches d’une courbe représentant
une fonction logarithme de la forme y = aln(x) + b.

On transforme cette expression pour obtenir une expression de la forme v = A-u+ B de
la maniere suivante :

y = Z~ln(x)+z

Méthode de calcul

1. Calculer u; = In(x;) et v; = y;.

2. Déterminer ’équation de la droite de régression de v par rapport a u par la méthode
des moindres carrés.

3. Del’équation v = Au+ B, déduire I’équation de la courbe d’ajustement y = a In(z)+b,
en utilisant que a = A et b = B.
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Par exemple, on obtient ’ajustement ci-dessous si on applique cette méthode aux données
de l'exercice 9.
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24.4 Exercices

1) Lors d'une expérience, on a relevé les valeurs suivantes :

z; 112345 6 | 7| 8 9]10
v | 1,131|4773192|11,1]12,9|154 |17 |18,8

a) Donner I’équation d’une droite ajustant ces valeurs
1) aleeil;
2) par la méthode Mayer;
3) par la méthode des moindres carrés.

b) Dessiner les droites obtenues en 2 et en 3.

c¢) Interpoler la valeur de § pour x = 6,3 grace aux droites obtenues en 2 et en 3.

2) Le tableau ci-dessous compare des voitures de méme catégorie. Il met en rapport la
cylindrée (en pouces) et le nombre de miles parcourus avec un gallon d’essence (3,78
litres aux USA).

Voiture Cylindrée | Miles par gallon
VW Rabbit 97 24
Datsun 210 85 29
Chevette 98 26
Dodge Omni 105 24
Mazda 626 120 24
Oldsmobile Starfire 151 22
Mercury Capri 140 23
Toyota Celica 134 23
Datsun 810 146 21

a) Donner I’équation d’une droite ajustant ces valeurs
1) alceil;
2) par la méthode des moindres carrés.

b) Dessiner la droite obtenue en 2.

c) Estimer le nombre de miles par gallon d’'une voiture ayant une cylindrée de 125
grace a la droite obtenue en 2.

3) Le tableau de la page suivante montre I’évolution des temps olympiques du 200 m
plat, en secondes, pour les hommes et pour les femmes.

a) Donner 'équation des droites (celle des performances des hommes et celle des
performances des femmes) ajustant ces valeurs

1) & el ;

2) par la méthode des moindres carrés.
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b) Dessiner les droites obtenues en 2.

c¢) Estimer les temps olympiques de 2004 et 2008 puis les comparer aux valeurs réelles.

Constats ?

d) D’apres les droites obtenues en 2, en quelle année les femmes courront-elles le 200
m plat aussi vite que les hommes ?

e) Ces ajustements affines sont-ils adéquats ?

200 m hommes

200 m femmes

Londres 1948 21,1 24,4
Helsinki 1952 20,7 23,7
Melbourne 1956 20,6 23,4
Rome 1960 20,5 24,0
Tokyo 1964 20,3 23,0
Mexico 1968 19,83 22,5
Munich 1972 20,00 22,40
Montréal 1976 20,23 22,37
Moscou 1980 20,19 22,03
Los Angeles 1984 19,80 21,81
Séoul 1988 19,75 21,34
Barcelone 1992 19,73 21,72
Atlanta 1996 19,32 22,12
Sydney 2000 20,09 21,84

Atheénes 2004

Pékin 2008

4) Rendre a chacun des nuages de points ci-dessous sons coefficient de corrélation linéaire :
—0,98, —0,50, 0,53 et 0,94

b)—:‘.‘.a (X
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5) Dans une entreprise qui fabrique et vend un seul produit, le relevé des ventes men-

suelles et des charges mensuelles correspondantes (en milliers de francs) donne le
tableau suivant :

Ventes |18 |16 |21 (22|29 |28 10|11 |27 |25
Charges | 20 | 16 | 18 | 21 | 25|24 | 12 | 12| 22

26 | 19
20|22 16

a) Donner I’équation de la droite ajustant ces valeurs par la méthode des moindres
carrés.

b) Calculer le coefficient de corrélation linéaire.

1
6) Ajuster ce nuage de points par une hyperbole de la forme y = e
ax

T 0 1 2 3 4 ) 6 7 8 9 10

Yi 1,110,431 0,19 | 0,15 | 0,08 | 0,05 | 0,06 | 0,05 | 0,04 | 0,04 | 0,03

7) Ajuster ce nuage de points par une fonction puissance de la forme y = bz®.

x; 0511,0]1,5(120(25130] 3,5 | 40 | 45 | 50

Yi 01105142751 |76]|11,2]|159 223|281

8) Ajuster ce nuage de points par une fonction exponentielle de la forme y = ba”.

x; 1,01 1,5120]25(30135|4,0]4,5|5,0
Yi 021030510607 |11|1,6|24]3,3

9) Ajuster ce nuage de points par une fonction logarithme de la forme y = aln(z) 4+ b

x; 1 213|145 6 | 7] 8|9 |10
Yi 1,1129144(51|58[65 68|73 |7,7]738
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24.5 Solutions des exercices

1) a) 1)y=1,992-0,9 2)y=1992z—0896 c) 1)§=11.64 2)§=11.65

2) a) 2)y=—0.08z+34.01 ¢) 2)§=2354
3) hommes: a) 2)y=066.34—0.02z c) 19.44 et 19.35
femmes : a) 2)y=122.17—-0.05z c) 21.17 et 20.97
d) en 2068
4) a) —0.50 b) 0.94 ¢) —0.98 d) 0.53
5) a) y=0,64z + 5,61 b) 0,95
1
e P

7) y = 0,52z%%
8) y=0,11-1,97"

9) y =3In(x) + 0,99
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Symboles des y, 234
=, 228
c, 228 B
>, 228 barycentre, 153
base, 191
A associée, 201
abscisse, 202, 233 bipoint, 184
actualisation, 126, 128 extrémité, 184
ajustement, 402 origine, 184
exponentielle, 413 bissectrice, 143
homographique, 411 boite a moustaches, 394
linéaire, 402 bord, 350
logarithme, 413 box plot, 394
non-linéaires, 411
puissance, 412 C ]
algebre de Boole, 231 capital, 125
alphabet grec, 141 capitalisation, 126
amplification, 11 caract\er?, 375
amplitude, 329, 377 continu, 375
analogue, 150 discret, 375
angle carré, 145
aigu, 161 cathéte, 144, 166
au centre, 150 centre, 146
dI'Oit, 161 de gravité, 153, 203
inscrit, 149 cercle, 146

mesure, 160 circonscrit, 151

obtu, 161 de Thales, 152
plat,’161 inscrit, 154
angles trigonométrique, 162
alternes-externes, 148 classe,,/37.7
alternes-internes, 148 d egullvaligeg(()ze’ 238
modale,

correspondants, 148

opposés, 148

supplémentaires, 148
application, 252
application linéaire, 104

coefficient, 14, 292
de corrélation linéaire, 409
dominant, 292

cofacteur, 68

associativité, 9, 187, 231, 263 combinaison linéaire, 189

asymptote, 296 commutativité, 9, 187
horizontale, 297, 298 composante scalaire, 191
verticale, 297, 298 concourant, 151-154

axe coordonnée, 201
des x, 234 corps, 103
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correspondant, 150

cosinus, 167

coté, 142

couple, 233, 402
symétrique, 236
transposé, 236

courbe, 255

covariance, 407

D
degré, 160
dénominateur, 5, 11, 20
déphasage, 329
déterminant
d’ordre n, 68
d’ordre 2, 64
d’ordre 3, 65
rangée, 66
transposé, 66
diagramme
circulaire, 382
en bandes, 382
en batons, 379
figuratif, 383
polaire, 383
sagittal, 253
diametre, 146
dimension, 103, 191
direction, 185
discriminant, 46
distributivité, 10, 231
dividende, 51
diviseur, 8, 51
divisible, 52
division euclidienne, 51
droite, 141, 208
a eeil, 403
de Mayer, 404
de régression, 405
des moindres carrés, 407
équation cartésienne, 210
équation cartésienne résolue, 211
équations paramétriques, 209
intersection, 212
ordonnée a l'origine, 211
parallele, 149, 212, 280
pente, 74, 211, 276, 277
position relative, 212
réelle, 6

sécante, 212, 280

E
écart-type, 375, 392
écriture de nombres
chiffres significatifs, 7
décimale, 7
notation scientifique, 7
effectif, 377
total, 378
élément
inverse, 9
neutre, 9, 187, 231
opposé, 9, 187
ensemble, 3, 227
=, 4, 228
€, 3, 227
¢, 3,227
C, 4, 228
D, 4, 228
a, 4, 228
cardinal, 228
complémentaire , 230
d’arrivée, 252
de définition, 254, 258
de départ, 252
différence, 229
différence symétrique, 229
disjoint, 230
élément, 3, 227
ensemble des parties, 231
image, 252
intersection, 229
partition, 230
réunion, 229
sous-ensemble, 4, 228
ensemble-quotient, 238
équation, 41
bicarrée, 49
deuxieme degré, 44
ensemble des solutions, 41
équivalente, 42
exponentielle, 312, 321
indépendante, 81
irrationnelle, 59
linéaire, 73
logarithmique, 319
polynomiale, 50
premier degré, 43
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racine, 41

rationnelle, 57

résolution, 41

solution, 41

trigonométrique, 335
équipollent, 185
espace

vectoriel, 103, 190
expression fonctionnelle, 252
extrapolation, 402

F

facteur de capitalisation, 127
figure
plane, 142
fleche, 184
fonction, 251, 252
affine, 276
bijective, 261
composée, 262
constante, 269, 282
cosinus, 163, 325
cotangente, 164, 327
croissante, 268
décroissante, 268
définie par morceaux, 99
exponentielle, 306, 308

exponentielle naturelle, 310
expression mathématique, 257

homographique, 297
impaire, 267
injective, 260
linéaire, 280
logarithme, 315
paire, 266
périodique, 329
polynome, 292
puissance, 300
quadratique, 283
racine, 303
rationnelle, 295

réciproque, 264, 302, 314, 330

réelle, 254

sinusoidale, 329
surjective, 259

tableau de valeurs, 254

tangente, 164, 327
valeur absolue, 99

zéro, 254, 277, 284, 293, 296, 298

formule
d’addition, 332
de bissection, 335
de Cramer, 81, 83
de duplication, 334
de Moivre, 112
de soustraction, 332
de symétrie, 331

fraction, 11
équivalentes, 21
amplifier, 21
différence, 23
inverse, 24
irréductible, 11, 21
opposé, 23
produit, 23
quotient, 24
rationnelle, 20
simplifier, 21
somme, 22

fréquence, 381
cumulée, 381

G
graphe, 236, 253, 255
intersection, 279
graphique, 375, 377
groupe
abélien, 102

H

hauteur, 143
histogramme, 380
hyperbole, 298
hypothénuse, 144, 166

I

identité remarquable, 14

représentation graphique, 255, 257, 266— image, 236, 252

269, 276, 278, 283, 286, 292-294, 296,
298, 300, 301, 304, 311, 316, 325-

327
signe, 100
sinus, 163, 326

inconnue, 41

inéquation, 88
deuxieme degré, 93
polynomiale, 94
premier degré, 91
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rationnelle, 97
résolution, 88
solution, 88
intéret, 125
composé, 127
simple, 126
interpolation, 402
intervalle, 232
fermé, 232
ouvert, 232
semi-interquartile, 393, 395
semi-ouvert, 232
isométrique, 144
isomorphisme, 104

L
lieu géométrique, 156
ligne, 141
limite, 350, 351, 364
a droite, 352, 360
a gauche, 352, 360
a 'infini, 362
forme indéterminée, 356, 361
infinie, 359
logarithme, 315
décimale, 315
formule de changement de base, 318
naturel, 315
lois de De Morgan, 231
longueur, 185
losange, 145

M
maximum, 287
médiane, 143, 375, 388, 389
médiatrice, 143
mesure
de dispersion, 375, 391
de tendance centrale, 375, 385
milieu d'un segment, 203
mineur, 68
minimum, 287
mode, 375, 390
monoéme, 15
coefficient, 15
degré, 15
indéterminée, 15
partie littérale, 15
semblable, 15
moyenne, 375

arithmétique, 155, 385

géométrique, 155, 386

harmonique, 387

pondérée, 388

quadratique, 387
multiple, 8

N
nombre
e, 310, 363
complexe, 101
entier, 5
irrationnel, 5
naturel, 5
premier, 8
rationnel, 5
réel, 5
nombre complexe, 102
argument, 109
conjugué, 106
forme cartésienne, 105
forme trigonométrique, 109
module, 109
partie imaginaire, 105
partie réelle, 105
norme, 110
nuage de points, 402
numérateur, 5, 11, 20

O
ordonnée, 202, 233
a origine, 74, 276, 284, 294
origine, 201
orthocentre, 152

P
parabole, 283
parallélogramme, 144
parametre, 78
période, 329
pegdc, 8
pied, 143
plan affine, 201
plan de Gauss, 108
axe des imaginaires, 108
axe des réels, 108
plan vectoriel, 186
point, 141
d’ancrage, 208
polygone, 142
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des effectifs, 380
des fréquences cumulées, 381
polynome, 16
=, 17
coefficient, 16
coefficient dominant, 16
degré, 16
différence, 17
évaluer, 17
factorisation, 18, 45
irréductible, 55
mise en évidence, 18
opposé, 17
produit, 17
racine, 43
somme, 17
zéro, 43
population, 375
ppmc, 8
préimage, 236
priorité des opérations, 11
produit cartésien, 233
progression
arithmétique, 119
géométrique, 122
géométrique illimitée, 124
raison, 119, 122
propriétés
addition, 9
fraction, 11
limites, 353, 359, 362
logarithme, 317
multiplication, 9
nombre opposé, 10
puissance, 12, 302
racine, 13, 305
puissance, 12, 300
base, 12, 300
exposant, 12, 300
pyramide des ages, 384

Q

quadrant, 234
quadrilatere, 144
quartile, 395
deuxieme, 394
premier, 394
troisieme, 394
quotient, 51

R
racine, 13, 303
carrée, 13, 303
indice, 13, 303
radical, 13, 303
radicande, 13, 303
radian, 161
rayon, 146
rectangle, 145
récurrence, 118
regle
de Sarrus, 65
des signes, 12
relation
antisymétrique, 237
binaire, 236
connexe, 237
d’équivalence, 186, 237
d’ordre, 237
d’ordre total, 237
de Chasles, 187
réciproque, 237
réflexive, 237
symétrique, 237
transitive, 237
repere, 201
représentation graphique, 235
résolution
graphiquement, 76
par combinaisons linéaires, 80
par les formules de Cramer, 81
par substitution, 78
résoudre un triangle, 168, 172
reste, 51
rhomboide, 145

S
saut, 350
scalaire, 183
schéma de Horner, 53
sens, 185
trigonométrique, 160
série statistique double, 402
simplification, 11
sinus, 167
sommet, 142, 285
statistique
descriptive, 375
inférentielle, 376
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suite, 117
bornée, 118
convergente, 364
croissante, 119
décroissante, 119
divergente, 364
majorée, 118
minorée, 118
monotone, 119
symbole de sommation, 24, 376
systeme
d’équations, 74, 75
équivalent, 76
homogene, 83
résolution, 74
solution, 74-76
systeme de coordonnées, 234

T
tableau, 375, 377
tangente, 167
taux
d’intéréet, 125
équivalent, 128
proportionnel, 128
terme, 117
test
de la droite horizontale, 259-261
de la droite verticale, 256
théoreme
d’Euclide, 155
de I'Hospital, 357
de la hauteur, 155
de Pythagore, 155
de Thales, 148
des deux gendarmes, 357
du cosinus, 170
du sinus, 169
fondamental de I’arithmétique, 9
trajectoire, 184
trapeze, 144
triangle, 143
équilatéral, 144
isocele, 144
rectangle, 166
scalene, 144
semblable; 150
triangle
de Pascal, 14

trou, 350
vV

variable, 252
variance, 392
vecteur, 183, 186
colinéaire, 190
de base, 201
différence, 187
directeur, 208
direction, 186
force, 183
linéairement dépendant, 189
linéairement indépendant, 190
longueur, 186
nul, 186
opposé, 186
produit par un nombre réel, 188
représentant, 186
sens, 186
somme, 187
vitesse, 183
voisinage, 350

Z

zéro
multiplicité, 57
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