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Chapitre 1

Notions fondamentales

1.1 Ensembles et sous-ensembles

Définition 1.1
Une collection d’objets est un ensemble lorsqu’on peut dire avec certitude si un objet
donné appartient ou non à la collection. Ces objets sont les éléments de l’ensemble.

N’importe quel objet (mathématique ou non) peut être considéré comme un élément d’un
ensemble (y compris un ensemble !).

Notation

1. On représente généralement un ensemble par une lettre latine majuscule : E.

2. Les éléments d’un ensemble sont notés entre accolades et séparés par des points-
virgules.

3. Si l’élément x appartient à l’ensemble E, on écrit x ∈ E.

4. Si l’élément x n’appartient pas à l’ensemble E, on écrit x /∈ E.

Exemples

– L’ensemble des nombre de 0 à 6 y compris : E = {0; 1; 2; 3; 4; 5; 6}.
Ici, on a :

0 ∈ E, 4 ∈ E, 10 /∈ E.

– L’ensemble des élèves d’une classe : F = {Aline; Bernard; . . .}.

On peut définir un ensemble de deux manières différentes :

1. en énumérant ses éléments, G = {5; 10; 15; 20; 25; . . .}.

2. en donnant une condition d’appartenance. La notation est alors légèrement plus
sophistiquée. Par exemple, on traduit la phrase

”H est
︸ ︷︷ ︸

H=

l’ensemble
︸ ︷︷ ︸

{...}

des éléments de E
︸ ︷︷ ︸

n∈E
on donne un nom

général aux éléments
de l’ensemble

tels que
︸ ︷︷ ︸

|

leur carré est plus grand ou égal à 15
︸ ︷︷ ︸

n2>15
on écrit la condition à l’aide d’une formule

grâce au fait qu’on a donné un nom aux éléments

”

par
H = {n ∈ E | n2

> 15}
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Cas particulier

Si un ensemble E ne contient aucun élément, on l’appelle ensemble vide et on le note
{} ou ∅.

Définition 1.2
Si tous les éléments de l’ensemble A appartiennent à l’ensemble B, on dit que A est un
sous-ensemble de B.

Exemple

A = {1; 2; 3; 4}, B = {1; 2; 3; 4; 5; 6} et C = {3; 4; 5; 6}
L’ensemble A est un sous-ensemble de B, mais A n’est pas un sous-ensemble de C.

Définition 1.3
Soit A et B des sous-ensembles d’un ensemble E. On dit que

1. A est inclus dans B si tout élément de A appartient à B. On note A ⊂ B. Dans
ce cas, A est un sous-ensemble de B.

2. A contient B, lorsque tout élément de B appartient à A. On note A ⊃ B. Dans ce
cas, B est un sous-ensemble de A.

3. A est égal à B, lorsque tout élément de A appartient à B et que tout élément de B
appartient à A. On note A = B.

Syntaxe

Nous venons de rencontrer deux signes mathématiques qu’il s’agit de ne pas confondre :

Nom Terme de gauche Symbole Terme de droite

Appartenir à Elément ∈ Ensemble

Etre inclus dans Ensemble ⊂ Ensemble

Etre égal à Elément = Elément

Etre égal à Ensemble = Ensemble

Contenir Ensemble ∋ Elément

Contenir Ensemble ⊃ Ensemble

On a l’équivalence suivante lorsque A est un ensemble.

x ∈ A⇔ {x} ⊂ A

Remarques

1. A 6⊂ B signifie qu’il existe au moins un élément de A qui n’appartient pas à B.

2. Soit un ensemble E = {a; b; c}.
a ∈ E et {a} ⊂ E sont des notations correctes, a ⊂ E ne l’est pas.
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1.2 Les ensembles de nombres

Les mathématiciens ont classé les nombres dans des ensembles, appelés ensembles de
nombres. Ces derniers sont désignés par des symboles universellement adoptés :

1. N = {0; 1; 2; 3; 4; 5; 6 . . .} : l’ensemble des nombres naturels.

C’est cet ensemble de nombres que nous utilisons la plupart du temps pour compter
(des objets, de l’argent, etc.). Historiquement, le zéro n’est pas apparu en même
temps que les autres nombres. On le rencontre pour la première fois en Inde. Les
Hindous (sanscrit) l’ont désigné par le mot ”sunya” qui signifie : vide ou nul. Les
Arabes l’ont repris en le transformant quelque peu pour donner ”sifr”. Le zéro n’a
été importé en Europe qu’au début du XIIIe siècle par Fibonacci. Les Européens
(en latin) ont transformé ”sifr” en ”zephirum” qui donnera zéro et en ”cifra” qui
donnera chiffre.

2. Z = {. . . ;−3;−2;−1; 0; 1; 2; 3 . . .} : l’ensemble des nombres entiers (relatifs).

Ensuite, les nombres négatifs sont apparus et, mis ensemble avec les nombres na-
turels, ont formé l’ensemble des nombres entiers. Moins utilisés que les nombres
naturels dans la vie de tous les jours, on les trouve notamment dans l’expression de
la température. Leur présence permet à la soustraction d’exister quels que soient
les nombres que l’on soustrait : sans eux, 2− 3 n’existerait pas.

3. Q =

{
p

q
| p, q ∈ Z, q 6= 0

}

: l’ensemble des nombres rationnels (fractions).

Tous les nombres pouvant se mettre sous forme de fraction sont des nombres ra-
tionnels. On en utilise tous les jours lorsqu’on parle de centimètres, de décilitres,
de centièmes de seconde, de moitié, de tiers, etc.

Exemples

– Les nombres entiers (x = x
1
).

– Les nombres à virgules ayant un développement décimal limité ou périodique
(1.25 = 5

4
, 1.3 = 4

3
).

En termes mathématiques, p est le numérateur (vient du mot numéro ou nombre,
car il compte) et q est le dénominateur (vient de dénommer, car il correspond à
un nom comme demi, tiers, dixième, etc.).

4. R : l’ensemble des nombres réels.

Finalement, il y a des nombres qui ne sont pas des fractions. Ils sont appelés les
nombres irrationnels (les nombres à virgule ayant un développement décimal
illimité non périodique). Ils ont été découverts par les Grecs (qui ont eu de la peine
à en accepter l’existence). Ils apparaissent par exemple lorsqu’on étudie la longueur
des côtés d’un triangle, le périmètre d’un cercle, etc.

L’ensemble des nombres réels est constitué des nombres rationnels et des nombres
irrationnels.

On a les inclusions
N ⊂ Z ⊂ Q ⊂ R
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Proposition 1.1
Le nombre

√
2 est un nombre réel irrationnel (il n’est pas un nombre rationnel).

Démonstration. Nous allons effectuer une démonstration par l’absurde. Principe d’un
telle démonstration : supposer le contraire de ce que l’on désire démontrer et montrer
que cette supposition est impossible (en exhibant une contradiction).

Supposons que
√
2 est un nombre rationnel.

⇒ il existe a, b ∈ Z, b 6= 0 et a, b premiers entre eux (c’est-à-dire a
b
irréductible) tel

que
√
2 = a

b
.

⇒ 2 = a2

b2
et donc a2 = 2b2. On en conclut que a2 un nombre pair.

⇒ a est pair. En effet, élever au carré conserve la parité :

- si m est pair, m = 2n, m2 = 4n2 = 2(2n2), m2 est pair.

- si m est impair, m = 2n + 1, m2 = 4n2 + 4n + 1 = 2(2n2 + 2n) + 1, m2 est
impair.

⇒ il existe a′ tel que a = 2a′. On obtient que a2 = 4(a′)2 = 2b2 et donc que
b2 = 2(a′)2.

⇒ b2 est pair. Par la même réflexion que ci-dessus, il existe b′ tel que b = 2b′.

⇒
√
2 = a

b
= 2a′

2b′
= a′

b′

⇒ La fraction a
b
n’est pas irréductible. Ceci est en totale contradiction avec notre

supposition de départ.

Il découle de cette remarque que
√
2 n’est pas un nombre rationnel.

Conventions complémentaires

On introduit encore les conventions d’écriture suivantes :

- R∗ = {x ∈ R | x 6= 0}

- R+ = {x ∈ R | x > 0}

- R− = {x ∈ R | x 6 0}

Les combinaisons de ces conventions sont possibles : R∗
+,. . .

Ces combinaisons s’appliquent par analogie aux autres ensembles de nombres (natu-
rels,. . . ).

1.2.1 La droite réelle

On représente les nombres réels par une droite, appelée la droite réelle.

R
−4 −3 −2 −1 0 1 2 3 4
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1.2.2 Ecriture décimale

L’écriture décimale permet de représenter tous les nombres réels d’une façon agréable,
mais qui n’est en général pas exacte. Cette écriture permet de placer avec une précision
relative n’importe quel nombre réel sur la droite réelle.

Voici quelques nombres écrits sous forme décimale.

2 = 2.0
2

5
= 0.4

1

8
= 0.125

2

3
= 0.6

5

13
= 0.384615

√
2 = 1.414213 . . .

Les nombres rationnels peuvent s’écrire sous forme de nombres décimaux limités (comme
2
5
et 1

8
) ou périodiques (comme 2

3
et 5

13
), contrairement aux nombres irrationnels dont

le développement décimal est toujours infini et non-périodique (comme
√
2 et π =

3.14159265 . . .).

1.2.3 Notation scientifique

La notation scientifique permet d’écrire des nombres ”très grands” ou ”très petits”.

Si on se donne un nombre a ∈ R, on l’écrira de la manière suivante en notation scientifique

a = ±x · 10n

avec 1 6 x < 10 (x ∈ R) et n ∈ Z. En d’autres termes, on écrit le premier chiffre non
nul du nombre suivi d’une virgule et des chiffres suivants. On multiplie ensuite par la
puissance de 10 adéquate pour retrouver le nombre de départ (on doit avoir une égalité !).
Le nombre de chiffres écrits est appelé le nombre de chiffres significatifs. Il est en
général fixé par le contexte. Afin de raccourcir l’écriture la plupart des calculatrices
écrivent :

±x En au lieu de ± x · 10n

Exemples

nombre exact
nombre décimal

arrondi

notation
scientifique

nb de chiffres
significatifs

2 2 2 · 100 1

1
2

0.5 5 · 10−1 1

1
2

0.50 5.0 · 10−1 2

13
10

1.3 1.3 · 100 2

−1
3

−0.333 −3.33 · 10−1 3

√
119 10.9087 1.09087 · 101 6

220 1048576 1.048576 · 106 7

(−2)49 −5629499534 · · ·? −5.629 · 1015 4

3100 5153775207 · · ·? 5.1537752 · 1047 8

(
1
3

)100
0.0000000 · · ·? 1.9403 · 10−48 5
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La notation scientifique permet de se donner un ordre de grandeur du nombre en question.
Plutôt superflue dans les premiers exemples, elle est essentielle dans les deux derniers
exemples !

1.2.4 PPMC, PGDC et nombres premiers

Définition 1.4 (Rappel)
Soit a et b deux nombres naturels non nuls (a, b ∈ N∗), alors :

1. a est un multiple de b s’il existe un nombre naturel c tel que a = b · c.
2. b est un diviseur de a s’il existe un nombre naturel c tel que a = b · c.

Exemples

1. 32 est un multiple de 8, car 32 = 4 · 8.
2. 7 est un diviseur de 21, car 21 = 7 · 3.

Définition 1.5 (Rappel)

1. Un multiple commun de plusieurs nombres naturels est un nombre naturel qui est
multiple de chacun d’eux. Le plus petit multiple commun de plusieurs nombres
est appelé le ppmc de ces nombres.

2. Un diviseur commun de plusieurs nombres naturels est un nombre naturel qui est
diviseur de chacun d’eux. Le plus grand diviseur commun de plusieurs nombres
est appelé le pgdc de ces nombres.

Exemples

1. 36 est le ppmc de 3, 9 et 12.

2. 8 est le pgdc de 16, 24 et 40.

Définition 1.6
Un nombre entier naturel p est premier s’il admet exactement deux diviseurs, 1 et lui-
même.

Propriétés

1. Tout entier naturel supérieur ou égal à 2 admet au moins un diviseur premier.

2. Il existe une infinité de nombres premiers.

Démonstration. Nous allons démontrer la seconde propriété. On doit cette preuve à Eu-
clide.

Supposons que cet ensemble soit fini. Il contient n nombres p1, p2, . . . , pn.

Posons N = p1 · p2 · . . . · pn + 1. N n’est pas premier par hypothèse. N admet donc au
moins un diviseur premier pi qui doit être p1, p2, . . . ou pn : N = q · pi. Ainsi,

1 = N − p1 · p2 · . . . · pn = q · pi − p1 · p2 · . . . · pn
1 = pi(q − p1 · p2 · . . . · pi−1 · pi+1 · . . . · pn)

De 1 = pi(q−p1 ·p2 ·. . .·pi−1 ·pi+1 ·. . .·pn), on tire que pi divise 1, ce qui est impossible.
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Théorème 1.2 (Théorème fondamental de l’arithmétique)
Tout nombre entier naturel supérieur ou égal à 2 peut s’écrire comme un produit de
nombres premiers. Cette décomposition est unique à l’ordre des facteurs près.

On appelle cette décomposition la décomposition en facteurs premiers du nombre.

Exemples

- La décomposition de 720 en facteurs premiers est : 720 = 24 · 32 · 5.
- La décomposition de 4200 en facteurs premiers est : 4200 = 23 · 3 · 52 · 7.

1.3 Calcul littéral

Le calcul arithmétique consiste à prendre des nombres ”connues” et à exécuter sur ces
derniers des opérations : addition, soustraction, multiplication et division.

Le calcul littéral (ou algébrique), quant à lui, consiste à manipuler des expressions
littérales (c’est-dire avec des nombres et des lettres qui représentent des nombres). Par
rapport au calcul arithmétique, une partie des nombres ”connus” est remplacée par des
lettres désignant des nombres ”inconnus”. Il y a plusieurs raisons pour lesquelles le calcul
algébrique est essentiel.

La première est pour éviter de faire le même calcul un nombre important de fois en
raison du fait qu’une ou plusieurs données du problème peuvent varier, tel que le prix
de l’essence, par exemple. Le calcul algébrique permet d’arriver à une réponse simplifiée
dépendant des (ou de la) données qui varient.

La deuxième est que, parfois, les valeurs de certaines données d’un problème ne seront
connues que plus tard, mais que cela ne devrait pas nous empêcher d’avancer dans la
résolution du problème.

La règle d’or est la suivante :

La présence de lettres dans un calcul ne change rien à la façon de

calculer. Une lettre ne fait que représenter un nombre quelconque !

1.3.1 Propriétés des opérations

Propriétés de l’addition

1) L’addition est commutative : a+ b = b+ a (3 + 4 = 7 = 4 + 3)

2) L’addition est associative : a+ (b+ c) = (a+ b) + c (2+(3+4) = (2+3)+4)

3) 0 est l’élément neutre : a+ 0 = a (2 + 0 = 2)

4) −a est l’élément opposé de a : a+ (−a) = 0 (3 + (−3) = 0)

Propriétés de la multiplication

1) La multiplication est commutative : a · b = b · a (3 · 4 = 12 = 4 · 3)

2) La multiplication est associative : a · (b · c) = (a · b) · c (2·(3·4) = (2·3)·4)

3) 1 est l’élément neutre : 1 · a = a (1 · 2 = 2)

4) Si a 6= 0,
1

a
est l’élément inverse de a : a · 1

a
= 1 (3 · 1

3
= 1)
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La multiplication est distributive par rapport à l’addition

a · (b+ c) = a · b+ a · c (1.1)

Pour réaliser le produit de deux sommes, on utilise plusieurs fois la distributivité de la
multiplication par rapport à l’addition :

(a + b)(c+ d) = a(c+ d) + b(c + d) = ac + ad+ bc+ bd

Exemples

1) Distributivité : 2 · (3 + 4) = 14 = 2 · 3 + 2 · 4
2) Produit de deux sommes : (2 + 3) · (4 + 5) = 2 · (4 + 5) + 3 · (4 + 5) = 2 · 4 + 2 ·

5 + 3 · 4 + 3 · 5 = 45

Définition 1.7
Deux termes techniques sont liés à la distributivité.

Développer : C’est l’opération qui consiste à passer du membre de gauche de l’égalité
(1.1) au membre de droite de la même égalité. Elle consiste donc à transformer
un produit en une somme en ”effectuant” la multiplication selon la règle de
distributivité.

Mettre en évidence : C’est l’opération qui consiste à passer du membre de droite de
l’égalité (1.1) au membre de gauche de la même égalité. Elle consiste donc à repérer
dans une somme de termes le facteur qui est commun à tous les termes de la somme
et à transformer cette somme en le produit du terme commun et de la
somme (entre parenthèses) des termes restant selon la règle de distributivité.

Exemples

1) Pour développer l’expression 2·(5+8) on effectue la multiplication pour obtenir :

2 · (5 + 8) = 2 · 5 + 2 · 8

2) Dans la somme 2 · 5 + 2 · 8, on peut mettre le facteur 2 en évidence car il est
commun aux deux termes de la somme :

2 · 5 + 2 · 8 = 2 · (5 + 8)

On réalise donc l’opération inverse de celle effectuée en 1.

Il est possible de montrer que ces propriétés impliquent :

a · b = 0⇒ a = 0 ou b = 0

C’est une relation nous utiliserons très fréquemment.

Propriétés des nombres opposés

1) −(−a) = a (−(−4) = 4)

2) (−a) · b = −(a · b) = a · (−b) ((−4)·5 = −(20) = 4·(−5))

3) (−a) · (−b) = a · b ((−3) · (−4) = 12)

4) (−1) · a = −a ((−1) · 4 = −4)
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Mathématiques, MAB 1
ère

année 1. Notions fondamentales

Propriétés des fractions

Rappel

Une fraction représente le quotient (≡ division) de deux nombres a et b. Elle est un
nombre qu’on note

a

b

où a est le numérateur (ou dividende), b le dénominateur (ou diviseur) et la barre
de fraction.

Exemple :
2

5
est un fraction qui correspond au nombre 0, 4. Elle se lit ”deux cinquième”.

Plusieurs fractions peuvent représenter le même nombre (penser à 3 = 6
2
= −15

−5
= 9

3
=

. . .).

On peut utiliser le produit en croix pour vérifier si deux fractions sont égales.

a

b
=

c

d
, si a · d = b · c

Exemple : 2
3
= 10

15
car 2 · 15 = 3 · 10

Les opérations sur les fractions suivent les règles ci-dessous :

1) Addition :
a

b
+

c

d
=

a · d+ b · c
b · d

(

2

3
+

4

5
=

2 · 5 + 3 · 4
3 · 5

)

2) Multiplication :
a

b
· c
d
=

a · c
b · d

(

2

9
· 1
3
=

2 · 1
9 · 3

)

3) Division :
a
b
c
d

=
a

b
÷ c

d
=

a

b
· d
c

(

2
3
3
4

=
2

3
÷ 3

4
=

2

3
· 4
3

)

4) Opposé : −a
b
=
−a
b

=
a

−b
(

−2

3
=

−2

3
=

2

−3

)

On transforme une fraction en une autre fraction équivalente par la suite d’opérations :

a

b
=

a

b
· 1 =

a

b
· m
m

=
a ·m
b ·m

En lisant de gauche à droite, on amplifie la fraction. En lisant de droite à gauche,
on simplifie la fraction. On dit qu’une fraction est irréductible si on ne peut pas la
simplifier (comme pour 2

3
).

Nous reviendrons plus en détails sur ces concepts au paragraphe (1.5).

Priorité des opérations

L’ordre de priorité des opérations s’établit ainsi (plus le numéro est élevé, plus la priorité
est grande) :

Priorité 4 - les parenthèses ()

Priorité 3 - l’exponentiation yx et les fonctions (sinus, cosinus, etc.)

Priorité 2 - la multiplication et la division

Priorité 1 - l’addition et la soustraction
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La règle de priorité est la suivante :

1. en lisant de gauche à droite, quand un nombre se trouve entre deux signes opéra-
toires, c’est l’opération prioritaire qui est effectuée en premier.

2. si les deux opérations ont le même niveau de priorité, elles sont effectuées dans
l’ordre d’écriture.

Règle des signes

Lorsqu’on a une multiplication ou une division entre deux nombres, la règle des signes
s’applique.

nombre
multiplication
ou division

nombre nombre

+ · ou ÷ + +

+ · ou ÷ − −
− · ou ÷ + −
− · ou ÷ − +

On peut aussi utiliser des phrases mnémotechniques du style : les amis de mes amis sont mes amis ; les amis de mes ennemis

sont mes ennemis ; les ennemis de mes amis sont mes ennemis ; les ennemis de mes ennemis sont mes amis.

1.3.2 Les puissances et les exposants

Définition 1.8
Un nombre a multiplié n fois par lui-même, a · a · . . . · a

︸ ︷︷ ︸

a apparâıt n fois

, est appelé puissance n-ème

de a et est noté an. On dit également ”a élevé à la puissance n” ou plus rapidement ”a
puissance n”. Dans l’écriture an, on appelle a la base et n l’exposant.

Exemple : 3 · 3 · 3 · 3 · 3 · 3
︸ ︷︷ ︸

3 apparâıt 6 fois

= 36

Propriétés

– Pour multiplier 2 puissances de même base, on additionne les exposants :

an · am = an+m

Exemple : 25 · 24 = (2 · 2 · 2 · 2 · 2) · (2 · 2 · 2 · 2) = 29

Pour n = 0 : an · a0 = an ⇒
a0 = 1

De plus :
an

am
= an−m

si n > m.
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– Pour multiplier 2 puissances de même exposant, on multiplie les bases :

an · bn = (a · b)n

Exemple : 23 · 33 = (2 · 2 · 2) · (3 · 3 · 3) = (2 · 3) · (2 · 3) · (2 · 3) = 63

– Pour élever à des puissances successives, on multiplie les exposants :

(an)m = an·m

Exemple : (32)3 = (3 · 3) · (3 · 3) · (3 · 3) = 36

Ces formules ne sont valables, pour l’instant, que pour a et b des nombres réels (a, b ∈ R)
et n et m des nombres naturels (n,m ∈ N). On les généralisera dans la suite du cours.

1.3.3 Les racines

Définition 1.9
L’opération prendre la racine d’un nombre est l’inverse de l’élévation d’un nombre à
une certaine puissance. On définit la racine n-ème (n ∈ N∗) d’un nombre a (avec
a ∈ R et a > 0), notée n

√
a, comme l’unique nombre réel x > 0 qui satisfait

xn = a

Le symbole n

√
est appelé radical , l’expression sous le radical est appelé radicande et

n l’indice.

Si n = 2, on écrit simplement
√
a et on lit racine carrée de a.

Exemples

1.
√
0 = 0 (car 02 = 0)

2.
√
4 = 2 (car 2 est l’unique nombre réel positif tel que 22 = 4. Remarque :

(−2)2 = 4 également, mais −2 est un nombre réel négatif !)

3. 3
√
8 = 2 (car 23 = 8)

Si a et b sont des nombres réels strictement positifs (a, b ∈ R∗
+) et n, m, p des nombres

naturels strictement positifs (n,m, p ∈ N∗), on a les propriétés suivantes :

n
√
a =

n
√
b⇐⇒ a = b

(
n
√
a
)n

= a
n
√
ab = n

√
a

n
√
b n

√
a

b
=

n
√
a

n
√
b

n
√
am =

(
n
√
a
)m n

√

m
√
a = nm

√
a np
√
amp = n

√
am

Attention !

–
√
a2 + b2 6= a + b, en effet :

√
32 + 42 =

√
25 = 5 6= 3 + 4 = 7

–
√
a+ b 6= √a+

√
b, en effet :

√
4 + 9 =

√
13 6=

√
4 +
√
9 = 5
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1.3.4 Identités remarquables

Les identités remarquables sont des formules qu’il est bon de reconnâıtre en toute
circonstance. Elles vont revenir dans tous les chapitres. Pour la plupart ce n’est qu’un
rappel.

(a+ b)2 = a2 + 2ab+ b2 (a− b)2 = a2 − 2ab+ b2

(a+ b)3 = a3 + 3a2b+ 3ab2 + b3 (a− b)3 = a3 − 3a2b+ 3ab2 − b3

(a+ b)4 = a4 + 4a3b+ 6a2b2 + 4ab3 + b4 (a− b)4 = a4 − 4a3b+ 6a2b2 − 4ab3 + b4

(a+ b)5 = . . .

Ces égalités se lisent dans les deux sens (comme toute égalité). Il est facile de les retrouver
en développant le terme de gauche. Par contre, il est important de les connâıtre afin de
pouvoir les reconnâıtre lorsque seul le terme de droite est présent.

Reprenons la première de ces formules. On peut écrire : (a+ b)2 = 1 · a2 + 2 · ab+ 1 · b2.
On appelle le ”1” devant a2 le coefficient de a2 ; le coefficient de ab est 2, celui de b2 est
1.

Dans les formules de la première colonne, la puissance à laquelle on a élevé (a + b) est
chaque fois augmentée de 1. Observez ce qui se passe :

- A chaque puissance correspond une suite de coefficients.
Exemples : à la puissance 2 correspond : (1; 2; 1), à celle de 3 correspond : (1; 3; 3; 1).

- En lisant de gauche à droite, les exposants de a sont décroissants par pas de 1, ceux
de b croissants par le même pas.

Pour le cas général (a+ b)n, les coefficients sont donnés par le triangle de Pascal.

n

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
... . . .

Le triangle de Pascal

D’autre identités sont également très utiles

(a+ b) · (a− b) = a2 − b2

(a + b)(a2 − ab+ b2) = a3 + b3

(a− b)(a2 + ab+ b2) = a3 − b3

(a+ b+ c)2 = a2 + b2 + c2 + 2ab+ 2ac+ 2bc
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Applications

1. 38 · 42 = (40− 2) · (40 + 2) = 402 − 22 = 1600− 4 = 1596

2. 212 = (20 + 1)2 = 202 + 2 · 20 + 1 = 400 + 40 + 1 = 441

3. 352 = (30 + 5)2 = 302 + 2 · 150 + 52 = 900 + 300 + 25 = 1225

Démonstration. Nous allons démontrer quelques-unes des identitées proposés ci-dessus.
Les autres démonstrations sont laissées au lecteur.

1. (a+ b)2 = (a+ b) · (a+ b) = a(a+ b)+ b(a+ b) = a2+ab+ ba+ b2 = a2 + 2ab+ b2

2. (a− b)2 = (a + (−b))2 = a2 + 2a(−b) + b2 = a2 − 2ab+ b2

3. (a+ b)(a− b) = a(a− b) + b(a− b) = a2 − ab+ ba + b2 = a2 − b2

4. (a+ b)(a2 − ab+ b2) = a3 − a2b+ ab2 + ba2 − ab2 + b3 = a3 + b3

5. (a− b)(a2 + ab+ b2) = a3 + a2b+ ab2 − ba2 − ab2 − b3 = a3 − b3

1.4 Polynômes

1.4.1 Monômes

Définition 1.10
On appelle monôme les nombres réels, les lettres, qui sont appelées indéterminées ou
les expressions qui peuvent être obtenues par la multiplication à partir des nombres réels
et des lettres.

Un monôme en une indéterminée est le produit d’un nombre réel, a, et d’une puis-
sance d’une indéterminée, généralement noté x, :

a · xn

Le nombre réel a est le coefficient du monôme.

La puissance de l’indéterminée, xn, est la partie littérale du monôme et son exposant,
n ∈ N, est le degré du monôme.

Deux monômes sont semblables si et seulement si leurs parties littérales sont égales.

Exemples

1) 4x2y, xy2z, −2x, 5, 0 sont des monômes.

2) x+ x+ x est un monôme, forme réduite : 3x.
1+3x n’est pas un monôme car cette expression n’est pas le produit de nombres
et/ou de lettres.

3)

Monôme 5x −3x2 7
2
x4 x2 −

√
2x3 7, 8

Coefficient 5 −3 7
2

1 −
√
2 7, 8

Partie littérale x x2 x4 x2 x3 x0 = 1

Degré 1 2 4 2 3 0

4) x2 et −3x2 sont deux monômes semblables.
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Opérations sur les monômes

Somme : On obtient la somme de monômes semblables en conservant la partie littérale
commune et en additionnant les coefficients. On utilise la distributivité de la mul-
tiplication sur l’addition.

Produit : On obtient le produit de deux monômes en multipliant leurs coefficients entre
eux et leurs parties littérales entre elles (addition des puissances). On utilise la
commutativité et l’associativité de la multiplication.

Exemples

1) Somme : 5x2 + 8x2 dis.
= (5 + 8) · x2 = 13x2

2) Produit : 5x2 · 8x3 com.
= 5 · 8 · x2 · x3 ass.

= 40x2+3 = 40x5

1.4.2 Polynômes

Définition 1.11
On appelle polynôme tout monôme et toute somme de monômes.

Exemples

1) 7x2y + 8xyz − 3y3z3 et −4x2 + 5xy − x+ 2y − 4 sont des polynômes.

2) 1
x
+ 3x, x−5

x2+2
et 3x+ 2

√
x ne sont pas des polynômes.

Pour la suite de ce cours nous considérerons uniquement des polynômes formés de monô-
mes en une indéterminée, que nous noterons x.

On polynôme est sous forme réduite si ses monômes semblables sont regroupés en
un seul terme. Pour obtenir un polynôme sous forme réduite, on somme ses monômes
semblables en utilisant la règle d’addition ci-dessus.

Exemples

1) 2x2 − 3x+ 2 est un polynôme sous forme réduite. Il a trois termes.

2) 7x2 − 3x+2x2 − 4 n’est pas un polynôme sous forme réduite, puisqu’il contient
les deux termes semblables 7x2 et 2x2. Forme réduite : 9x2 − 3x− 4

Définition 1.12
Un polynôme (en une indéterminée), nommé p(x), s’écrit de manière ”générale”

p(x) = anx
n + an−1x

n−1 + an−1x
n−2 + . . .+ a2x

2 + a1x+ a0

avec ak ∈ R, an 6= 0 et n ∈ N.

La valeur de l’exposant le plus grand, n, est appelée le degré de p(x), noté deg(p(x)).

Le nombre ai est appelé le coefficient de rang i de p(x) et an le coefficient dominant.

On écrira généralement un polynôme de manière ordonnée, c’est-à-dire en écrivant ses
termes dans l’ordres des degrés décroissants.
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Exemples

Polynôme Degré Coeff. dom. a5 a4 a3 a2 a1 a0

p(x) = 5x5 + 2x4 + 3x2 + x 5 5 5 2 0 3 1 0

p(x) = −x3 + x2 + 5 3 −1 − − −1 1 0 5

p(x) = 4
3
x+ 2 1 4

3
− − − − 4

3
2

p(x) = 6 0 6 − − − − − 6

Evaluation d’un polynôme

On peut évaluer un polynôme p(x) en n’importe quel nombre réel a en remplaçant
l’indéterminée x par le nombre a et en évaluant la valeur de l’expression ainsi obtenue.
On note cette valeur p(a).

Exemple

Soit le polynôme p(x) = −x3 + 2x2 − x− 7

Si a = 2 : p(2) = −23 + 2 · 22 − 2− 7 = −8 + 8− 2− 7 = −9
Si a = −5 : p(−5) = −(−5)3 + 2 · (−5)2 − 1 · (−5)− 7 = 125 + 50 + 5− 7 = 173

Opérations sur les polynômes

Egalité : Deux polynômes sont dit égaux s’ils sont de même degré et si tous leurs
coefficients de rang i correspondants sont égaux.

Somme : On additionne deux polynômes en regroupant les termes semblables, même
puissance de l’indéterminée, et en les additionnant (équivalent à réduire la somme
des deux polynômes).

Opposé : On obtient l’opposé d’un polynôme en changeant le signe de chacun de ses
termes. (Cela revient à le multiplier par −1.)

Différence : On soustrait un polynôme d’un autre polynôme en y additionnant son
opposé.

Produit : On multiplie deux polynômes en multipliant chaque monôme du premier par
chaque monôme du second et on réduit la somme de monômes obtenue. (On ap-
plique à plusieurs reprises la distributivité.)

Exemples

Soit les polynômes p(x) = 2x2 − 4x+ 6 et q(x) = x2 + 3x− 5.

1) Egalité :
p(x) = 2x2 − 4x+ 6 = 6− 4x+ 2x2 = −4x+ 6 + 2x2 = 2(x2 − 2x+ 3) = . . .

2) Somme :
p(x) + q(x) = (2x2 − 4x+ 6) + (x2 + 3x− 5)

= (2x2 + x2) + (−4x+ 3x) + (6− 5)
= 3x2 − x+ 1
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3) Opposé :
−p(x) = −1 · (2x2 − 4x+ 6) = −2x2 + 4x− 6

4) Différence :
p(x)− q(x) = (2x2 − 4x+ 6)− (x2 + 3x− 5)

= (2x2 − 4x+ 6) + (−x2 − 3x+ 5)
= (2x2 − x2) + (−4x− 3x) + (6 + 5)
= x2 − 7x+ 11

5) Produit :
p(x) · q(x) = (2x2 − 4x+ 6) · (x2 + 3x− 5)

= 2x2 · (x2 + 3x− 5) + (−4x) · (x2 + 3x− 5) + 6 · (x2 + 3x− 5)
= 2x2 · x2 + 2x2 · 3x+ 2x2 · (−5)+

(−4x) · x2 + (−4x) · 3x+ (−4x) · (−5)+
6 · x2 + 6 · 3x+ 6 · (−5)

= 2x4 + 6x3 − 10x2 − 4x3 − 12x2 + 20x+ 6x2 + 18x− 30
= 2x4 + 2x3 − 16x2 + 38x− 30

On peut remarquer que : 4 = deg(p(x) · q(x)) = deg(p(x)) + deg(q(x)) = 2 + 2.

Formule des degrés

Soit p(x) et q(x) deux polynômes. On a la formule suivante :

deg(p(x) · q(x)) = deg(p(x)) + deg(q(x))

Cette formule se démontre facilement en utilisant la définition du produit de deux po-
lynômes.

1.4.3 Factorisation d’un polynôme

La factorisation ou décomposition en facteurs consiste à trouver, pour un polynôme
p(x) de degré supérieur ou égal à 2 donné, un produit de polynômes de degré supérieur
à 0 qui lui soit égal et dont les facteurs ne peuvent plus être décomposés.

La factorisation est le processus inverse du développement. Ainsi, pour contrôler si une
factorisation est correcte, il suffit de développer le produit obtenu et voir s’il correspond
au polynôme de départ.

Exemple

Le polynôme x2 − 9 peut se décomposer ainsi : x2 − 9 = (x+ 3)(x− 3).

On donne ci-dessous quelques procédés permettant d’effectuer cette transformation très
importante et parfois difficile. D’autres technique seront données dans la suite du cours.

Mise en évidence

On repère d’abord dans la somme de termes à décomposer le facteur qui est commun à
tous les termes de la somme et on utilise ensuite la distributivité pour écrire un produit.
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Exemples

1) x2 − 8x = x(x− 8) −→ On a mis x en évidence.

2) 6ax+ 6a = 6a(x+ 1) −→ On a mis 6a en évidence (ne pas oublier le +1 dans
la parenthèse).

3) a(x+ y) + b(x+ y) = (a+ b)(x+ y) −→ Le facteur x+ y est commun aux deux
termes de la somme.

4) −12x3y + 24x2y2 + 6xy3 = 6xy(−2x2 + 4xy + y2)

Utilisation des identités remarquables

On peut utiliser les identités remarquables vues au paragraphe (1.3.4) pour factoriser un
polynôme.

Exemples

1) 9x2 − 25y2 = (3x− 5y)(3x+ 5y)

2) 4x2 − 4x+ 1 = (2x− 1)2

3) a3 − 6a2b+ 12ab2 − 8b3 = (a− 2b)3

Décomposition d’un trinôme du second degré

Essayons de déterminer α et β de manière à pouvoir écrire :

x2 + 7x+ 12 = (x+ α)(x+ β)

La forme réduite du membre de droite de cette égalité est égale à

x2 + (α + β)x+ αβ

Pour que les deux membres soient égaux, il faut donc que

α+ β = 7 αβ = 12

Ces deux égalités sont vraies si α = 3 et β = 4. On obtient ainsi la décomposition du
trinôme du second degré donné en un produit de deux facteurs du premier degré :

x2 + 7x+ 12 = (x+ 3)(x+ 4)

La décomposition d’un trinôme du second degré dont le coefficient dominant est 1 est
ainsi ramenée à la recherche de deux nombres dont
– la somme est égale au coefficient de rang 1,
– le produit est égal au coefficient de rang 0.

Méthode des groupements

Elle consiste à former plusieurs groupes de termes (dans les exemples les plus courants 2
groupes), de telle manière que l’on puisse
– soit utiliser une identité remarquable,
– soit mettre en évidence un facteur commun aux différents groupes.
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Exemples

1) x2 − 2xy + y2 − 1 = (x2 − 2xy + y2)− 1 ass. addition
= (x− y)2 − 1 identité remarquable
= [(x− y) + 1][(x− y)− 1] identité remarquable
= (x− y + 1)(x− y − 1) ass. addition

2) ax+ bx− ay − by = (ax− ay) + (bx− by) ass. et comm. addition
= a(x− y) + b(x− y) mise en évidence
= (x− y)(a+ b) mise en évidence

Méthode de factorisation

Pour décomposer un polynôme, il faut souvent appliquer plusieurs des méthodes décrites
ci-dessus. On procède dans l’ordre suivant :

1. mise en évidence des facteurs communs à tous les termes,

2. utilisation d’une identité remarquable,

3. méthode de décomposition pour les trinômes du second degré,

4. méthode des groupements.

Exemples

1) 36x2 − 100 = 4(9x2 − 25) mise en évidence
= 4(3x− 5)(3x+ 5) identité remarquable

2) 5a2 − 5b2 − 5a2c2 + 5b2c2 = 5[(a2 − b2)− c2(a2 − b2)]
= 5(a2 − b2)(1− c2)
= 5(a− b)(a+ b)(1 − c)(1 + c)

1.5 Fractions rationnelles

Définition 1.13
On appelle fraction rationnelle le quotient de deux polynômes en une indéterminée,
p(x) et q(x) :

p(x)

q(x)

où q(x) n’est pas le polynôme nul (q(x) 6= 0).

p(x) est appelé le numérateur de la fraction et q(x) le dénominateur.

Exemple

2x

5x+ 1
,
8x2 − 3x+ 2

−3x+ 5
,

1

x5 − 2x3 + 2
sont des fractions rationnelles.

Pour travailler avec ces fractions rationnelles, il est nécessaires de définir des opérations
entre ces fractions. Ces dernières devront être des prolongements des définitions des
opérations sur les polynômes, et donc concorder avec celles-ci, car tout polynôme p(x) 6= 0

peut être vu comme la fraction rationnelle :
p(x)

1
. La même remarque est valable pour

les nombres réels.
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1.5.1 Opérations sur les fractions rationnelles

Convention d’écriture : Dans ce paragraphe, les lettres A, B, C et D représenteront
des polynômes (en une indéterminée). En particulier, on pourrait voir ces lettres comme
représentant des nombres réels (qui sont des polynômes de degré 0) et retrouver ainsi les
opérations décrites au paragraphe (1.3.1).

Simplification d’une fraction rationnelle

On simplifie une fraction rationnelle en remplaçant dans le numérateur et le dénomina-
teur un facteur (polynôme) qui leur est commun par 1 (≡ on divise le numérateur et le
dénominateur par un même facteur).

A · C
B · C =

A · 1
B · 1 =

A

B

Une fraction rationnelle simplifiée au maximum est dans sa forme irréductible.

Remarque

Pour simplifier une fraction rationnelle, on factorise d’abord son numérateur et son
dénominateur, puis on simplifie par les facteurs communs.

Exemples

1)
21

14
=

3 · 7
2 · 7 =

3 · 1
2 · 1 =

3

2

On a simplifié la fraction 21
14

par 7.

2)
x2 − 3x+ 2

x2 − 1
=

(x− 2)(x− 1)

(x+ 1)(x− 1)
=

(x− 2) · 1
(x+ 1) · 1 =

x− 2

x+ 1

On a simplifié la fraction par x− 1.

3)
x2 + 6x+ 9

x3 + x2 − 6x
=

(x+ 3)2

x(x2 + x− 6)
=

(x+ 3)2

x(x+ 3)(x− 2)
=

x+ 3

x(x− 2)

4)
3x2 − 3

12x+ 12
=

3(x2 − 1)

12(x+ 1)
=

1 · (x+ 1)(x− 1)

4(x+ 1)
=

x− 1

4

Amplification d’une fraction rationnelle

On amplifie une fraction rationnelle en multipliant son numérateur et son dénominateur
par un même polynôme (non nul).

A

B
=

A · C
B · C

C’est donc la transformation inverse de la simplification.

Deux fractions rationnelles sont alors équivalentes si on peut passer de l’une à l’autre
par simplifications et/ou amplifications.
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Exemples

1)
4

5
=

4 · 7
5 · 7 =

28

35

On a amplifié 4
5
par 7

2)
x− 2

x− 5
=

(x− 2)(x− 1)

(x− 5)(x− 1)
=

x2 − 3x+ 2

x2 − 6x+ 5

On a amplifié la fraction par x − 1. Il suffit de simplifier la fraction du milieu
par x− 1 pour obtenir l’égalité.

Somme de deux fractions rationnelles

Pour additionner deux fractions rationnelles, on procède de la manière suivante :

1) déterminer un multiple commun aux dénominateurs des deux fractions −→ un
polynôme qu’on peut obtenir par multiplication à partir des dénominateurs des deux
fractions,

2) amplifier les deux fractions pour obtenir aux dénominateurs le polynôme déterminé
en 1 −→ on dit qu’on met les fractions au même dénominateur,

3) additionner les numérateurs en conservant le dénominateur commun.

A

B
+

C

D
=

A ·D
B ·D +

B · C
B ·D =

A ·D +B · C
B ·D

Cette méthode fonctionne aussi quand on veut additionner un polynôme et une fraction
rationnelle. Il suffit d’écrire le polynôme p(x) sous la forme p(x)

1
et d’appliquer la méthode

ci-dessus.

Remarque

Le dénominateur ”préféré” (parce qu’il rend les calculs plus simples !) est le multiple
commun des deux dénominateurs du plus petit degré possible.
On l’appelle le ppmc des deux dénominateurs.

Exemples

1)
3

4
+

5

6
=

9

12
+

10

12
=

9 + 10

12
=

19

12
Dénominateur commun : 12 −→ ppmc de 4 et 6.

2)
a2 − a

a+ 1
+

a− 2

a+ 1
=

a2 − a + a− 2

a+ 1
=

a2 − 2

a+ 1

Addition directe car les deux fractions sont déjà au même dénominateur.

3)
2

x− 3
+
−7
x+ 2

=
2(x+ 2)

(x− 3)(x+ 2)
+

(−7)(x− 3)

(x− 3)(x+ 2)
=

2x+ 4− 7x+ 21

(x− 3)(x+ 2)
=

−5x+ 25

(x− 3)(x+ 2)
=

(−5)(x− 5)

(x− 3)(x+ 2)

Dénominateur commun : (x− 3)(x+ 2) −→ produit de x− 3 et x+ 2.
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4)
2

(x− 3)(x+ 2)
+
−7
x+ 2

=
2

(x− 3)(x+ 2)
+

(−7)(x− 3)

(x− 3)(x+ 2)
=

2− 7x+ 21

(x− 3)(x+ 2)
=

−7x+ 23

(x− 3)(x+ 2)

Dénominateur commun : (x− 3)(x+ 2) −→ ppmc de (x− 3)(x+ 2) et x+ 2.

Opposé d’une fraction rationnelle

L’opposé d’une fraction rationnelle s’obtient en prenant l’opposé soit de son numérateur,
soit de son dénominateur.

−A

B
=
−A
B

=
A

−B

Exemples

1) −3
4
=
−3
4

=
3

−4
est l’opposé de 3

4
.

2) −x
2 − 3x+ 2

x2 − 1
=
−x2 + 3x− 2

x2 − 1
=

x2 − 3x+ 2

−x2 + 1

est l’opposé de la fraction rationnelle
x2 − 3x+ 2

x2 − 1

Différence de deux fractions rationnelles

Pour soustraire une fraction rationnelle d’une première fraction rationnelle, on addi-
tionne à la première l’opposé de la seconde.

A

B
− C

D
=

A

B
+
−C
D

=
A ·D
B ·D +

B · (−C)

B ·D =
A ·D −B · C

B ·D

Exemples

1)
3

4
− 1

2
=

3

4
+
−1
2

=
3

4
+
−2
4

=
3− 2

4
=

1

4

2)
a2 − a

a+ 1
− a− 2

a+ 1
=

a2 − a

a + 1
+

(−1)(a− 2)

a+ 1
=

a2 − a− a + 2

a+ 1
=

a2 − 2a+ 2

a + 1

Produit de deux fractions rationnelles

Pour multiplier deux fractions rationnelles, on multiplie leurs numérateurs entre eux et
leurs dénominateurs entre eux.

A

B
· C
D

=
A · C
B ·D

Pour multiplier un polynôme par une fraction rationnelle, il suffit, comme pour l’addition,
d’écrire le polynôme p(x) sous la forme p(x)

1
et d’appliquer la règle ci-dessus.
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Exemples

1)
2

3
· 4
5
=

2 · 4
3 · 5 =

8

15

2)
x− 3

x+ 1
· x− 2

x+ 1
=

(x− 3)(x− 2)

(x+ 1)(x+ 1)
=

x2 − 5x+ 6

x2 + 2x+ 1

Inverse d’une fraction rationnelle

L’inverse d’une fraction rationnelle est obtenue en inversant son numérateur et son
dénominateur (si le numérateur et le dénominateur sont différents de zéro).

A

B

inverse−−−→ B

A

Exemples

1)
3

4
est l’inverse de

4

3
.

2)
x2 − 3x+ 2

x2 − 1
est l’inverse de la fraction rationnelle

x2 − 1

x2 − 3x+ 2
.

Quotient de deux fractions rationnelles

Pour diviser une fraction rationnelle par une seconde fraction rationnelle, on multiplie
la première par l’inverse de la seconde.

A
B
C
D

=
A

B
÷ C

D
=

A

B
· D
C

=
A ·D
B · C

Exemples

1)
3
4
5
7

=
3

4
· 7
5
=

3 · 7
4 · 5 =

21

20

2)
x−3
x+1
x−2
x+1

=
x− 3

x+ 1
· x+ 1

x− 2
=

(x− 3)(x+ 1)

(x+ 1)(x− 2)
=

x− 3

x− 2

1.6 Symbole de sommation

Définition 1.14
Le symbole de sommation, noté à l’aide de la lettre grec Σ, s’utilise pour désigner de
manière générale la somme de plusieurs termes.

Soit n termes a1, a2, . . . , an. La somme de ces n termes s’écrit de la manière suivante à
l’aide du symbole de sommation :

a1 + a2 + . . .+ an =
n∑

k=1

ak
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On appelle k l’indice de la somme. Il permet de décrire la manière dont on somme les
éléments.

Le nombre se trouvant à droite de l’égalité sous le symbole de sommation est la valeur
de départ de l’indice de sommation, ici 1, et le nombre au-dessus du symbole la valeur
finale de l’indice, ici n. La somme porte sur toutes les valeurs de k comprises entre ces
deux bornes (bornes comprises).

Le symbole de sommation permet donc d’écrire des sommes d’un nombre important de
termes de manière précise et condensée sans utiliser les points de suspension.

L’indice de sommation peut être utilisé pour décrire les termes de la somme de manière
directe et les bornes sur l’indice de sommation peuvent avoir d’autre valeurs que 1 et n.

Par exemple, la somme des puissance de 2 comprises entre 6 et 27 peut s’écrire

27∑

k=6

2k

au lieu de 26 + 27 + . . .+ 226 + 227.
Donnons d’autres exemples pour bien comprendre cette notation.

Exemples

1.
8∑

k=3

k = 3 + 4 + 5 + 6 + 7 + 8 = 33

2.

4∑

k=1

2k = 21 + 22 + 23 + 24 = 30

3.
4∑

k=1

(k2 − 1) = (12 − 1) + (22 − 1) + (32 − 1) + (42 − 1) = 0 + 3 + 8 + 15 = 26

4.
n∑

k=1

(k2 − 1) = 0 + 3 + 8 + 15 + . . .+ (n2 − 1)

5.

4∑

k=2

(k − 1)3 = (2− 1)3 + (3− 1)3 + (4− 1)3 = 13 + 23 + 33 = 36

Proposition 1.3
Soient n ∈ N∗ ; x1, . . . , xn ∈ R ; y1, . . . , yn ∈ R et a ∈ R.

Le symbole de sommation possède les propriétés suivantes :

1.

n∑

k=1

(xk + yk) =

n∑

k=1

xk +

n∑

k=1

yk

2.
n∑

k=1

a · xk = a ·
n∑

k=1

xk

3.
n∑

k=1

a = n · a

Ces propriétés du symbole de sommation découlent directement de l’associativité et de
la commutativité de l’addition ainsi que de la distributivité de la multiplication sur l’ad-
dition.
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1.7 Principe de récurrence

Nous allons décrire ci-après un principe qui nous permettra de démontrer certaines rela-
tions utiles pour la progression du cours.

Proposition 1.4 (Principe de récurrence)
Soit P(n) une propriété de l’entier n ∈ N. On suppose qu’on a les deux assertions sui-
vantes :

1. P(0) est vraie (ancrage) ;

2. pour tout n ∈ N, P(n) implique P(n+ 1) (hérédité).

Alors P(n) est vraie pour tout n ∈ N.

L’hypothèse d’hérédité signifie que si P(n) est vraie alors P(n+ 1) l’est aussi. Dans ces
conditions, on comprend bien que P(n) est vraie pour tout n. En effet, P(0) est vraie
par l’hypothèse d’ancrage, donc P(1) l’est par hérédité, donc P(2) aussi pour la même
raison, etc.

Exemple

A l’aide du principe de récurrence, nous allons démontrer la relation :

1 + 2 + 3 + . . .+ n =

n∑

k=1

k =
n · (n+ 1)

2

pour tout n ∈ N∗. Cette propriété dépend donc de n et pourrait être désignée par
P(n), pour reprendre la notation proposé ci-dessus. On procède en deux étapes :

1. Ancrage : La formule est vraie pour n = 1 :

1
?
=

1 · 2
2
⇒ OK.

Cette égalité est vraie et la relation est donc vraie pour n = 1 (autrement
dit : P(1) est vérifiée).

2. Hérédité On suppose que la formule est vraie pour n quelconque. On montre
alors qu’elle est vraie pour n+1.

Hypothèse : 1 + 2 + 3 + . . .+ n =
n · (n + 1)

2

Conclusion : 1 + 2 + 3 + . . .+ n + (n+ 1) =
(n+ 1) · (n+ 2)

2
On doit donc montrer la seconde égalité en s’appuyant sur la première. Pour
cela, on part du terme de gauche de la seconde égalité et par une suite
d’égalités on essaie d’obtenir le terme de droite :
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1 + 2 + 3 + . . .+ n
︸ ︷︷ ︸

Hyp:=
n·(n+1)

2

+(n+ 1) =
n · (n+ 1)

2
+ (n+ 1)

=
n · (n+ 1) + 2 · (n+ 1)

2

=
(n+ 1) · (n+ 2)

2

Nous venons de prouver l’hérédité de notre formule : P (n)⇒ P (n+ 1).

La formule :
n∑

k=1

k =
n · (n + 1)

2

est donc vraie pour tout nombre naturel positif n par le principe de récurrence.

Remarque

Cette formule est à connâıtre par coeur !
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1.8 Exercices

1) Placer chacun des nombres suivants dans la bonne ”plage” (ne reporter que la lettre
correspondante) :

a = 0 b = −1, 2
c = 5

2
d = 0

5

e = 3, 48 f = π

g =
√
2 h =

√
36

i =
√
−1 j = 3

√
2

k = −12
0

l = 3
√
−8

m = 2, 999 n = 2, 999 . . .

N Z Q R C

2) Ecrire en notation scientifique :

a) 14′000′000 b) 1, 004 c) 0, 000004

d) 0, 00081 e) 143 f) 23, 090

3) Indiquer la décomposition en facteurs premiers de 14′520, 10′725 et 9′126 ; déterminer
ensuite leur pgdc et ppmc.

4) Supprimer les parenthèses inutiles :

a)

(
3

x

)

+ 2 + (4 · 3)− 1 b) (4 · x) + 5 · (2 + x)

c) (x+ 2) · (x− 1) + (3 · x)− (x+ 2) d) (x− 3)2 · (x− 4) + (x+ 2)3

5) Simplifier les quotients suivants :

a)
55

33
b)

24 + 18

6
c)

24 + 18

7
d)

8 + 12

4 + 28

6) Additionner les fractions suivantes et simplifier :

a)
4

3
+

1

3
b)

4

2
+

2

3
c)

6

8 + 4
+

3

2
d)

1

3
+

3

4

e)
3

11
+

4

7
f)

4

9
+

2

18
g)

3

4
− 5

32
h)

4

9
+

11

12

i)
2

7
− 3

14
+

1

2
j)

6

7
+

9

14
+

2

3
+

11

21
k)

7

8
+

3

4
+

19

24
+

5

6

l)
3

5
+

7

10
+

2

3
m)

7

16
+

2

3
+

5

8
+

1

6
n)

70

84
+

45

54
+

20

45
+

49

56

o)
54

72
+

140

336
+

65

117
+

119

189
p)

2
3
+ 2

2
9
− 4

3

q)
2
5
+ 3

2
4
3
+ 5

2
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7) Effectuer les multiplications suivantes :

a)
495

125
· 475
304
· 352
405
· 45
363

b)
161

368
· 676
343
· 648
624
· 686
819

c)
833

279
· 192
289
· 527
882
· 216
128

d)

(
5

6
− 1

10

)

·
(

7

11
+

7

4

)

8) Effectuer les divisions suivantes :

a)
3

24
÷ 15

8
b)

12

91
÷ 12

13
c)

60

39
÷ 30

13

d)
3600

4225
÷ 2772

4433
e)

9251

5819
÷ 783

621
f)

9

11
÷ 7

132

9) Effectuer les calculs suivants :

a)
111
105
− 90

175
36
140

+ 49
245

·
14
21

66
72
− 45

360

= . . . b)
25
16
− 16

25
5
4
+ 4

5

= . . .

c)
1

5− 24
21
4

= . . . d)

1
3
2

+ 1
3
4

1
2

13
14

· 21
39

= . . .

e)

225
21

· 616
33

163
3

− 10
3

100
3
− 100

17

= . . . f)
10
11

+ 10
9

2 + 1
3

· 1− 4
11

48
5
+ 472

55

= . . .

g)
53
8
− 125

40
1
2
− 1

3

÷
35
3
5
3

= . . . h)
203
343

+ 294
2401

799
1071
− 418

1197

÷
255
285
− 252

513
1173
1058
− 812

1334

= . . .

i)
1

3 + 1

1+
14
13 ·

26
7

4

= . . . j) 3 +
1

2 + 1
17
8
+ 15

40

= . . .

10) Effectuer les opérations suivantes sans machine et donner les résultats sous forme de
puissances entières positives. (m,n ∈ N∗

+ et a, b, c ∈ R∗
+)

a) 34 · 37 b) 25 · 75 c) (32)4

d) 53 · 53 e) 27 + 27 f) 38 + 38 + 38

g) 43 · 85 h) 36 · 29 i) 5 · 256

j) 9 · (35)3 k) (9 · 35)3 l) 412 ÷ 43

m) 97 ÷ 93 n) 86 ÷ 45 o) a6 · a5

p) b3 · c3 q) (8m)4 r) a8 ÷ a2

s) a · b5 · (a · b)5 t) 2(ab6) · (3a2b) u) 2(ab6)3 · (3a2b)
v) (2ab6)3 · (3a2b) w) 2m · 2n x) 2m ÷ 2n (3 cas)
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Mathématiques, MAB 1
ère

année 1. Notions fondamentales

11) Effectuer les opérations suivantes sans machine et donner les résultats sous forme de
puissance entières positives. (m,n, p ∈ N∗

+ et a, b, c, x, y, z ∈ R∗
+)

a) 2xny3 · 5xynz5 b) x2y(3xny2nzp+3)2 c) [(x2y) · (3xny2nzp+3)]2

d) (−abn)4 e) (−a)n (2 cas) f) 3ambn(cmb5)3

g) ((2am)3a4)2 h) (−2x5y6) · (x2 ÷ y3) i) (−2x5y6)3 · (x2 ÷ y3)2

j) (xn+3xn)÷ xn+1 k) a8m ÷ (a3m ÷ am) l) (a8m ÷ a3m)÷ am

12) Calculer mentalement : 322, 282, 21 · 19, 352, 652.

13) Quel terme faut-il ajouter aux binômes suivants pour les transformer en carrés par-
faits ?

a) x2 + 6x b) 4a2b4 + 9 c) 16a4 − 8a2y2

d) x2 + bx e) 4b4 + 9z12 f) 4a2b4 − ab2

14) Développer et réduire le plus possible. Indiquer le degré du polynôme obtenu.

a) −xx3x2 + 2x6 + 8x3 − 3xx2 b) (x− 2) · 3x
c) (x2 − 3)(x2 + 4) d) (x− 1)(x2 + x+ 1)

15) Compléter :

a) 2a(a + b)− 3b(a− b) = b) 1− (x− 1) + 2(3x− 1) =

c) (x+ 2)(x+ 7) = d) (x− 6)(x+ 8) =

e) (3x+ 2)2 = f) (5x2 − 2)2 =

g) (a4 − 3a)2 = h) (−7a2b+ 3ab3c)2 =

i) ((a+ b)− (c+ d))2 = j) (5x− 7xy + 3y)2 =

k) (a3b4 + c) · (a3b4 − c) = l) (x2 − 5x+ 1)2 =

m) (a+ a3) · (a− a3) · (a2 + a6) = n) (x4 − 1) · (x2 − 1) · (x2 + 1) =

16) A l’aide du triangle de Pascal établir la formule générale de (a+ b)n, n ∈ N∗.

Montrer que le nombre de grilles différentes possibles au jeu de la Loterie à numéros
est donné par le coefficient de a6b39 du développement de (a+ b)45.

Plus généralement, le nombre de sous-ensemble de k objets choisis parmi n est donné
par le coefficient de akbn−k du développement de (a+ b)n.

Montrer que le nombre de sous-ensembles d’un ensemble à n objet est 2n.

17) Mettre en évidence le facteur commun :

a) 21st+ 7t2 b) 5m+ 15mn c) 22x− 33xy

d) 6ab− 12b+ 6bc e) 2ab+ 4b2 + 6bc f) 15a2b− 10ab+ 5a

g) 15x2y − 5xy + 10xy2 h) 16x2yz + 24xyz2 i) a(c+ d) + b(c + d)

j) a(x− y)− (x− y) k) r(a+2ab)−s(a+2ab) l) x(x+ y)− xy − y2
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18) Décomposer en produits de facteurs irréductibles :

a) y3z3 − 3yz b) 1− 8z + 16z2 c) 4x2 − 9y2

d) 9x3 − 36x e) xy2 + 2xy + x f) 5y3 − 5y

g) x2 + 3x+ 2 h) y2 + 15y + 56 i) y2 − 15y + 56

j) x2 − 2x− 35 k) 2x2 + 14x+ 24 l) 5z2 + 15z − 50

m) x2 + xy + 2x+ 2y n) 12xy− 16x+27y− 36 o) 8x2 − 4xy − 6x+ 3y

p) 3x2y2 − 54x2 − 9x2y q) 36b2 − 100 r) b3 − bc2

19) Décomposer en produits de facteurs irréductibles :

a) 7a + 7ab− 7a2 b) 4a2 − 1 c) a3 − 8

d) x(a− b) + 3(a− b) e) a3 − 3a2 + 27− 9a f) x2 + 5x+ 6

g) a3 − a+ 2a2 − 2 h) (x2 − 1)2 − 3(x2 − 1) i) a4 + b4 − 2a2b2

j) (−a− b)3 + 4(a+ b) k) 1− x2y2 l) a4 + 1− 2a2

m) a3 + a2 + 1 + a n) 2a3 − 6a2 + 6a− 2 o) a2 + 2ab− x2 + b2

p) x3 + x2 − 6x q) a6 − b6 r) x4 − 2x2y2 + y4

s) 2a2 − 4a− 6 t) a2 + 1− b2 − 2a u) ax8 − a

v) 2a+ 2b− (a + b)2 w) 2x2 − 7x+ 3 x) (a2 + b2)2 − 4a2b2

20) Ecrire l’inverse des expressions suivantes :

a) x b) x− 2 c) 3x d)
1

x3

e)
3

x
f)

5

y2 + 1
g)

1
1

x+1

h) 0

21) Simplifier :

a)
84m3n2p

35m4np2
b)

5a+ 5b

7a+ 7b
c)

a + ab

2ab
d)

(a− b)2

b− a

e)
x2 + 4x− 21

x+ 7
f)

4a2 − 9

10a− 15
g)

5x2 + 5xy

3x2 − 3y2
h)

8a2b− 16ab2

12a2x− 48b2x

22) Simplifier le plus possible et effectuer :

a)
x

x+ 1
· x+ 1

x2
b)

x− 3

10
· 15

x− 3

c) 7 · x+ y

14
d) (x+ 5) · x

x2 + 10x+ 25

e)
2b3

5
÷ b2

20
f) −x

2

6
÷ x

2

g)
e− 1

e + 2
÷ 1

(e+ 2)2
h)

7x+ 7y

x
÷ 7
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23) Effectuer et simplifier, s’il y a lieu :

a)
a

2
+

a

3
b)

a

3
− 2a

5
+ a

c)
2

a
− a

2
d)

1

a
+

1

b

e)
4

3x
+

1

x
f)

2a

3
+

4a

3

g)
1

x+ 1
+

1

x2 − 1
h)

x+ y

2
− x− y

2

i)
1

3a
− 1

4a
j)

1

x− 1
− 1

k)
2

x+ 2
+

3

x− 3
l)

1

a+ b
− 2a

a2 − b2

m)
2

a+ 2
+

1

2− a
− 4

4− a2
n)

3x− 2y

2
− 4y + 2x

5
+

22y − 9x

15

o)
6

x(3x− 2)
+

5

3x− 2
− 2

x2
p)

2x

x+ 2
− 8

x2 + 2x
+

3

x

24) Effectuer et simplifier, s’il y a lieu :

a)
4x

3x− 4
+

8

3x2 − 4x
+

2

x
b)

12x

2x+ 1
− 3

2x2 + x
+

5

x

c)
3a+ 2b

a
+

2a2 − 2b2

ab
− 2a+ 3b

b
d)

a− b

a2 − b2
− 3a2

a3 + b3
+

a

a2 − ab+ b2

e)
x(1 + y)

xn
+

x− y

xn−1
− 1

xn−2
f)

x− y

x2 − xy + y2
+

1

x+ y
+

xy

x3 + y3

g)
2x+ 1

x2 + 4x+ 4
− 6x

x2 − 4
+

3

x− 2
h)

2

x− 2
− 1

x+ 2
− 4

x2 − 4

i)
2x+ 6

x2 + 6x+ 9
+

5x

x2 − 9
+

7

x− 3
j)

3x

2x− 5
− x

2x+ 5
− 4x

4x2 − 25

k)
16x

2x+ 8
+

5

x2 + x− 12
− x− 4

x− 3
l)

3− 6x

4x2 − 1
− 2 + 5x

4x2 + 4x+ 1

m)
4x2 − 4x

x2 + x− 2
− x2 + 3x− 10

x3 − 4x
n)

81− 54x+ 9x2

3x2 − 15x+ 18
− 2x2 − 6x+ 4

4x2 − 8x+ 4

o)
1

x+2
− 3

4
x
− x

p)
5

x+1
+ 2x

x+3
x

x+1
+ 7

x+3
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25) Simplifier le plus possible et effectuer :

a)
3(a2 − b2)

5bc
· 10c

9(a+ b)
b)

a2 − x2

a + b
· a

2 − b2

ax+ x2
·
(

a +
ax

a− x

)

c)
a2 − 4x2

a2 + 4ax
÷ a2 − 2ax

ax+ 4x2
d)

(27x3 − 8y6)(x− 4y)

2x(3x− 2y2)

e)
3a2b2 − 6b2c

a4 − 4a2c+ 4c2
f)

a2 + ab+ b2

a3 + b3
÷ a3 − b3

a2 − ab+ b2

26) Simplifier :

a)

x+y

x−y
− x−y

x+y

x−y

x+y
+ x+y

x−y

b)
x+ y + y2

x

x+ y + x2

y

c)
a− 1 + 8

a−8

a− 2 + 4
a−8

d)
1− x+ x2 − x3

x+1

1 + 1
x2−1

e)

x3+y3

x2−y2

x2−xy+y2

x−y

f)
x− a

x− (x−a)(x−b)
x+a

g)
1

1 + a

1+a+ 2a2

1−a

h)
abc

bc + ac− ab
−

a−1
a

+ b−1
b
− c−1

c
1
a
+ 1

b
− 1

c

i)
a2+b2

b
− a

1
b
− 1

a

· a
2 − b2

a3 + b3
j)

(

1

a+ 1
b+ 1

c

÷ 1

a+ 1
b

)

− 1

b(abc + a + c)

27) Lequel de ces calculs est correct ?

a) 6 + 3 · 2 = 9 · 2 = 18 ou 6 + 3 · 2 = 6 + 6 = 12

b) 4 + 5 · (6 + 3) = 4 + 45 = 49 ou 4 + 5 · (6 + 3) = 9 · 9 = 81

c) 13− 4 + 5 = 9 + 5 = 14 ou 13− 4 + 5 = 13− 9 = 4

d) 2 + 10 · 17− 7 = 12 · 10 = 120 ou 2 + 10 · 17− 7 = 2 + 170− 7 = 165

e) 6 + 10
2
= 16

2
= 8 ou 6 + 10

2
= 6 + 5 = 11

f) 5 · 2 + 9− 4(2 + 5) = 19− 28 = −9 ou 5 · 2 + 9− 4(2 + 5) = 55− 28 = 27

28) Ecrire les expressions suivantes en termes algébriques :

a) l’entier suivant le nombre entier n
b) le triple du nombre n
c) le double de l’entier précédant le nombre entier n
d) le produit de deux nombres entiers consécutifs
e) un nombre pair
f) une puissance de 2
g) l’inverse de x
h) l’opposé de x
i) le double du carré de l’inverse de l’opposé de l’entier précédant le quadruple du
nombre entier n
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29) Associer la bonne description aux expressions algébriques :

x+ y est un produit
x2 − y2 est le double du carré d’une somme

2(x+ y)2 est le carré du double d’une somme
(x− y)2 est la somme des carrés

xy est le carré d’une somme
(x+ y)2 est une somme

(x− y)(x+ y) est le carré d’une différence
2xy est la différence des carrés

(2(x+ y))2 est un double produit
x2 + y2 est le produit d’une somme par une différence

30) Rendre rationnel le dénominateur des fractions suivantes :

a)

√
t + 5√
t− 5

b)

√
t− 4√
t+ 4

c)
81x2 − 16y2

3
√
x− 2

√
y

d)
16x2 − y2

2
√
x−√y

31) On donne les valeurs de x1, . . . , x7 et n1, . . . , n7 dans le tableau ci-dessous.

Indice i Valeur de xi Valeur de ni

1 0 1
2 1 1
3 2 2
4 3 5
5 4 7
6 5 8
7 6 2

Avec des données ci-dessus, calculez les expressions suivantes :

a)

5∑

i=2

xi b)

6∑

k=1

nk c)

4∑

i=1

nixi d)

4∑

i=1

ni

4∑

j=1

xj

32) Démontrer :

a) 1 + 4 + 9 + . . .+ n2 =
n∑

k=1

k2 =
n(n+ 1)(2n+ 1)

6

b) 1 + 3 + 5 + . . .+ (2n− 1) =
n∑

k=1

2k − 1 = n2

c) 1 +
1

2
+

1

4
+ . . .+

1

2n
=

n∑

k=0

1

2k
= 2− 1

2n

d)

n∑

k=1

1

4k2 − 1
=

n

2n+ 1

e)

n∑

k=1

(k + 1)(k + 2)− 4

(k + 1)(k + 2)
=

n2

n+ 2

f)

n∑

k=1

1

(3k − 2)(3k + 1)
=

n

3n+ 1
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g) n(n + 1)(n+ 2) est divisible par 6 ∀n ∈ N.

h) 7n+1 + 2 est divisible par 3 ∀n ∈ N.
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1.9 Solutions des exercices

1) N Z Q R Cab

c

d

e

f

g

h
i

j

k
l

m
n

2) i) 1, 4 · 107 j) 1, 004 · 100 k) 4 · 10−6

l) 8, 1 · 10−4 m) 1, 43 · 102 n) 2, 3090 · 101

3) 14′520 = 23 · 3 · 5 · 112, 10′725 = 3 · 52 · 11 · 13, 9126 = 2 · 33 · 132

pgdc = 3, ppmc = 23 · 33 · 52 · 112 · 132

4) a)
3

x
+ 2 + 4 · 3− 1 b) 4 · x+ 5 · (2 + x)

c) (x+ 2) · (x− 1) + 3 · x− (x+ 2) d) (x− 3)2 · (x− 4) + (x+ 2)3

5) a)
5

3
b) 7 c) 6 d)

5

8

6) a)
5

3
b)

8

3
c) 2 d)

13

12
e)

65

77
f)

5

9

g)
19

32
h)

49

36
i)

4

7
j)

113

42
k)

13

4
l)

59

30

m)
91

48
n)

215

72
o)

127

54
p) −12

5
q)

57

115

7) a)
3

2
b)

3

4
c) 2 d)

7

4

8) a)
1

15
b)

1

7
c)

2

3
d)

124

91

e)
29

23
f)

108

7

9) a) 1 b)
9

20
c)

7

3
d) 2 e)

1

7
f)

1

33

g) 3 h)
513

230
i)

2

7
j)

41

12
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10) a) 311 b) 145 c) 38 d) 56 e) 28 f) 39

g) 221 h) 66 · 23 i) 513 j) 317 k) 321 l) 218

m) 38 n) 28 o) a11 p) (b · c)3 q) 212m r) a6

s) a6 · b10 t) 6a3b7 u) 6a5b19 v) 24a5b19 w) 2m+n

x)







2m−n si m > n

1 si m = n

1÷ 2n−m si m < n

11) a) 10xn+1yn+3z5 b) 9x2n+2y4n+1z2p+6 c) 9x2n+4y4n+2z2p+6

d) a4b4n e)

{

an si n pair

−an si n impair
f) 3ambn+15c3m

g) 64a6m+8 h) −2x7y3 i) −8x19y12

j) xn+2 k) a6m l) a4m

12) 322 = 1024, 282 = 784, 21 · 19 = 399, 352 = 1225, 652 = 4225

13) a) x2 + 6x+9 b) 4a2b4 + 9+12ab2 c) 16a4 − 8a2y2+y4

d) x2 + bx+
b2

4
e) 4b4 + 9z12+12b2z6 f) 4a2b4 − ab2+

1

16

14) a) x6 + 5x3, deg= 6 b) 3x2 − 6x, deg= 2

c) x4 + x2 − 12, deg= 4 d) x3 − 1, deg= 3

15) a) 2a2 − ab+ 3b2 b) 5x

c) x2 + 9x+ 14 d) x2 + 2x− 48

e) 9x2 + 12x+ 4 f) 25x4 − 20x2 + 4

g) a8 − 6a5 + 9a2 h) 49a4b2 − 42a3b4c+ 9a2b6c2

i) a2 + b2 + c2 + d2 + 2ab+ 2cd− 2ac− 2ad− 2bc− 2bd

j) 49x2y2 − 70x2y + 25x2 + 30xy − 42xy2 + 9y2

k) a6b8 − c2 l) x4 − 10x3 + 27x2 − 10x+ 1

m) a4 − a12 n) x8 − 2x4 + 1

17) a) 7t(3s+ t) b) 5m(1 + 3n) c) 11x(2− 3y)

d) 6b(a− 2 + c) e) 2b(a + 2b+ 3c) f) 5a(3ab− 2b+ 1)

g) 5xy(3x− 1 + 2y) h) 8xyz(2x+ 3z) i) (a + b)(c+ d)

j) (a− 1)(x− y) k) a(1 + 2b)(r − s) l) (x+ y)(x− y)
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18) a) yz(y2z2 − 3) b) (1− 4z)2 c) (2x+ 3y)(2x− 3y)

d) 9x(x+ 2)(x− 2) e) x(y + 1)2 f) 5y(y + 1)(y − 1)

g) (x+ 1)(x+ 2) h) (y + 7)(y + 8) i) (y − 7)(y − 8)

j) (x− 7)(x+ 5) k) 2(x+ 3)(x+ 4) l) 5(z + 5)(z − 2)

m) (x+ y)(x+ 2) n) (4x+ 9)(3y − 4) o) (4x− 3)(2x− y)

p) 3x2(y − 6)(y + 3) q) 4(3b+ 5)(3b− 5) r) b(b+ c)(b− c)

19) a) 7a · (b− a+ 1) b) (2a+ 1) · (2a− 1) c) (a− 2) · (a2 + 2a+ 4)

d) (x+ 3) · (a− b) e) (a− 3)2(a + 3) f) (x+ 3) · (x+ 2)

g) (a+2) · (a+1) · (a−1) h) (x+ 1) · (x− 1) · (x+ 2) · (x− 2)

i) (a+ b)2 · (a− b)2 j) (a+ b) · (2 + a + b) · (2− a− b)

k) (1 + xy) · (1− xy) l) (a+ 1)2 · (a− 1)2 m) (a + 1) · (a2 + 1)

n) 2(a− 1)3 o) (a+ b+x) · (a+ b−x) p) x · (x+ 3) · (x− 2)

q) (a+ b) · (a− b) · (a2 − ab+ b2) · (a2 + ab+ b2) r) (x+ y)2 · (x− y)2

s) 2 · (a− 3) · (a + 1) t) (a+ b− 1) · (a− b− 1)

u) a · (x4 + 1) · (x2 + 1) · (x+ 1) · (x− 1) v) (a+ b) · (2− a− b)

w) (2x− 1)(x− 3) x) (a + b)2 · (a− b)2

20) a)
1

x
b)

1

x− 2
c)

1

3x
d) x3

e)
x

3
f)

y2 + 1

5
g)

1

x+ 1
h) −−

21) a)
12n

5mp
b)

5

7
c)

1 + b

2b
d) b− a

e) x− 3 f)
2a+ 3

5
g)

5x

3(x− y)
h)

2ab

3x(a + 2b)

22) a)
1

x
b)

3

2
c)

x+ y

2
d)

x

x+ 5

e) 8b f) −x
3

g) (e− 1)(e+ 2) h)
x+ y

x

23) a)
5a

6
b)

14a

15
c)

(2 + a)(2− a)

2a
d)

a + b

ab

e)
7

3x
f) 2a g)

x

(x+ 1)(x− 1)
h) y

i)
1

12a
j)

2− x

x− 1
k)

5x

(x+ 2)(x− 3)
l)

1

b− a
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m)
1

a+ 2
n)

1

2
x− 1

3
y o)

5x2 + 4

x2(3x− 2)
p)

2x− 1

x

24) a)
2(2x+ 3)

3x− 4
b)

2(3x+ 1)

x
c) 0 d)

b− a

a2 − ab+ b2

e)
1

xn−1
f)

2x2

x3 + y3
g) − x+ 5

(x+ 2)2
h)

1

x− 2

i)
14x+ 15

(x+ 3)(x− 3)
j)

4x(x+ 4)

(2x− 5)(2x+ 5)

k)
7x2 − 24x+ 21

(x+ 4)(x− 3)
l)
−11x− 5

(2x+ 1)2

m)
4x2 − x− 5

x(x+ 2)
n)

5x2 − 20x+ 14

2(x− 2)(x− 1)

o)
x(3x+ 5)

(x+ 2)2(x− 2)
p)

2x2 + 7x+ 15

x2 + 10x+ 7

25) a)
2(a− b)

3b
b)

a2(a− b)

x
c)

x(a + 2x)

a2

d)
(x− 4y)(9x2 + 6xy2 + 4y4)

2x
e)

3b2

a2 − 2c
f)

1

a2 − b2

26) a)
2xy

x2 + y2
b)

y

x
c)

a2 − 9a+ 16

a2 − 10a+ 20
d)

x− 1

x2

e) 1 f)
x2 − a2

2ax+ bx− ab
g)

1 + a2

1 + a
h) 1

i) a j) 1

28) a) n + 1 b) 3n c) 2(n− 1) d) n · (n + 1)

e) 2n f) 2n g)
1

x
h) −x

i) 2

(
1

1− 4n

)2

29) x+ y −→ est une somme
x2 − y2 −→ est la différence des carrés

2(x+ y)2 −→ est le double du carré d’une somme
(x− y)2 −→ est le carré d’une différence

xy −→ est un produit
(x+ y)2 −→ est le carré d’une somme

(x− y)(x+ y) −→ est le produit d’une somme par une différence
2xy −→ est un double produit

(2(x+ y))2 −→ est le carré du double d’une somme
x2 + y2 −→ est la somme des carrés
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30) a)
t + 25 + 10

√
t

t− 25
b)

t + 16− 8
√
t

t− 16

c) (9x+ 4y) · (3
√
x+ 2

√
y) d) (4x+ y) · (2

√
x+
√
y)

31) a) 10 b) 24 c) 20 d) 54
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Chapitre 2

Equations

2.1 Généralités

Définition 2.1
Une équation est une égalité dont l’un ou les deux membres sont des expressions littérales
contenant une ou plusieurs lettres et des nombres.

Une lettre utilisée dans l’écriture d’une équation est une inconnue (ou une variable) dès
le moment où on s’intéresse à en déterminer la valeur pour que l’égalité soit vérifiée. La
ou les inconnues sont généralement désignées par les lettres x, y ou z.

Exemple

1) x2 − 5
︸ ︷︷ ︸

membre de gauche

= 4x
︸︷︷︸

membre de droite

: équation à une inconnue x.

2) 4y − 1 = x : équation à deux inconnues x et y si on cherche à déterminer leur
valeur.

3) x + y = b : équation à deux inconnues x et y si on cherche à déterminer leur
valeur et la lettre b représente une valeur fixe.

Définition 2.2
Pour les définitions suivantes, on considère le cas d’une équation en une inconnue notée
x.

1) Un nombre a qui vérifie l’égalité quand il est substitué à l’inconnue x est appelé
solution ou racine de l’équation. On dit alors que a vérifie ou satisfait l’équation.

2) Une équation est résolue lorsqu’on a déterminé toutes ses solutions. La recherche de
ses solutions se nomme la résolution de l’équation (on dira généralement ”résoudre
une équation”).

3) Toutes les solutions d’une équation forme l’ensemble des solutions, généralement
noté S. On énumérera parfois ces solutions en écrivant x1 = . . ., x2 = . . ., x3 = . . .,
. . .

Ces définitions peuvent s’étendre aux cas d’équations à plusieurs inconnues.

Exemple

5 est solution de l’équation x2 − 5 = 4x car 52 − 5 = 20 et 4 · 5 = 20 .

Une autre solution de cette équation est −1 car (−1)2−5 = −4 et 4 ·(−1) = −4 .

L’ensemble des solutions de cette équation est : S = {−1; 5}.
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Définition 2.3
Deux équations équivalentes sont deux équations qui ont exactement le même ensemble
de solutions.

Exemples

1) Les équations x − 5 = 8 − x et 5x = 32, 5 sont équivalentes. Leur
ensemble de solutions est S =

{
13
2

}
.

2) Les équations 10− 2y = y2 + y et y2 + 3y − 10 = 0 sont équivalentes.
Leur ensemble de solutions est S = {−5; 2}.

3) Les équations 5x = 15 et 5x2 = 15x ne sont pas équivalentes car 0 est
une solution de la deuxième équation sans en être une de la première.

Règles d’équivalence

Les règles suivantes permettent de transformer une équation en une équation équiva-
lente :

- permuter les deux membres de l’équation,

- effectuer du calcul littéral dans l’un ou l’autre de ses membres,

- additionner (ou soustraire) un même nombre, un même monôme ou un même
polynôme aux deux membres de l’équation,

- multiplier (ou diviser) les deux membres de l’équation par un même nombre
non nul.

Dans la pratique, on utilisera souvent une suite de transformations équivalentes sur
l’équation à résoudre afin d’obtenir une équation équivalente où l’ensemble des solutions
est plus facile à déterminer.

Exemple

Pour résoudre l’équation 4(x+ 2) = 9x− 12 + x, on peut procéder comme suit :

4(x+ 2) = 9x− 12 + x calcul littéral (CL)

4x+ 8 = 10x− 12 +12 (ajouter 12 aux deux membres)

4x+ 20 = 10x −4x (soustraire 4x aux deux membres)

20 = 6x permuter les deux membres

6x = 20 ÷6 (diviser les deux membres par 6)

x = 10
3

L’ensemble des solutions de toutes ces équations équivalentes (en particulier de
l’équation de départ) est donc : S =

{
10
3

}
.
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Remarques

Attention ! Si on multiplie ou on divise les deux membres d’une équation par l’inconnue
ou par un polynôme, on peut obtenir une équation non équivalente à la première. On
peut supprimer ou ajouter des solutions.
– Si on multiplie les deux membres de l’équation x

x−2
= 2

x−2
par le polynôme x − 2, on

trouve l’équation x = 2. La deuxième équation admet comme ensemble de solutions
S = {2} et la première S = ∅ → En substituant 2 à x dans la première équation, on
obtient une division par 0. On a donc ajouté la solution égale à 2.

– Si on divise les deux membres de l’équation x2 = x par le monôme x, on trouve
l’équations x = 1. La deuxième équation a comme ensemble de solutions S = {1} et la
première S = {0; 1}. On a perdu une solution égale à 0.

Dans la pratique, on se permettra tout de même de réaliser ces transformations dans
certaines résolutions mais il sera alors nécessaire de tester les solutions obtenues dans
l’équation de départ (en substituant ces solutions à l’inconnue, voir exemple au para-
graphe à complter).

Définition 2.4
On appelle zéros ou racines d’un polynôme p(x) les solutions de l’équation : p(x) = 0.

Si le nombre réel a est un zéro du polynôme p(x) alors p(a) = 0.

Exemple

2 est un zéro du polynôme p(x) = x2−4 car 2 est solution de l’équation x2−4 = 0.
De plus, p(2) = 22 − 4 = 0.

Dans la suite de ce chapitre, nous ne traiterons que des équations à une inconnue. On
désignera cette inconnue par la lettre x.

2.2 Equations du premier degré

Définition 2.5
Une équation du premier degré à une inconnue est une équation équivalente (qui
peut être mise sous la forme) à l’équation :

ax+ b = 0 (2.1)

où a, b ∈ R et a 6= 0.

Remarque

Dans une équation du premier degré, l’inconnue apparâıt seulement à la puissance 1. On
utilisera cette caractéristique pour identifier une telle équation.

Exemples

1) 3x− 2 = 0

2) 4x− 3 = 8x− 7 + 2x− 1
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Solution

L’équation (2.1) possède une unique solution : x = − b

a
.

Une équation du premier degré est rarement donnée sous la forme (2.1) et sa solution ne
peut donc pas être donnée immédiatement comme ci-dessus. On utilisera alors les règles
d’équivalence pour résoudre une telle équation.

2.2.1 Principe de résolution

Marche à suivre pour résoudre une équation du premier degré :

1. réduire les polynômes figurant dans chacun des deux membres,

2. ”passer” les termes en x dans un des membres et les termes constants dans
l’autre en utilisant la règle d’addition → obtenir une équation de la forme
ax = b,

3. isoler (on dit aussi expliciter) x en divisant les deux membres par a→ obtenir
x = . . ..

Il arrive qu’une, ou plusieurs, de ces étapes soient inutiles ou que d’autres méthodes soient
plus avantageuses, selon les cas.

Exemple

Résoudre : 4x+ 2− (1− x) = 3x+ 4− x.

4x+ 2− (1− x) = 3x+ 4− x CL (réduire les deux polynômes)

5x+ 1 = 2x+ 4 −1
5x = 2x+ 3 −2x
3x = 3 ÷3
x = 1

L’ensemble des solutions est : S = {1}.

2.3 Equations du deuxième degré

Définition 2.6
Une équation du deuxième degré à une inconnue est une équation équivalente à
l’équation :

ax2 + bx+ c = 0 (2.2)

où a, b, c ∈ R et a 6= 0.

Remarque

Dans une équation du deuxième degré, l’inconnue apparâıt à la puissance 2 et éventu-
ellement à la puissance 1. On utilisera cette caractéristique pour identifier une telle
équation.
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Exemples

1) 3x2 − 2x+ 1 = 0

2) 4(x− 2)2 = 2x− 1

2.3.1 Résolution par factorisation

Proposition 2.1
Soit p(x) un polynôme et a(x), b(x), . . . , m(x) des polynômes tels que p(x) = a(x) · b(x) ·
. . . ·m(x) : une factorisation de p(x).

L’ensemble des solutions de l’équation

p(x) = 0 ou (équivalent) a(x) · b(x) · . . . ·m(x) = 0

est égal à la réunion des ensembles de solutions des équations :

a(x) = 0,

b(x) = 0,
...

m(x) = 0.

Cette proposition découle immédiatement du fait qu’un produit de plusieurs facteurs est
nul si et seulement si au moins un de ces facteurs est nul.

En se fondant sur cette proposition, on peut résoudre certaines équations du deuxième
degré en devinant une factorisation du membre de droite ou de gauche de l’équation
(un polynôme de degré 2) si le membre de gauche, respectivement de droite, est égal à
0. On utilise les techniques vues au chapitre (1.4.3) pour déterminer une factorisation :
mise en évidence, identité remarquable, . . .

Exemples

1) Résoudre : x2 + 5x = 0.

En mettant x en évidence, on obtient l’équation équivalente :

x(x+ 5) = 0

D’où les 2 équations à résoudre :

* x1 = 0

* x+ 5 = 0 −→ x2 = −5
En conséquence : S = {0;−5}

2) Résoudre : x2 − 2x− 24 = 0.

En devinant une factorisation du membre de gauche, on obtient l’équation
équivalente :

(x+ 4)(x− 6) = 0

D’où les 2 équations à résoudre :

* x+ 4 = 0 −→ x1 = −4
* x− 6 = 0 −→ x2 = 6

En conséquence : S = {−4; 6}
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3) Résoudre : x2 = 3.

Cette équation est équivalente à l’équation x2− 3 = 0. En utilisant une identité
remarquable, on devine une factorisation du membre de gauche :

(x+
√
3)(x−

√
3) = 0

D’où les 2 équations à résoudre :

* x+
√
3 = 0 −→ x1 = −

√
3

* x−
√
3 = 0 −→ x2 =

√
3

En conséquence : S = {−
√
3;
√
3}

Remarque

Attention ! L’équation de l’exemple 3) possède deux solutions : ±
√
3. Ce résultat est

vrai pour toutes les équations du type x2 = a avec a > 0, qui admettent comme solutions
les nombres ±√a. Il faut prendre garde à ne pas oublier la solution −√a ! ! !

2.3.2 Résolution à l’aide d’une formule

Proposition 2.2
Soit l’équation du deuxième degré ax2+ bx+ c = 0 avec a 6= 0. On appelle discriminant
de cette équation le nombre :

∆ = b2 − 4ac

Le nombre de solutions de l’équation dépend du signe de ∆ :

- si ∆ > 0 : deux solutions distinctes : x1 =
−b+

√
∆

2a
et x2 =

−b−
√
∆

2a
,

- si ∆ = 0 : une solution double : x1 =
−b
2a

,

- si ∆ < 0 : pas de solution réelle (S = ∅).

Démonstration. Soit l’équation ax2 + bx + c = 0 avec a 6= 0. On transforme le membre
de gauche par une suite d’égalités :

ax2 + bx+ c = a ·
(

x2 +
b

a
x+

c

a

)

= a ·




x2 +

b

a
x+

b2

4a2
− b2

4a2
︸ ︷︷ ︸

=0

+
c

a






id. rem.
= a

[(

x+
b

2a

)2

− b2 − 4ac

4a2

]

Comme a 6= 0, l’équation
(

x+
b

2a

)2

=
b2 − 4ac

4a2
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est équivalente à l’équation de départ. La suite de la résolution dépend du signe de b2−4ac
4a2

.
Le dénominateur, 4a2, est toujours positif et le signe du numérateur, ∆ = b2−4ac, dépend
des valeurs de a, b et c.

Si ∆ > 0 : il y a deux nombres dont le carré est b2−4ac
4a2

.

* Première solution : x+
b

2a
=

√
b2 − 4ac

2a
−→ x1 =

−b+
√
∆

2a
.

* Seconde solution : x+
b

2a
= −
√
b2 − 4ac

2a
−→ x2 =

−b−
√
∆

2a
.

Si ∆ = 0 : le membre de droite de l’équation vaut 0.

* Une solution double : x+
b

2a
= 0 −→ x1 =

−b
2a

.

Si ∆ < 0 : le membre de droite de l’équation est négatif : b2−4ac
4a2

< 0.

* Pas de solution réelle :

(

x+
b

2a

)2

< 0.

Principe de résolution

Marche à suivre pour résoudre une équation du deuxième degré :

1. réduire les polynômes figurant dans chacun des deux membres,

2. ”passer” tous les termes en x dans un des membres en utilisant la règle d’ad-
dition → obtenir une équation de la forme ax2 + bx+ c = 0,

3. appliquer la formule de résolution ou deviner une factorisation pour obtenir la
ou les solutions.

Exemple

Résoudre : 2 · (x− 3)2 = x2 − 3 · (3x− 5) + 1.

2 · (x− 3)2 = x2 − 3 · (3x− 5) + 1 CL (réduire les deux polynômes)

2x2 − 12x+ 18 = x2 − 9x+ 16 −(x2 − 9x+ 16)

x2 − 3x+ 2 = 0

On applique la formule de résolution des équations du deuxième degré avec a = 1,
b = −3 et c = 2.
– Calcul du discriminant : ∆ = (−3)2 − 4 · 1 · 2 = 1.
– ∆ > 0 : 2 solutions distinctes :

* x1 =
−(−3) +

√
1

2 · 1 = 2

* x2 =
−(−3)−

√
1

2 · 1 = 1

– Ensemble des solutions : S = {1; 2}.
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2.3.3 Factorisation d’un polynôme de degré 2

Il est possible de factoriser directement un polynôme de degré 2 si on connâıt ses zéros,
sans devoir tâtonner.

Proposition 2.3
Soit p(x) = ax2 + bx + c un polynôme de degré 2 avec a 6= 0 et le nombre ∆ = b2 − 4ac,
le discriminant de l’équation p(x) = 0.

Si ∆ > 0 : le polynôme p(x) possède deux zéros distincts x1 et x2 et on peut écrire :

p(x) = a(x− x1)(x− x2)

Si ∆ = 0 : le polynôme p(x) possède un zéro double x1 et on peut écrire :

p(x) = a(x− x1)
2

Si ∆ < 0 : le polynôme p(x) ne possède pas de zéro et on ne peut pas le décomposer en
un produit de deux facteurs du premier degré.

Remarque

Attention ! Lorsqu’on utilise cette proposition pour factoriser un polynôme de degré 2,
il ne faut pas oublier le coefficient dominant comme premier facteur ! ! !

Démonstration. Soit p(x) = ax2+bx+c un polynôme de degré 2 avec a 6= 0. On considère
ici uniquement le cas ∆ = b2 − 4ac > 0. La démonstration des autres cas est laissée au
lecteur.

Lors de la démonstration de la formule de résolution des équations du deuxième degré,

on a vu que ax2 + bx+ c = a ·
[(

x+
b

2a

)2

− b2 − 4ac

4a2

]

. Comme ∆ > 0, on peut utiliser

les identités remarquables et obtenir :

a ·
[(

x+
b

2a

)2

− b2 − 4ac

4a2

]

= a ·
[(

x+
b

2a
−
√
∆

2a

)

·
(

x+
b

2a
+

√
∆

2a

)]

= a ·
[(

x− −b+
√
∆

2a

)

·
(

x− −b−
√
∆

2a

)]

= a · (x− x1) · (x− x2)

Exemple

Le polynôme de degré 2, p(x) = 2x2 + 5x − 3, possède deux zéros : x1 = 1
2
et

x2 = −3. On peut donc écrire la factorisation :

p(x) = 2 · (x− 1

2
) · (x+ 3) = (2x− 1)(x+ 3)
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2.3.4 Formules de Viète

Théorème 2.4
Si p(x) = ax2 + bx + c est un polynôme du deuxième degré avec a 6= 0 qui admet deux
zéros distincts x1 et x2 alors :

x1 + x2 = − b

a

x1 · x2 =
c

a

Formules de Viète

Démonstration. Soit p(x) = ax2 + bx + c (a 6= 0) un polynôme du deuxième degré avec
deux zéros distincts x1 et x2. On peut écrire que

ax2 + bx+ c = a · (x− x1) · (x− x2) = ax2 − a(x1 + x2)x+ ax1x2

Par identification des coefficients :

− x2 : a = a ,

− x : b = −a · (x1 + x2) (1),

− 1 : c = a · x1x2 (2).

De l’équation (1), on tire que x1 + x2 = −
b

a
et, de l’équation (2), que x1x2 =

c

a
.

On pourra utiliser ces formules de Viète pour deviner les zéros d’un polynôme du deuxième
degré et ainsi déterminer une factorisation de ce polynôme.

Exemple

Les racines de x2 − 5x+ 6 sont, d’après les formules de Viète, deux nombres dont

la somme est −−5
1

= 5 et le produit
6

1
= 6. En tâtonnant, on trouve que ces deux

nombres sont 2 et 3.

On peut donc écrire que : x2 − 5x+ 6 = 1 · (x− 2) · (x− 3) = (x− 2) · (x− 3).

2.4 Equations bicarrées

Il existe un type particulier d’équations de degré différent de 2 qu’on peut résoudre à
l’aide de la formule vue au paragraphe précédent.

Définition 2.7
Une équation bicarrée à une inconnue est une équation équivalente à l’équation :

ax2n + bxn + c = 0 (2.3)

où a, b, c ∈ R, a 6= 0 et n ∈ N∗.

Exemples

1) 4x6 + 2x3 − 6 = 0 : équation bicarrée avec n = 3.

2) −2x10 − 7x5 + 4
5
= 0 : équation bicarrée avec n = 5.
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Mathématiques, MAB 1
ère

année 2. Equations

2.4.1 Principe de résolution

Marche à suivre pour résoudre une équation bicarrée (équation 2.3) :

1. poser t = xn et substituer → on obtient l’équation du deuxième degré
at2 + bt + c = 0,

2. trouver les solutions t1 et t2 (si elles existent) de cette équation à l’aide de la
formule de résolution ou d’une factorisation,

3. résoudre les équations xn = t1 et xn = t2 (inconnue : x).

Exemple

Résoudre : 4x4+11x2− 3 = 0. On reconnâıt une équation bicarrée avec n = 2. On
pose alors t = x2 et on substitue pour obtenir :

4t2 + 11t− 3 = 0

On peut résoudre cette équation à l’aide de la formule de résolution des équations
du second degré avec a = 4, b = 11 et c = −3.
– Calcul du discriminant : ∆ = 112 − 4 · 4 · (−3) = 169 = 132.
– ∆ > 0 : 2 solutions distinctes :

* t1 =
−11 +

√
169

2 · 4 =
−11 + 13

8
=

1

4

* t2 =
−11−

√
169

2 · 4 =
−11− 13

8
= −3

Pour la dernière étape, on utilise la relation entre x et t pour poser les équations :

* x2 = t1 −→ x2 =
1

4
. Deux solutions : x1 =

√

1

4
=

1

2
et x2 = −

√

1

4
= −1

2

* x2 = t2 −→ x2 = −3. Pas de solution : un nombre élevé au carré ne peut pas
être négatif.

L’ensemble des solutions est : S = {−1
2
; 1
2
}.

2.5 Equations polynomiales

Définition 2.8
Une équation polynomiale de degré n à une inconnue est une équation équivalente à
l’équation :

p(x) = 0 (2.4)

où p(x) = anx
n + an−1x

n−1 + an−2x
n−2 + . . .+ a2x

2 + a1x+ a0 est polynôme de degré n
(avec an 6= 0).

Remarque

Dans une équation polynomiale, l’inconnue apparâıt élevée à une ou plusieurs puissances.
La puissance la plus élevée nous donne, en principe, le degré du polynôme p(x). On
utilisera ces caractéristiques pour identifier une telle équation.
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Exemples

1) 2x3 − 4x+ 2 = 0 : équation polynomiale de degré 3.

2) 8x4 − 3x2 + 2 = −7x5 + 9x3 − 2x : équation polynomiale de degré 5.

3) 5x3 − 2x2 − x+ 1 = 5x3 − 3 : équation polynomiale de degré 2.

2.5.1 Division euclidienne

Rappel

La division euclidienne d’un nombre naturel a par un nombre naturel b a été étudiée à
l’école secondaire. Par exemple, pour diviser 535 par 6, on suit le schéma suivant :

5 3 5 6

−© 4 8 8 9

5 5

−© 5 4

1

où 89 est le quotient de la division et 1 le reste. Plus généralement, pour a et b, on
obtient :

a = b · q + r

où a est appelé le dividende, b le diviseur, q le quotient et r le reste qui doit être le plus
petit nombre positif ou nul possible.
A partir de la ”même” idée, on va pouvoir diviser deux polynômes en faisant apparâıtre
un reste et un quotient.

Définition 2.9
Diviser un polynôme p(x) par un polynôme d(x) à l’aide d’une division euclidienne
revient à chercher des polynômes q(x) et r(x) tels que

p(x) = d(x) · q(x) + r(x)

avec deg(r(x)) < deg(d(x)).

On appelle p(x) le dividende, d(x) le diviseur, q(x) le quotient et r(x) le reste.

Pour réaliser cette division, nous allons utiliser l’algorithme de division ci-dessous
illustré par un exemple.

Pour diviser p(x) = 6x4 + 4x3 − 7x2 + 3 par le polynôme d(x) = 2x2 − 1, on part du
tableau suivant :

6x4 + 4x3 − 7x2 + 3 2x2 − 1

On place à gauche le dividende en laissant un espace vide pour les puissances de x
”absentes” dans le polynôme et à droite le diviseur.

On suit ensuite les pas de l’algorithme :
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1) Déterminer le monôme m(x) par lequel il faut multiplier le terme de plus haut degré
du diviseur, ici 2x2, pour obtenir le terme de plus haut degré du dividende, ici 6x4

−→ Réponse : m(x) = 3x2.

2) Reporter m(x) dans la partie réservée au quotient (sous le diviseur).

3) Multiplier d(x) par m(x) et reporter le résultat sous le dividende en respectant les
puissances de x −→ Produit : 3x2 · (2x2 − 1) = 6x4 − 3x2.

4) Soustraire ce produit du dividende pour trouver un polynôme s(x) −→ Différence :
s(x) = (6x4 + 4x3 − 7x2 + 3)− (6x4 − 3x2) = 4x3 − 4x2 + 3.

5) - Si deg(s(x)) < deg(d(x)) : stop !
- Sinon : recommencer en 1 en prenant s(x) comme ”nouveau” dividende.

On obtient alors :

6x4 + 4x3 − 7x2 + 3 2x2 − 1

−© 6x4 − 3x2 3x2 + 2x− 2

4x3 − 4x2 + 3

−© 4x3 − 2x

− 4x2 + 2x + 3

−© − 4x2 + 2

2x + 1

La dernière ligne de gauche fournit le reste et la ligne sous le diviseur le quotient. On a
ainsi :

6x4 + 4x3 − 7x2 + 3
︸ ︷︷ ︸

dividende

= (2x2 − 1)
︸ ︷︷ ︸

diviseur

· (3x2 + 2x− 2)
︸ ︷︷ ︸

quotient

+ (2x+ 1)
︸ ︷︷ ︸

reste

Définition 2.10
Un polynôme p(x) est dit divisible par un polynôme d(x) si le reste de la division de
p(x) par d(x) vaut zéro.

Remarque

Si le polynôme p(x) est divisible par le polynôme d(x), il existe un polynôme q(x) tel
que :

p(x) = d(x) · q(x)
On peut donc écrire p(x) comme le produit de 2 polynôme. On obtient alors une facto-
risation de p(x).

Proposition 2.5
Si p(x) est un polynôme de degré n et d(x) un polynôme de degré m, le quotient de la
division de p(x) par d(x) est un polynôme de degré n − m et le reste un polynôme de
degré inférieur à m.

Il découle de cette proposition que le reste de la division d’un polynôme de degré quel-
conque par un polynôme de degré 1 est de degré 0, donc un nombre réel.

page 52
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Théorème 2.6
Le reste de la division d’un polynôme p(x) par le polynôme x− a vaut p(a), avec a ∈ R.

Démonstration. Si q(x) est le quotient et r (un nombre réel !) le reste de la division de
p(x) par x− a, on a :

p(x) = (x− a) · q(x) + r

En remplaçant x par a, on obtient p(a) = (a− a)
︸ ︷︷ ︸

=0

·q(a) + r = r.

Il découle du théorème précédent et de la définition de la divisibilité le théorème suivant :

Théorème 2.7
Soit p(x) = anx

n + an−1x
n−1 + . . . + a1x + a0. Les trois propositions suivantes sont

équivalentes

1. a est une solution de l’équation p(x) = 0,

2. a est une racine de p(x),

3. p(x) est divisible par x− a.

avec a ∈ R.

Exemple

Divisons p(x) = x4− 3x3 +2x2−x+2 par d(x) = x− 2 à l’aide de l’algorithme de
division.

x4 − 3x3 + 2x2 − x + 2 x− 2

−© x4 − 2x3 x3 − x2 − 1

− x3 + 2x2 − x + 2

−© − x3 + 2x2

− x + 2

−© − x + 2

0

On obtient alors :

x4 − 3x3 + 2x2 − x+ 2 = (x− 2) · (x3 − x2 − 1)

Ainsi, p(x) est divisible par x−2 car le reste est nul. 2 est donc une racine de p(x),
ce qu’on peut facilement vérifier : p(2) = 24 − 3 · 23 + 2 · 22 − 2 + 2 = 0.

2.5.2 Schéma de Horner

Le schéma de Horner s’avère souvent très utile lorsqu’on désire :
– diviser un polynôme p(x) par le polynôme x− a,
– évaluer un polynôme p(x) en a.
avec a ∈ R.

Nous allons illustrer l’utilisation de ce schéma de Horner par un exemple.

On désire diviser le polynôme p(x) = 2x4−3x3−2x2−5x+4 par le polynôme d(x) = x−2.
On pourrait utiliser l’algorithme de division et trouver que :

2x4 − 3x3 − 2x2 − 5x+ 4 = (x− 2) · (2x3 + x2 − 5)− 6 (2.5)
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On peut également partir du tableau suivant (schéma de Horner) :

4−5−2−32

2

Les nombres de la première ligne sont les coefficients du polynôme, y compris ceux valant
0 ! Le 2© de la deuxième ligne du tableau est le zéro du diviseur d(x) = x− 2.

On construit ensuite, en partant du coin inférieur gauche, le schéma suivant :

4−5−2−32

−10024

+©+©+©+©

−6−5012
·2·2·2·2

2

La dernière ligne fournit les coefficients du quotient q(x) = 2x3+x2−5 et le reste r = −6.
On retrouve donc bien l’équation (2.5).

De plus, la valeur de p(x) en 2 est égale au reste r = −6 donnée par le schéma de Horner :
p(2) = 2 · 24 − 3 · 23 − 2 · 22 − 5 · 2 + 4 = −6.

2.5.3 Principe de résolution

Pour les équations de degrés 3 et 4, il existe des formules du même type que celles que
nous avons rencontrées pour le degré 2. Elles sont cependant relativement compliquées et
on ne les utilisera pas dans ce cours. En 1826, Abel, mathématicien norvégien, a montré
qu’une équation du cinquième degré ou plus ne peut se résoudre par radicaux (pas de
solutions générales comme pour les équations du second degré).

Dans ce cours, nous allons utiliser une technique qui permet de résoudre un petit nombre
d’équations polynomiales de degré supérieur à 2 et qui se base sur les techniques de
division de polynômes.

Soit p(x) un polynôme de degré supérieur à 2. Marche à suivre pour résoudre l’équation
p(x) = 0 :

1. chercher par tâtonnement une solution, a, de l’équation,

2. diviser le polynôme p(x) par le binôme x − a, −→ on obtient une polynôme
q(x) tel que p(x) = (x− a) · q(x),

3. - si deg(q(x)) > 2 : recommencer en 1 en considérant l’équation q(x) = 0,

- si deg(q(x)) 6 2 : résoudre l’équation q(x) = 0 à l’aide des techniques vues
dans les chapitres précédents.

Remarques

1) Pour résoudre une équation polynomiale quelconque, il faut, avant de pouvoir débuter
la procédure décrite ci-dessus, se ramener à une équation équivalente avec un des deux
membres égal à zéro.
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2) La solution a obtenue par tâtonnement est une racine de p(x) car p(a) = 0.

3) D’une manière générale, on cherche tout d’abord des racines entières proches de zéro
en testant dans l’ordre les nombres : 0, 1, −1, 2, −2, 3, −3, . . .

4) Le degré de q(x) est strictement inférieur à celui de p(x) ce qui permet de ”simplifier”
le problème (on ne peut pas itérer les opérations sans fin).

Exemple

Résoudre : x3 + x2 − 4x− 4 = 0.

Essais successifs pour découvrir une solution :

– x = 0 −→ 03 + 02 − 4 · 0− 4
?
= 0 : Non

– x = 1 −→ 13 + 12 − 4 · 1− 4
?
= 0 : Non

– x = −1 −→ (−1)3 + (−1)2 − 4 · (−1)− 4
?
= 0 : O.K

⇒ x1 = −1 est solution de l’équation.

On divise alors le polynôme x3+x2−4x−4 par le binôme x+1 à l’aide du schéma
de Horner.

−4−411

40−1
0−401

−1

On obtient l’égalité x3 + x2 − 4x− 4 = (x+ 1)(x2 − 4).

On résout alors l’équation x2−4 = 0. Cette équation est une équation du deuxième
degré qu’on peut résoudre par factorisation en utilisant une identité remarquable.
On trouve l’équation équivalente

(x− 2)(x+ 2) = 0

qui admet comme solution x2 = 2 et x3 = −2.
L’ensemble des solutions de l’équation de départ est : S = {−2;−1; 2}.

2.5.4 Factorisation d’un polynôme de degré supérieur à 2

Définition 2.11
Rappel : factoriser un polynôme de degré n consiste à écrire ce polynôme sous forme
d’un produit de polynômes de degré plus petit que n.

Un polynôme est dit irréductible s’il ne peut pas être écrit comme un produit de deux
polynôme de degré > 1.

Exemples

1) Le polynôme x2 + 4 est irréductible.

2) Le polynôme x2 − 4 n’est pas irréductible, car x2 − 4 = (x− 2) · (x+ 2)

Théorème 2.8
Les seuls polynômes irréductibles sont les polynômes de degré 1 et les polynômes de degré
2 dont le discriminant est négatif.
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Ainsi, tout polynôme peut s’écrire sous la forme d’un produit de polynômes irréductibles
de degré 1 ou 2.

Pour factoriser un polynôme p(x) de degré n avec n > 2 sous cette forme, on va procéder
comme si on voulait résoudre l’équation p(x) = 0 :

1. trouver une racine a de p(x),

2. diviser p(x) par x− a pour obtenir

p(x) = (x− a) · q(x),

ce qui permet d’effectuer une étape de la factorisation complète du polynôme,

3. factoriser q(x) en partant de 1 si deg(q(x)) = n − 1 > 2 ou en utilisant les
résultats de la section (2.3.3) si deg(q(x)) = 2.

Remarques

1) Cette méthode ne permet pas de trouver la factorisation d’un polynôme p(x) qui n’ad-
met pas de polynôme de degré 1 dans sa factorisation. Ainsi, elle n’est pas utilisable
pour le polynôme suivant qui se factorise pourtant facilement à l’aide d’une identité
remarquable : x4 + 2x2 + 1 = (x2 + 1)2.

2) Cette procédure a une fin car le degré du quotient est toujours inférieur de 1 au degré
du polynôme de départ (dividende).

Théorème 2.9
Un polynôme de degré n a au plus n zéros.

En se basant sur ce théorème et sur la procédure de factorisation ci-dessus, on peut,
comme pour les polynômes de degré 2, donner immédiatement la factorisation d’un po-
lynôme p(x) de degré n si on connâıt exactement les n zéros de celui-ci (donc l’ensemble
de ses zéros d’après le théorème).

Proposition 2.10
Soit p(x) = anx

n+an−1x
n−1+ . . .+a1x

1+a0 et x1, x2, . . . , xn les n zéros de ce polynôme.
On peut écrire :

p(x) = an · (x− x1) · (x− x2) · . . . · (x− xn)

Remarque

Attention ! Lorsqu’on utilise cette proposition pour factoriser un polynôme de degré n,
il ne faut pas oublier le coefficient dominant comme premier facteur ! ! !

Exemple

Soit le polynôme p(x) = 3x3 + 2x2 − 7x+ 2. Ses 3 zéros sont : x1 = 1, x2 = −2 et
x3 =

1
3
.

Une factorisation de ce polynôme en un produit de facteurs irréductibles est :

p(x) = 3 · (x− 1) · (x+ 2) · (x− 1

3
)
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Les zéros dans la proposition ci-dessus ne sont pas nécessairement tous différents. Par
exemple, p(x) = x3 + x2 − 5x+ 3 se factorise

p(x) = (x+ 3) · (x− 1) · (x− 1)

Si un facteur x− a apparâıt m fois, alors a est un zéro de multiplicité m du polynôme
p(x). Dans l’exemple ci-dessus, 1 est un zéro de multiplicité 2, et−3 un zéro de multiplicité
1.

A l’inverse, si a est un zéro de p(x) de multiplicité m, alors p(x) admet le facteur (x−a)m

dans sa factorisation.

Le théorème suivant permet de ”deviner” plus facilement un zéro de certains polynôme
qu’en testant tous les nombres entiers proche de zéro.

Théorème 2.11
Soit p(x) = anx

n + an−1x
n−1 + . . .+ a1x+ a0 un polynôme à coefficients entiers.

1) Si a est un zéro entier de p(x), alors a est un diviseur de a0.

2) Si a = u
v
est un zéro rationnel de p(x), avec u et v premiers entre eux, alors u est un

diviseur de a0 et v un diviseur de an

Exemple

Déterminer les zéros rationnels de p(x) = 3x3 + 2x2 − 7x+ 2.

Les zéros entiers possibles sont ±1, ±2, car les diviseurs de 2 sont ±1 et ±2.
Les zéros rationnels possibles sont ±1, ±2, ±1

3
, ±2

3
, car les diviseurs de 3 sont ±1

et ±3 et les diviseurs de 2 sont ±1 et ±2.
On obtient ici les trois zéros du polynôme car p(1) = 0, p(−2) = 0 et p(1

3
) = 0.

2.6 Equations rationnelles

Définition 2.12
Une équation rationnelle à une inconnue est une équation équivalente à l’équation :

p(x)

q(x)
= 0 (2.6)

où p(x) et q(x) sont des polynômes.

Remarque

Dans une équation rationnelle, l’inconnue apparâıt au dénominateur d’une (ou plusieurs)
fractions. On utilisera cette caractéristique pour identifier une telle équation.

Exemples

1)
3x− 2

4− x
= 0

2)
1

x− 2
− 1

x
=

2

3x

3)
3

x
− 7

x− 1
= − 39

x(x− 1)
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Solutions

Les solutions de l’équation (2.6) sont les solutions de l’équation p(x) = 0 qui ne sont
pas solution de l’équation q(x) = 0. L’ensemble des solutions est donc donné par :
S = {a ∈ R | p(a) = 0 et q(a) 6= 0}.

Une équation rationnelle est rarement donnée sous la forme (2.6). Il faudrait donc trou-
ver, par une suite d’opérations, une équation équivalente de la forme souhaitée pour
pouvoir ”calculer” ses solutions comme proposé ci-dessus. Dans la pratique, on procédera
généralement un peu différemment.

2.6.1 Principe de résolution

Marche à suivre pour résoudre une équation rationnelle :

1. déterminer le polynôme de plus petit degré possible multiple de chaque
dénominateur −→ on appelle ce polynôme le ”ppmc” des dénominateurs,

2. multiplier chaque membre de l’équation par ce ”ppmc” et simplifier −→ les
dénominateurs ”disparaissent”,

3. résoudre l’équation ainsi obtenue,

4. vérifier les solutions obtenues dans l’équation de départ !

Remarque

Attention ! Le fait de multiplier les deux membres d’une équation par un polynôme
peut introduire des solutions qui ne satisfont pas l’équation initiale. C’est pourquoi il est
nécessaire de tester les solutions trouvées dans l’équation de départ.

Exemples

1. Le ”ppmc” des polynômes x3 · (x− 2) et x · (x− 2)2 · (x+ 4) est le polynôme
x3 · (x− 2)2 · (x+ 4).

Pour construire ce ”ppmc”, on multiplie chacun des facteurs différents appa-
raissant dans les polynômes initiaux. Si un même facteur élevé à différentes
puissances est présent dans plusieurs polynômes, on ne considère que la puis-
sance la plus grande pour la construction du ”ppmc”.

2. Résoudre :
1

x− 2
− 3

x+ 2
=

2

5x− 10
.

On détermine d’abord le ”ppmc” des dénominateurs qui est le polynôme 5 ·
(x− 2) · (x+ 2). Ensuite, on procède comme décrit ci-dessus :

1
x−2
− 3

x+2
= 2

5x−10
·5(x− 2)(x+ 2) (multiplier par

le ”ppmc”)
5(x−2)(x+2)

x−2
− 3·5(x−2)(x+2)

x+2
= 2·5(x−2)(x+2)

5x−10
simplifier

5(x+ 2)− 3 · 5(x− 2) = 2(x+ 2) CL

−10x+ 40 = 2x+ 4 −40
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−10x = 2x− 36 −2x
−12x = −36 ÷(−12)

x = 3

Important ! Il faut maintenant vérifier la solution obtenue en substituant 3 à
x dans l’équation de départ.

Vérification

*

1

3− 2
− 3

3 + 2
︸ ︷︷ ︸

= 2
5

?
=

2

5
−→ O.K.

L’ensemble des solutions, après vérification, est : S = {3}.

2.7 Equations irrationnelles

Définition 2.13
Une équation irrationnelle à une inconnue est une équation où l’inconnue figure sous
un radical n

√
. . ..

Exemples

1)
√
3x− 2 = 8

2)
√
2 + x+ 4−

√
10− 3x = 0

3) 3
√
4x− 3 =

6
√
5x2 − 7x+ 2 + 23x− 4

2.7.1 Principe de résolution

Marche à suivre pour résoudre une équation irrationnelle :

1. isoler un radical n

√
. . . dans un des membres de l’équation à l’aide des règles

d’équivalence,

2. élever les deux membres de l’équation à la puissance n −→ le radical isolé
disparâıt,

3. répéter les points 1 et 2 afin de faire disparâıtre l’ensemble des radicaux,

4. résoudre l’équation à une inconnue obtenue,

5. vérifier les solutions obtenues dans l’équation de départ !

Remarque

Attention ! Le fait d’élever à la puissance n les deux membres d’une équation peut
introduire des solutions qui ne satisfont pas l’équation initiale. C’est pourquoi il est
nécessaire de tester les solutions trouvées dans l’équation de départ.
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Exemple

Résoudre :
√
x+ 5 + x− 1 = 0.

√
x+ 5 + x− 1 = 0 −(x− 1) (isoler le radical)

√
x+ 5 = −x+ 1 (. . .)2 (élever au carré)

x+ 5 = (−x+ 1)2 développer

x+ 5 = x2 − 2x+ 1 −(x+ 5)

0 = x2 − 3x− 4

On résout alors l’équation du deuxième degré x2−3x−4 = 0 à l’aide de la formule
de résolution avec a = 1, b = −3 et c = −4.
– Calcul du discriminant : ∆ = (−3)2 − 4 · 1 · (−4) = 25 = 52.
– ∆ > 0 : 2 solutions distinctes :

* x1 =
−(−3) +

√
25

2 · 1 =
3 + 5

2
= 4

* x2 =
−(−3)−

√
25

2 · 1 =
3− 5

2
= −1

Important ! Il faut maintenant vérifier les solutions obtenues en les substituant à
x dans l’équation de départ.

Vérification

*

√
4 + 5

︸ ︷︷ ︸

=3

+4− 1
?
= 0 −→ Non

*

√
−1 + 5

︸ ︷︷ ︸

=2

+(−1)− 1
?
= 0 −→ O.K.

L’ensemble des solutions, après vérification, est : S = {−1}.
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Mathématiques, MAB 1
ère

année 2. Equations

2.8 Exercices

1) Dans chacune des formules physiques suivantes, exprimer chaque lettre au moyen des
autres.

a) F = G
m1m2

r2
b) T = 2π

√

l

g
c) x =

1

2
at2 + x0 d)

1

R
=

1

R1
+

1

R2

2) Résoudre les équations suivantes.

a) 10x− 38 + 5x = 20x− 18 + 4x− 11 b) 4x+ 7 + 20x− 17 = 24x− 10

c) −x+ 8 = −1 + 2x d) x− 10 = −9 + 3x

e) 4x+ 12− (1− x) = 5x+ 2 f) 4x+ 12− (1− x) = 5x+ 11

g) 4x+ 3 = 2(7x− 1) h) 7(x+ 2)− x = 2(x− 1)

i) 4x− (x+ 3) = 5− (1− 3x) j) (3x− 2)2 = (x− 5)(9x+ 4)

k) (5x− 7)(2x+ 1)− 10x(x− 4) = 0 l)
3− x

2
=

9 + 7x

6

m)
x− 1

5
=

3x+ 2

20
n)

x

2
+

2x

3
+

x

6
− x = 18

o) 11− x

3
= 1 +

x

12
p)

1

5
x+ 2 = 3− 2

7
x

3) Résoudre les équations suivantes.

a) (x− 2)(x+ 3) = 0 b) (3x− 1)(3− 4x) = 0

c) x(2x+ 7) = 0 d) (2x+ 1)2 = 0

e) x2 + 4x = 0 f) x = 3x2

g) x2 − 9 = 0 h) (x− 2)2 = 9

i) (x+ 5)2 = −5 j) 1− (4x+ 11)2 = 0

4) Résoudre les équations suivantes.

a) 3x2 + 7x− 3 = 0 b) 2x2 − x− 1 = 0

c)
√
3x2 − 4x+ 2

√
3 = 0 d) x(x+

√
2) =

√
2(x−

√
2)

e) x2 − (3−
√
2)x+

√
2 = 0 f) x2 −

√
3(2−

√
3)x = 6

√
3

g) x(x+
√
5) = 2x h) x3 − 2x2 + 2x = 0

i) x3 + 6x2 + 5x = 0 j) x4 − x3 − 6x2 = 0
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5) Résoudre les équations suivantes.

a)
x− 3

x− 5
= 5 b)

x− 3

x− 5
= 0

c)
5

x+ 1
=

3

x+ 1
+

1

2
d)

1

x− 4
=

1

2x+ 1

e)
x− 5

x− 3
− x− 7

x− 1
=

1

2x− 2
f)

x

x− 1
+

x− 1

x
= 1

g)
1

x+ 1
+

4

x− 1
=

8

x2 − 1
h)

x

x+ 1
− 2x

x− 1
= 0

i)
1

x
+

1

x2
=

4

9
j)

5

x+ 1
+

4

x2 − 1
= 1

6) Résoudre les équations suivantes.

a) 2 + 3
√
1− 5t = 0 b)

4
√
2x2 − 1 = x

c)
√
7− x+ 5 = x d) 3

√
2x− 3 + 2

√
7− x = 11

e) x = 4 +
√
4x− 19 f) x+

√
5x+ 19 = −1

g)
√
7− 2x−

√
5 + x =

√
4 + 3x h)

√
11 + 8x+ 1 =

√
9 + 4x

i)

√

2
√
x+ 1 =

√
3x− 5 j)

√

1 + 4
√
x =
√
x+ 1
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2.9 Solutions des exercices

2) a) S = {−1} b) S = R c) S = {3} d) S = {−1
2
}

e) S = ∅ f) S = R g) S = {1
2
} h) S = {−4}

i) S = ∅ j) S = {−24
29
} k) S = { 7

31
} l) S = {0}

m) S = {6} n) S = {54} o) S = {24} p) S = {35
17
}

3) a) S = {−3; 2} b) S = {1
3
; 3
4
} c) S = {−7

2
; 0} d) S = {−0, 5}

e) S = {−4; 0} f) S = {0; 1
3
} g) S = {−3; 3} h) S = {−1; 5}

i) S = ∅ j) S = {−5
2
;−3}

4) a) S = {−7±
√
85

6
} b) S = {−1

2
; 1} c) S = ∅

d) S = ∅ e) S = ∅ f) S = {−3+2
√
3±
√

21+12
√
3

2
}

g) S = {0; 2−
√
5} h) S = {0} i) S = {−5;−1; 0}

j) S = {−2; 0; 3}

5) a) S = {11
2
} b) S = {3} c) S = {3} d) S = {−5}

e) S = {29
7
} f) S = ∅ g) S = ∅ h) S = {−3; 0}

i) S = {−3
4
; 3} j) S = {0; 5}

6) a) S = {9
5
} b) S = {1} c) S = {6} d) S = {6}

e) S = {5; 7} f) S = {−3} g) S = {−1} h) S = {−5
4
}

i) S = {3} j) S = {0; 4}
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Chapitre 3

Déterminants

3.1 Déterminants d’ordre 2

Définition 3.1
On appelle déterminant d’ordre 2, et on note

a1 b1
a2 b2

le nombre a1b2 − a2b1.

Exemple

1)
5 2
1 4

= 5 · 4− 1 · 2 = 18

2)
2 5
4 1

= 2 · 1− 5 · 4 = −18

3.1.1 Aire d’un parallélogramme

On peut utiliser un déterminant d’ordre 2 pour calculer l’aire d’un parallélogramme.
Considérons un plan muni d’un repère orthonormé d’origine O, et deux points A et B
de coordonnées (a1; a2) et (b1; b2). L’aire du parallélogramme construit sur OAB (voir le
dessin ci-dessous) vaut exactement :

A =
a1 b1
a2 b2

= a1b2 − a2b1

y

A(a1; a2)

B(b1; b2)

O a1b1

a2

b2

x
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Démonstration. On peut se convaincre de ce résultat en remarquant que a1b2 est l’aire
d’un rectangle de largeur a1 et de hauteur b2 auquel on soustrait a2b1 qui est l’aire d’un
rectangle de hauteur a2 et de largeur b1.

Or, sur le dessin ci-dessous, en déplaçant les parties hachurées du rectangle OPQR (d’aire
a1b2) et en éliminant les deux parties foncées (d’aire totale a2b1), on retrouve le pa-
rallélogramme de départ dont l’aire vaut donc bien a1b2 − a2b1.

On peut également se persuader de ceci en utilisant du papier et des ciseaux.

y

R
Q

O
P

b1

a2

a1b1

a2

b2

avec

x

Remarques

– On constate qu’en inversant les deux colonnes du déterminant, on trouve le résultat
opposé. Le déterminant peut donc être interprété comme une aire signée.

– On peut facilement voir que le déterminant est nul si les trois points O, A et B sont
alignés.

3.2 Déterminants d’ordre 3

Définition 3.2
On appelle déterminant d’ordre 3, et on note

a1 b1 c1
a2 b2 c2
a3 b3 c3

le nombre a1b2c3 + a3b1c2 + a2b3c1 − a3b2c1 − a1b3c2 − a2b1c3.

Pour calculer un tel déterminant, on utilise le tableau suivant :

a1

a2

a3

b1

b2

b3

c1

c2

c3

a1

a2

a3

b1

b2

b3

+ + +

− − −

On effectue le produit des éléments sur les diagonales puis on somme ces produits ; les
diagonales descendantes sont affectées du signe +, les diagonales montantes du signe −.
Ce procédé est appelé règle de Sarrus.
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Remarque

Attention ! La règle de Sarrus ne marche que pour des déterminants d’ordre trois.

Exemple

La valeur du déterminant
1 2 −4
2 0 4
−3 1 0

est donnée par

1

2

−3

2

0

1

−4
4

0

1

2

−3

2

0

1

+ + +

− − −

= 1 · 0 · 0 + 2 · 4 · (−3) + (−4) · 2 · 1
−(−3) · 0 · (−4)− 1 · 4 · 1− 0 · 2 · 2 = −36

3.2.1 Volume d’un parallélépipède

On peut utiliser un déterminant d’ordre 3 pour calculer le volume d’un parallélépipède.
Considérons celui représenté ci-dessous et construit sur le tétraèdre OABC. Son vo-
lume peut s’exprimer en fonction des coordonnées des points A(a1; a2; a3), B(b1; b2; b3) et
C(c1; c2; c3). Il est donné par le déterminant d’ordre 3 :

V =
a1 b1 c1
a2 b2 c2
a3 b3 c3

x

z

y

C(c1; c2; c3)

B(b1; b2; b3)

A(a1; a2; a3)

3.3 Quelques propriétés des déterminants

Définition 3.3
Le transposé d’un déterminant D est un déterminant D′ obtenu en permutant, dans D,
chaque colonne avec la ligne de même rang (première ligne avec première colonne, . . . ).
Une colonne ou une ligne d’un déterminant est appelée une rangée.

Exemple

Le déterminant transposé de D =
1 4 7
2 5 8
3 6 9

est le déterminant D′ =
1 2 3
4 5 6
7 8 9

.
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Remarque

Si D′ est le transposé de D, D est le transposé de D′.

Voici quelques propriétés des déterminants particulièrement utiles. Elles s’appliquent aux
déterminants de tous les ordres, mais nous utiliserons des déterminants d’ordre trois pour
illustrer notre propos.

Propriétés

Soit ai, bi et ci (i = 1, 2, 3) des nombres réels.

1. Deux déterminants transposés sont égaux.

Exemple :
a1 b1 c1
a2 b2 c2
a3 b3 c3

=
a1 a2 a3
b1 b2 b3
c1 c2 c3

2. Si l’on permute deux rangées parallèles d’un déterminant D, la valeur du déterminant
obtenu est l’opposée de celle de D.

Exemple :
b1 a1 c1
b2 a2 c2
b3 a3 c3

= −
a1 b1 c1
a2 b2 c2
a3 b3 c3

3. Si un déterminant a une rangée formée uniquement de zéros, alors il est nul.

Exemple :
a1 b1 c1
0 0 0
a3 b3 c3

= 0

4. Si on multiplie tous les éléments d’une rangée par un nombre λ, alors la valeur du
déterminant est multiplié par λ.

Exemple :
λa1 b1 c1
λa2 b2 c2
λa3 b3 c3

= λ ·
a1 b1 c1
a2 b2 c2
a3 b3 c3

5. Si deux rangées parallèles d’un déterminant sont proportionnelles (donc éventuelle-
ment identiques), alors il est nul.

Exemple :
a1 αa1 c1
a2 αa2 c2
a3 αa3 c3

= 0 avec α ∈ R.

6. Si on ajoute aux éléments d’une même rangée d’un déterminant une combinaison
linéaire des éléments correspondants de rangées parallèles, alors le déterminant ne
change pas de valeur.

Exemple :
a1 b1 c1 + αa1 + βb1
a2 b2 c2 + αa2 + βb2
a3 b3 c3 + αa3 + βb3

=
a1 b1 c1
a2 b2 c2
a3 b3 c3

avec α, β ∈ R.

7. (Corollaire des propriétés 3 et 6) Si les éléments d’une rangée d’un déterminant
peuvent être obtenus par une combinaison linéaire des éléments correspondants de
rangées parallèles, alors il est nul.

Exemple :
a1 b1 c1
a2 b2 c2

γa1 + δa2 γb1 + δb2 γc1 + δc2

= 0 avec γ, δ ∈ R.
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3.4 Déterminants d’ordre n

Définition 3.4
On appelle déterminant d’ordre n, et on note sous la forme d’un tableau de n lignes
et n colonnes

a11 a12 · · · a1n
a21 a22 a2n
...

. . .
...

an1 an2 · · · ann

le nombre

D =

n∑

i=1

ai1 ·Ai1 =

n∑

i=1

ai1 · (−1)i+1 ·Mi1

où
– aij est l’élément situé à la i-ème ligne et à la j-ème colonne,

– Mij est le mineur de l’élément aij défini comme le déterminant obtenu en suppri-
mant dans le tableau représentant le nombre D les rangées (lignes et colonnes) qui
contiennent aij ,

– Aij est le cofacteur de l’élément aij qui est défini par : Aij = (−1)i+j ·Mij .

Un déterminant d’ordre n est donc égal à la somme des produits des éléments de la
première colonne par les cofacteurs correspondants. On dit dans ce cas que le déterminant
est développé par rapport à la première colonne.

Proposition 3.1
Un déterminant d’ordre n peut être développé par rapport à n’importe quelle rangée
et est donc égal à la somme des produits des éléments d’une rangée par les cofacteurs
correspondants.

En développant par rapport à la i-ème ligne, on obtient :

D =

n∑

j=1

aij · Aij =

n∑

j=1

aij · (−1)i+j ·Mij .

En développant par rapport à la j-ème colonne, on obtient :

D =
n∑

i=1

aij · Aij =
n∑

i=1

aij · (−1)i+j ·Mij .

Remarque

Pour un déterminant d’ordre n, les cofacteurs obtenus sont d’ordre n−1. On peut calculer
ces derniers en utilisant la même définition. Le processus de calcul est donc itératif jus-
qu’au moment où on obtient des déterminants d’ordre 2 qu’on peut facilement calculer.

page 68
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Exemples

1) Soit D =
a11 a12 a13
a21 a22 a23
a31 a32 a33

Le cofacteur de a21 est :

A21 = (−1)2+1 a12 a13
a32 a33

= − a12 a13
a32 a33

Le cofacteur de a13 est :

A13 = (−1)1+3 a21 a22
a31 a32

=
a21 a22
a31 a32

2) Calculer la valeur de D =

−1 2 0 −2
2 −1 1 2
1 4 −3 −1
1 1 0 1

Important ! Pour réduire au maximum le nombre de calculs (et donc l’effort),
on va toujours choisir de développer un déterminant selon la rangée comportant
le plus de 0 possible : ici la troisième colonne.

D = 1 · (−1)2+3 ·
−1 2 −2
1 4 −1
1 1 1

− 3 · (−1)3+3 ·
−1 2 −2
2 −1 2
1 1 1

= (−1) ·
(

(−1) · 4 −1
1 1

− 1 · 2 −2
1 1

+ 1 · 2 −2
4 −1

)

−3 ·
(

(−1) · −1 2
1 1

− 2 · 2 −2
1 1

+ 1 · 2 −2
−1 2

)

= (−1) · (−5− 4 + 6)− 3 · (3− 8 + 2)

= 12
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3.5 Exercices

1) Calculer les déterminants :

a)
1 2
−1 3

b)
−1 1
3 −2 c)

0 7
0 3

d)
−7 9
1 −8

e)
0 −1
−1 0

f)
2 0
−5 1

g)
3 2
1 −4 h)

2 −10
3 −15

2) Calculer les déterminants :

a)
2 −1 −2
6 −1 1
4 5 3

b)
2 0 −5
5 3 3
0 4 6

c)
3 7 4
0 5 0
3 13 6

d)
1 2 3
3 2 1
1 3 2

e)
0 1 −1
2 4 −5
−1 −1 1

f)
1 0 8
9 1 16
3 0 4

g)
3 2 1
1 −2 4
4 2 3

h)
4 −3 2
5 9 −7
4 −1 4

3) Vérifier :

a)
0 4 7
0 0 1
0 0 0

= 0 b)
1 0 0
0 a b
0 c d

=
1 0 0
0 a c
0 b d

c)
1 5 7
2 9 −5
−2 −10 −14

= 0 d)
−1 3 −17
3 −9 51
−8 24 −101

= 0

e)
1 a b+ c
1 b a+ c
1 c a+ b

= 0 f)
0 1 1
1 75 83
0 2 2

= 0

g)
1 21 43
0 2 75
0 0 3

= 6 h)
0 a b
−a 0 c
−b −c 0

=
0 −a −b
a 0 −c
b c 0

i)
a a′ a′′

b b′ b′′

c c′ c′′
=

a′ a′′ a
b′ b′′ b
c′ c′′ c

j)
0 a b
−a 0 c
−b −c 0

= 0
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4) Exprimer D2, D3, D4, D5, D6 à l’aide de D1 :

D1 =
a a′ a′′

b b′ b′′

c c′ c′′
D2 =

a′′ a′ a
b′′ b′ b
c′′ c′ c

D3 =
c c′ c′′

b b′ b′′

a a′ a′′

D4 =
b b′ b′′

c c′ c′′

a a′ a′′
D5 =

a b c
a′′ b′′ c′′

a′ b′ c′
D6 =

a′ b′ c′

a′′ b′′ c′′

a b c

5) Exprimer D2, D3, D4, D5, D6 à l’aide de D1 :

D1 =
a1 a2 a3
b1 b2 b3
c1 c2 c3

D2 =
a1 a2 λa3
b1 b2 λb3
c1 c2 λc3

D3 =
a1 a2 a3
λb1 λb2 λb3
λc1 λc2 λc3

D4 =
2a1 2a2 2a3
−2b1 −2b2 −2b3
−c1 −c2 −c3

D5 =
a1 b1 c1
−a3 −b3 −c3
a2 b2 c2

D6 =
c1 −a1 b1
−c2 a2 −b2
c3 −a3 b3

6) Vérifier :

a)
2 1 −1
3 4 2
−2 −5 3

=
0 1 0
−5 4 6
8 −5 −2

b)
1 2 3
4 5 6
7 8 9

=
1 1 2
4 1 2
7 1 2

c)
1 2 3
1 2 1
1 3 2

=
0 −1 1
0 −1 −1
1 3 2

d)
1 3 2
1 1 4
2 2 2

=
1 0 2
1 −4 4
2 −2 2

e)
1 1 1
15 14 16
0 −1 1

=
0 0 1
1 −2 16
1 −2 1

f)
−3 −1 2
−1 3 −3
4 −2 1

= 0

7) Résoudre en utilisant les propriétés des déterminants :

a)
1 a b
1 x b
1 a x

= 0 b)
x a 1
a x 1
a b 1

= 0 c)
x 1 a
1 1 a
1 1 x

= 0

8) Calculer les déterminants :

a)

1 0 −1 2
3 1 4 −2
−1 1 1 2
3 0 5 1

b)

2 4 −2 6
1 −1 0 2
−1 −2 1 −3
2 1 −1 −1

c)

1 −1 2 0 0
2 0 −1 0 1
0 0 0 1 −1
2 0 1 −1 0
−1 2 0 1 0
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3.6 Solutions des exercices

1) a) 5 b) −1 c) 0 d) 47

e) −1 f) 2 g) −14 h) 0

2) a) −70 b) −88 c) 30 d) 12

e) 1 f) −20 g) −6 h) 178

4) D2 = −D1 D3 = −D1 D4 = D1 D5 = −D1 D6 = D1

5) D2 = λD1 D3 = λ2D1 D4 = 4D1 D5 = D1 D6 = D1

7) a) S = {a; b} b) S = {a; b} c) S = {1; a}

8) a) −61 b) 0 c) −20
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Chapitre 4

Systèmes d’équations linéaires

4.1 Généralités

4.1.1 Systèmes de deux équations linéaires à deux inconnues

Définition 4.1
Une équation linéaire à deux inconnues x et y est une condition pour (x; y) du type :

ax+ by = c

où a, b, c sont des nombres réels.

Tout couple (x; y) qui vérifie ax+ by = c est une solution de l’équation.

Il existe une infinité de couples solutions. Dans le plan R2, l’ensemble de ces couples
définit une droite.

Exemple

L’équation
2x− 3y = −6

est une équation linéaire à deux inconnues. Quelques couples solutions de cette
équation :

(3; 4), (0; 2), (−3; 0), (15; 12), (−6;−2),
(
1

2
;
7

3

)

, . . .

On peut vérifier l’égalité si on substitue 3 à x et 4 à y : 2 · 3− 3 · 4 = −6 ; de même
pour les autres couples de solutions.

Pour déterminer un couple de solutions, on peut isoler y par des transformations
équivalentes :

2x− 3y = −6 −2x
−3y = −2x− 6 ÷(−3)

y = 2
3
x+ 2

puis choisir une valeur pour x, par exemple 3, et obtenir la valeur de y correspon-
dante en substituant 3 à x dans l’équation ci-dessus : y = 2

3
· 3 + 2 = 4 −→ on

obtient le couple solution (3; 4).
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Pour dessiner la droite représentant l’ensemble des solutions de l’équation linéaire
à deux inconnues 2x−3y = −6 (cas général ax+ by = c), on peut procéder comme
suit :

1) déterminer deux couples de solutions (x1; y1) et (x2; y2) de l’équation,

2) reporter dans le plan muni d’un système d’axes (orthonormés) les points
(x1; y1) et (x2; y2) ,

3) tracer la droite passant par ces deux points.

y

1

2

3

4

5

−1

−2

−3

1 2 3 4 5−1−2−3−4−5

b

b

(3; 4)

(−3; 0)

2x− 3y = −6

x

Remarque

Une équation linéaire à deux inconnues ax + by = c peut être mise sous la forme (voir
l’exemple) :

y = mx+ h

où m et h sont deux nombres réels. Cette équation s’appelle aussi équation réduite de la
droite formée par l’ensemble des solutions. On appelle :
– m la pente de la droite,
– h l’ordonnée à l’origine de la droite.
Nous reviendrons sur cette équation plus en détails dans la suite du cours.

Définition 4.2
Un système de deux équations linéaires à deux inconnues est une condition pour
(x; y) (ou de manière plus générale (x1; x2)) du type :

a1x+ b1y = c1 et a2x+ b2y = c2

où a1, a2, b1, b2, c1 et c2 sont des nombres réels.

On convient, le plus souvent, de noter ce système comme suit :
{

a1x + b1y = c1
a2x + b2y = c2

(4.1)

Une solution du système (4.1) est un couple de nombres réels (x; y) qui vérifie les deux
équations du système simultanément.

Résoudre un système d’équations signifie trouver toutes les solutions de celui-ci.
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Exemple

Le système {
3x − y = 3
x + 2y = 8

est un système de deux équations linéaires à deux inconnues qui admet comme
solution unique le couple (2; 3). Comme pour les équations à une inconnue, on
donne l’ensemble de solutions sous la forme : S = {(2; 3)}

4.1.2 Systèmes de trois équations à trois inconnues

Définition 4.3
Une équation linéaire à trois inconnues x, y et z est une condition pour (x, y, z) du
type :

ax+ by + cz = d

où a, b, c et d sont des nombres réels.

Tout triplet (x; y; z) qui vérifie ax+ by + cz = d est une solution de l’équation.

Il existe une infinité de triplets solutions. Dans l’espace R3, l’ensemble de ces triplets
définit un plan.

Un système de trois équations à trois inconnues est une condition pour (x; y; z) du
type : 





a1x + b1y + c1z = d1
a2x + b2y + c2z = d2
a3x + b3y + c3z = d3

(4.2)

où ai, bi, ci et di (i = 1, 2, 3) sont des nombres réels.

Une solution du système (4.2) est un triplet de nombres réels (x; y; z) qui vérifie les trois
équations du système simultanément.

Exemple

Le système 





2x − 5y + z = −10
x + 2y + 3z = 26

−3x − 4y + 2z = 5

est un système de trois équations linéaires à trois inconnues qui admet comme
solution unique le triplet (−1; 3; 7). On note : S = {(−1; 3; 7)}

4.1.3 Systèmes de m équations linéaires à n inconnues

Définition 4.4
Une équation linéaire à n inconnues x1, x2, . . . , xn est une condition du type :

a1x1 + a2x2 + . . .+ anxn = b (4.3)

où a1, . . . , an et b sont des nombres réels. On peut remarquer que tous les xi sont à la
puissance 1, si ce n’était pas le cas, l’équation ne serait pas linéaire.

Un système de m équations linéaires à n inconnues x1, . . . , xn est une condition composée
de m équations du type (4.3).
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Une solution d’un tel système est un n-uplets de nombres réels (x1; x2; . . . ; xn) qui vérifie
les m équations simultanément.

Exemple

Le système 





x1 − 4x2 + x3 − 7x4 = 23
−3x1 + x2 − 9x3 = 56

− 4x2 + 3x3 − 4x4 = 65

est un système de trois équations linéaires à quatre inconnues.

4.1.4 Systèmes équivalents

Deux systèmes sont équivalents s’ils admettent le même ensemble de solutions. Pour
résoudre un système, on va transformer le système original en un système équivalent dont
les solutions peuvent être déterminées de manière simple.

Règles d’équivalence

Les règles suivantes permettent de transformer un système d’équations en un système
équivalent :

- permuter deux équations,

- multiplier une équation par un nombre réel non nul,

- additionner un multiple d’une équation à une autre équation.

4.2 Méthodes de résolution

Dans cette partie, nous allons décrire quatre méthodes de résolution de systèmes de deux
équations linéaires à deux inconnues. On précisera à chaque fois si l’idée de la méthode
peut s’appliquer à d’autre types de systèmes.

On cherchera donc à résoudre le système de deux équations linéaires à deux inconnues :

{
a1x + b1y = c1
a2x + b2y = c2

(4.4)

où a1, a2, b1, b2, c1 et c2 sont des nombres réels.

4.2.1 Graphiquement

Note : cette méthode ne s’applique qu’aux systèmes de 2 équations à 2 inconnues.

Idée : La solution du système est l’intersection des ensembles de solutions de chaque
équation. Comme l’ensemble des solutions de chaque équation correspond à une droite,
la solution du système correspond au point d’intersection de ces deux droites.
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Principe de résolution

Marche à suivre pour résoudre le système (4.4) :

1) déterminer deux couples de solutions de la première équation et deux couples
de solutions de la seconde équation,

2) reporter dans un système d’axes (orthonormés) les points correspondant à ces
solutions,

3) tracer les deux droites passant par ces points représentant respectivement les
solutions de la première et de la seconde équation,

4) lire sur la représentation graphique les coordonnées du ou des (infinité) points
d’intersection −→ solution(s) du système.

Exemple

Résoudre graphiquement le système :

{
3x − y = 3
x + 2y = 8

– 2 couples solutions de 3x− y = 3 : (0;−3) et (1, 0).
– 2 couples solutions de x+ 2y = 8 : (0; 4) et (8, 0).

Résolution graphique :

y

1

2

3

4

5

6

−1

−2

−3

1 2 3 4 5−1−2−3−4−5

b (2; 3)

x+ 2y = 8

3x− y = 3

x

Ensemble de solutions : S = {(2; 3)}
Comme le graphique de toute équation linéaire ax+ by = c est une droite, tout système
de deux équations de ce type correspond à exactement un des trois cas énumérés dans le
tableau ci-dessous.
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Graphique
Nombre

de solutions

Coefficients
des équations

Classification

droites sécantes

UNE
seule solution

a1
a2
6= b1

b2

système
déterminé

droites parallèles

AUCUNE
solution

a1
a2

=
b1
b2
6= c1

c2

système
impossible

droites confondues

IINFINITE
de solutions

(mais S 6= R× R)

a1
a2

=
b1
b2

=
c1
c2

système
indéterminé

Remarques

1. On note S = ∅ lorsqu’un système n’admet pas de solution. Par exemple, le système

{
x + y = 1
x + y = 2

n’a pas de solution, car les deux équations sont contradictoires (droites parallèles).

2. Avoir une infinité de couples solutions, ne signifie pas que tous les couples de
nombres réels sont solutions. Par exemple, le système

{
x + y = 1
2x + 2y = 2

(4.5)

a une infinité de solutions (droites confondues). Pour exprimer l’ensemble des so-
lutions, on peut choisir la valeur d’une variable arbitrairement, et la valeur de la
seconde variable sera déterminée d’après la valeur de la première. On peut choisir
ici :

x = λ avec λ ∈ R

et y est alors déterminée par :
y = 1− λ

λ n’est pas une inconnue, mais un paramètre, c’est-à-dire une valeur que l’on peut
choisir arbitrairement.

On note l’ensemble de solutions ainsi : S = {(λ, 1− λ) | λ ∈ R}.

4.2.2 Par substitution

Note : cette méthode peut s’appliquer à l’ensemble des systèmes d’équations.

Idée : isoler une des inconnues dans une des équations puis remplacer cette inconnue par
la valeur trouvée dans les autres équations.
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Principe de résolution

Marche à suivre pour résoudre le système (4.4) :

1) expliciter (isoler) y dans la première équation −→ y est exprimé en fonction
de x,

2) remplacer (=substituer) y, dans la seconde équation, par son expression en
fonction de x trouvé en 1 −→ on obtient une équation à une inconnue, x,

3) résoudre l’équation obtenue en 2 −→ valeur(s) pour x,

4) substituer la (ou les) valeur(s) de x trouvée(s) en 3 dans l’équation de l’étape
1 pour trouver les valeurs correspondantes de y −→ solution(s) du système.

Remarques

1. A l’étape 1, on peut choisir d’isoler x au lieu d’y. On modifie alors la procédure
pour être cohérent avec ce choix.

2. A l’étape 1, on peut choisir la seconde équation au lieu de la première.

3. Il n’y pas de règle pour savoir quelle équation et quelle inconnue choisir à l’étape 1.
On effectuera cependant le choix qui ”demandera” le moins de calculs et d’efforts.

Exemple

Résoudre par substitution le système :

{
4x + y = 5
3x + 6y = −12

On exprime y en fonction de x dans la première équation. On écrira souvent ceci
de la manière suivante.

{
4x + y = 5 −→ y = 5− 4x (1)
3x + 6y = −12 ←֓

On remplace alors y par 5 − 4x dans la deuxième équation. On obtient l’équation
à une inconnue 3x+ 6 (5− 4x)

︸ ︷︷ ︸

=y

= −12, qu’on résout :

3x+ 6(5− 4x) = −12 CL (réduire les deux polynômes)

−21x+ 30 = −12 −30
−21x = −42 ÷(−21)

x = 2

On remplace ensuite x par 2 dans (1) : y = 5− 4 · 2 = −3.
Pour vérifier la solution obtenue, on remplace x par 2 et y par −3 dans chaque
équation du système à résoudre :

{

4 · 2 + (−3) ?
= 5 O.K.

3 · 2 + 6 · (−3) ?
= −12 O.K.

Ensemble de solutions : S = {(2;−3)}.
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4.2.3 Par combinaisons linéaires

Note : cette méthode peut s’appliquer à l’ensemble des systèmes d’équations linéaires.

Idée : on somme un multiple de la première équation avec un multiple de la seconde de
façon à obtenir une nouvelle équation où au moins une inconnue a été éliminée.

Principe de résolution

Marche à suivre pour résoudre le système (4.4) :

1) choisir x comme inconnue à éliminer,

2) multiplier chaque équation par un facteur ”convenablement choisi” de manière
à ce que x soit multiplié, dans chacune des équations, par des nombres opposés,

3) additionner les deux équations (=combinaison linéaire) −→ on obtient une
équation à une inconnue y,

4) résoudre l’équation obtenue en 3 −→ valeur(s) pour y,

5) recommencer en 1 en choisissant y comme inconnue à éliminer −→ solution(s)
du système.

Exemple

Résoudre par combinaisons linéaires le système :

{
2x + 3y = 27
5x − 2y = 1

{
2x + 3y = 27 ·5 ·2
5x − 2y = 1 ·(−2) ·3

{

10x + 15y = 135
−10x + 4y = −2 +©

Multiplication des mem-
bres de la 1ère équation
par 5 et ceux de la 2ème

par (−2)

{

4x + 6y = 54
15x − 6y = 3 +©

Multiplication des mem-
bres de la 1ère équation
par 2 et ceux de la 2ème

par 3

Addition membre à mem-
bre des deux équations

19y = 133

Résolution de l’équation à
une inconnue y (÷19)

y = 7

Addition membre à mem-
bre des deux équations

19x = 57

Résolution de l’équation à
une inconnue x (÷19)

x = 3

Pour vérifier la solution obtenue, on remplace x par 3 et y par 7 dans chaque
équation du système à résoudre :

{

2 · 3 + 3 · 7 ?
= 27 O.K.

5 · 3 − 2 · 7 ?
= 1 O.K.

Ensemble de solutions : S = {(3; 7)}.
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Remarques

1. On combinera parfois les méthodes de résolution par substitution et par combinai-
son linéaire.

2. Dans un système d’équations, on dit qu’une équation est indépendante si elle ne
peut pas être obtenue en combinant d’autre équations du système.

Dans un système d’équations,
– il n’y a pas de solution quand il y a plus d’équations indépendantes que d’incon-
nues,

– il y a une infinité de solutions quand il y a plus d’inconnues que d’équations
indépendantes.

3. Soient ni le nombre d’inconnues et ne le nombre d’équations indépendantes d’un
système. Le nombre n = ni − ne est appelé nombre de degrés de liberté.

Le nombre de degrés de liberté nous indique le nombre d’inconnues dont on pourra
choisir la valeur. Par exemple, pour le système (4.5), on a n = 2 − 1 = 1 degré de
liberté (on a donc pu choisir la valeur de l’inconnue x).

4.2.4 Par les formules de Cramer

Note : cette méthode ne s’applique qu’aux systèmes de deux équations linéaires à deux
inconnues et aux systèmes de trois équations linéaires à trois inconnues.

Idée : on applique des formules qui donnent directement les solutions.

Théorème 4.1

Soit le système d’équations linéaires :

{
a1x + b1y = c1
a2x + b2y = c2

On appelle D =
a1 b1
a2 b2

le déterminant principal de ce système.

– Si D 6= 0, ce système admet pour solution unique le couple (x; y) tel que :

x =

c1 b1
c2 b2

D
y =

a1 c1
a2 c2

D
Formules de Cramer (4.6)

– Si D = 0, ce système peut ne pas avoir de solution ou une infinité de solutions.

Pour démontrer ce théorème, il suffit d’isoler y dans l’équation a1x + b1y = c1, puis de
le substituer dans l’équation suivante. En isolant x, on trouve la première égalité du
théorème ; on agit de manière analogue pour trouver la seconde formule.

Exemples

1) Résoudre le système :

{
4x − y = −6
2x + 2y = 7

.

Le déterminant principal du système est :

D =
4 −1
2 2

= 4 · 2− 2 · (−1) = 10
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Ce système admet donc une solution unique déterminée à l’aide des formules
de Cramer :

x =

−6 −1
7 2

10
=

(−6) · 2− 7 · (−1)
10

=
−5
10

= −1
2

y =

4 −6
2 7

10
=

4 · 7− 2 · (−6)
10

=
40

10
= 4

L’ensemble des solutions : S = {(−1
2
; 4)}.

2) Résoudre et discuter le système :

{
m2x + y = 2

x + y = 2m

dans lequel m est un paramètre réel.

Le déterminant principal du système est :

D =
m2 1
1 1

= m2 − 1

Il s’annule pour m = 1 ou m = −1.
a) Si D 6= 0, c’est-à-dire si m 6= 1 et m 6= −1, le système admet une solution

unique :

x =

2 1
2m 1

m2 − 1
=
−2

m+ 1
, y =

m2 2
1 2m

m2 − 1
=

2(m2 +m+ 1)

m+ 1

Ensemble des solutions : S = {( −2
m+1

; 2(m2+m+1)
m+1

) | m ∈ R, m 6= 1,−1}.

b) Si m = 1, le système est :

{
x + y = 2
x + y = 2

Il admet une infinité de solutions de la forme (λ; 2− λ). Ensemble des solu-
tions : S = {(λ; 2−λ) | λ ∈ R}. Dans R2, l’ensemble de ces solutions forme
une droite.

c) Si m = −1, le système est :

{
x + y = 2
x + y = −2

Il n’admet aucune solution. Ensemble des solutions : S = ∅.

Théorème 4.2

Soit le système







a1x + b1y + c1z = d1
a2x + b2y + c2z = d2
a3x + b3y + c3z = d3

.

On appelle D =
a1 b1 c1
a2 b2 c2
a3 b3 c3

le déterminant principal de ce système.
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– Si D 6= 0, ce système admet pour solution unique le triplet (x; y; z) tel que :

x =

d1 b1 c1
d2 b2 c2
d3 b3 c3

D
, y =

a1 d1 c1
a2 d2 c2
a3 d3 c3

D
, z =

a1 b1 d1
a2 b2 d2
a3 b3 d3

D
(4.7)

Formules de Cramer

– Si D = 0, ce système peut ne pas avoir de solution ou avoir une infinité de solutions.

Exemple

Résoudre le système :







2x + y = 2
− 4y + z = 0

4x + z = 6

Le déterminant principal du système est

D =
2 1 0
0 −4 1
4 0 1

= −8 + 4 + 0− 0− 0− 0 = −4

Ce système admet donc une solution unique déterminée à l’aide des formules de
Cramer :

x =

2 1 0
0 −4 1
6 0 1

−4 =
−8 + 6 + 0− 0− 0− 0

−4 =
−2
−4 =

1

2

y =

2 2 0
0 0 1
4 6 1

−4 =
0 + 8 + 0− 0− 12− 0

−4 =
−4
−4 = 1

z =

2 1 2
0 −4 0
4 0 6

−4 =
−48 + 0 + 0− (−32)− 0− 0

−4 =
−16
−4 = 4

L’ensemble des solutions : S = {(1
2
; 1; 4)}.

4.3 Systèmes linéaires homogènes

Définition 4.5
Les systèmes

{
a1x + b1y = 0
a2x + b2y = 0







a1x + b1y + c1z = 0
a2x + b2y + c2z = 0
a3x + b3y + c3z = 0

sont appelés systèmes linéaires homogènes à deux, respectivement trois inconnues.

Le couple (0; 0) (respectivement le triplet (0; 0; 0)) est solution de tout système homogène
d’ordre deux (respectivement d’ordre trois). C’est l’unique solution d’un tel système si et
seulement si le déterminant principal est non nul.
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4.4 Exercices

1) Résoudre les systèmes suivants :

a)

{
4x − y = −6
2x + 2y = 7

b)

{
x − 6y + 6 = 0
3x − 4y − 3 = 0

c)

{
x + y = 2
x + y = 3

d)







x

5
+

y

6
= 18

x

2
− y

4
= 21

e)







x

3
− 2y

15
= 4

x

12
− y

10
= 1

f)







x

3
+

y

4
= 14

−x
6
+

y

2
= 16

g)

{
x + 3y = 2
2x + 6y = 4

h)

{
9x − 5y = 38
24x − 25y = 148

i)







x

3
− y

3
= 8

x

12
− y

4
= 2

2) Résoudre et discuter les systèmes suivants :

a)

{
x + m(m− 1)y = 2m2

x − (m2 − 1)y = m(1−m)
b)

{
2mx − (m+ 2)y = 3m

2(m− 1)x − my = 3(m− 1)

c)

{
(m+ 1)x + (m− 1)y = m

mx + (m+ 1)y = (m− 1)
d)

{
(m+ 1)2x + (m2 − 1)y = m+ 1
(m− 1)2x + (m2 − 1)y = (m− 1)2

e)

{
(m− 3)x + my = 5

mx + (m− 4)y = 2
f)

{
(m+ 2)x + (m− 1)y = 5m+ 1
(m+ 1)x + (m+ 4)y = −8

g)

{
(m− 1)x + (m− 2)y + 5m+ 10 = 0
(m+ 5)x + (3m+ 9)y − 10 = 0

h)

{
(m+ 1)x + (m− 1)y = (m+ 1)(m− 1)2

(m− 1)x + (m+ 1)y = (m− 1)(m+ 1)2

3) Résoudre les systèmes suivants :

a)







x + 3y + 2z = −13
2x − 6y + 3z = 32
3x − 4y − z = 12

b)







2x − 3y + 2z = 6
x + 8y + 3z = −31
3x − 2y + z = −5

c)







2x + y = 2
− 4y + z = 0

4x + z = 6
d)







x + y − z = 1
x − y − z = −1
x + y − z = 1

e)







x + y + z = 14
x − y + z = 6
x − y − z = 4

f)







x + y − 6z = 9
x − y + 4z = 5
2x − 3y + z = −4
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g)







2x − 3y + 5z = 4
3x + 2y + 2z = 3
4x + y − 4z = −6

h)







2x − 3y + z = 0
x + 5y − 3z = 3
5x + 12y − 8z = 9

i)







x + 2y + 3z = 2
2x + 4y + z = −1
3x + 6y + 5z = 2

j)







6x − 2y + z = 1
x − 4y + 2z = 0
4x + 6y − 3z = 0

k)







x + y + z = 1
x + y + z = 1
x + y + z = 1

l)







2x + 3y − 4z = 1
3x − y + 2z = −2
5x − 9y + 14z = 3

4) Résoudre et discuter les systèmes suivants :

a)







mx + y + z = m2

x + my + z = 3m− 2
x + y + mz = 2−m

b)







mx + y − z = 1
x + my − z = 1
−x + y + mz = 1

5) Résoudre les systèmes homogènes suivants :

a)







2x − 3y + 3z = 0
3x − 4y + 5z = 0
5x + y + 2z = 0

b)







4x + y − 2z = 0
x − 2y + z = 0

11x − 4y − z = 0

c)







x + 2y + z = 0
4x + 8y + 4z = 0
5x + 10y + 5z = 0

d)







3x + y − 9z = 0
4x − 3y + z = 0
6x − 11y + 21z = 0

6) Résoudre et discuter les systèmes homogènes suivants :

a)

{
(m2 + 1)x − (m+ 1)y = 0

5x − 3y = 0
b)

{
(m− 5)x + (2m+ 1)y = 0
(3m+ 5)x + (m− 7)y = 0
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4.5 Solutions des exercices

Remarque : on indique ci-dessous uniquement l’ensembles des solutions des différentes
équations sous la forme {. . .} sans la mention du S = . . ..

1) a) {(−1
2
; 4)} b) {(3; 3

2
)} c) ∅

d) {(60; 36)} e) {(12; 0)} f) {(14, 4; 36, 8)}
g) {(λ; 2−λ

3
) | λ ∈ R} h) {(2;−4)} i) {(24; 0)}

2) Pour tout l’exercice : m ∈ R.

a) Si m 6= 1 et m 6= −1
2
:
{

(m
2(m+3)
2m+1

; m(3m−1)
(m−1)(2m+1)

)
}

,

Si m = 1 ou m = −1
2
: ∅.

b) Si m 6= 2 :
{
(3
2
; 0)
}
,

Si m = 2 :
{
(λ; 2λ−3

2
) | λ ∈ R

}
.

c) Si m 6= −1
3
:
{
(3m−1
3m+1

; −1
3m+1

)
}
,

Si m = −1
3
: ∅.

d) Si m 6= −1 et m 6= 0 et m 6= 1 :
{
(3−m

4
; m−1

4
)
}

Si m = −1 : {(1;λ) | λ ∈ R},
Si m = 0 : {(λ;λ− 1) | λ ∈ R},
Si m = 1 :

{
(1
2
;λ) | λ ∈ R

}
.

e) Si m 6= 12
7
:
{
(3m−20
12−7m

; 3m+6
7m−12

)
}
,

Si m = 12
7
: ∅.

f) Si m 6= −3
2
:
{

(5m
2+29m−4
6m+9

; −5m2−14m−17
6m+9

)
}

,

Si m = −3
2
: ∅.

g) Si m = −1
2
et m 6= −1 :

{

(−5(3m+4)
2m+1

; 5(m+8)
2m+1

)
}

,

Si m = −1
2
: ∅,

Si m = −1 :
{
(λ; 5−2λ

3
) | λ ∈ R

}
.

h) Si m 6= 0 : {(0;m2 − 1)},
Si m = 0 : {(λ;λ− 1) | λ ∈ R}.

3) a) {(−2;−5; 2)} b) {(−5;−4; 2)}
c) {(0, 5; 1; 4)} d) {(λ; 1;λ) | λ ∈ R}
e) {(9; 4; 1)} f) {(8; 7; 1)}
g)
{
(−1

3
; 2
3
; 4
3
)
}

h)
{
(4λ+9

13
; 7λ+6

13
;λ) | λ ∈ R

}

i) {(−1− 2λ;λ; 1) | λ ∈ R} j) ∅
k) {(λ;µ;−λ− µ+ 1) | λ, µ ∈ R} l) ∅
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4) Pour tout l’exercice : m ∈ R.

a) Si m 6= 1 et m 6= −2 : {(m; 2;−2)}
Si m = 1 : {(λ;µ; 1− λ− µ) | λ, µ ∈ R}
Si m = −2 : {(λ; 4 + λ;λ) | λ ∈ R}

b) Si m 6= 0 et m 6= 1 et m 6= −1 :
{
( 1
m
; 1
m
; 1
m
)
}

Si m = 0 : ∅,
Si m = 1 : {(λ; 1;λ) | λ ∈ R},
Si m = −1 : {(λ;λ;−1) | λ ∈ R}.

5) a) {(0; 0; 0)} b)
{
(λ
3
; 2λ

3
;λ) | λ ∈ R

}

c) {(−2λ− µ;λ;µ) | λ, µ ∈ R} d) {(2λ; 3λ;λ) | λ ∈ R}

6) Pour tout l’exercice : m ∈ R.

a) Si m 6= 2 et m 6= −1
3
: {(0; 0)},

Si m = 2 :
{
(λ; 5λ

3
) | λ ∈ R

}
,

Si m = −1
3
:
{
(λ; 5λ

3
) | λ ∈ R

}

b) Si m 6= 1 et m 6= −6 : {(0; 0)},
Si m = 1 :

{
(λ; 4λ

3
) | λ ∈ R

}
,

Si m = −6 : {(λ;−λ) | λ ∈ R}
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Chapitre 5

Inéquations

5.1 Introduction

Jusqu’à présent, nous avons surtout étudié la résolution d’équations du premier degré
(comme l’équation 2x+ 3 = 11), du deuxième degré ou de degré supérieur. Le but de ce
chapitre est de résoudre des problèmes du type suivant :

Pour quelles valeurs de x l’expression 2x+ 3 est-elle plus grande que 11 ?

Remplaçons x par 3, 4, 5, 6 et regardons si cette comparaison est vérifiée.

x 2x+ 3 > 11 Conclusion

3 9 > 11 Faux

4 11 > 11 Faux

5 13 > 11 Vrai

6 15 > 11 Vrai

Si un nombre b vérifie la relation lorsqu’on le substitue à x, alors b est une solution de
l’inéquation.

Définition 5.1
Une inéquation est une comparaison semblable à une équation, mais où le symbole
d’égalité, =, y est remplacé par un symbole d’inégalité : > (plus grand que), < (plus
petit que), > (plus grand ou égal à) ou 6 (plus petit ou égal à).

Exemple

Pour l’inéquation 2x + 3 > 11, on voit que, grâce au tableau ci-dessus, parmi les
nombres 3, 4, 5, 6, seuls 5 et 6 sont solutions de l’inéquation.

En procédant encore à quelques essais, il semble que tous les nombres supérieurs à 4
vérifient cette comparaison. Il y a donc une infinité de solutions à cette inéquation.

Comme pour les équations, résoudre une inéquation va signifier trouver toutes les solu-
tions de l’inéquation.

Que faut-il comprendre lorsque qu’on rencontre le signe >, plus grand ou égal à ?
– Si la comparaison plus grand que est vérifiée, alors l’expression plus grand ou égal à
l’est aussi.
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– Si la comparaison égal est vérifiée, alors l’expression plus grand ou égal à l’est aussi.
Pour voir la différence entre les symboles > et >, on peut reprendre l’exemple précédent
en le modifiant quelque peu :

x 2x+ 3 > 11 Conclusion

3 9 > 11 Faux

4 11 > 11 Vrai

5 13 > 11 Vrai

6 15 > 11 Vrai

Le nombre 4 est maintenant solution de l’inéquation.

Nous avons déjà vu qu’il est possible de représenter les nombres réels sur une droite allant
de moins l’infini (−∞) à plus l’infini (+∞).

−∞ +∞
ba

Sur la droite réelle, le nombre a est à gauche du nombre b si a est plus petit que b. On
voit immédiatement que tous les nombres à gauche de b satisfont l’inéquation x < b.
La solution d’une inéquation n’est donc pas un nombre, mais un ensemble de nombres,
qu’on nomme intervalle (consulter le chapitre sur les ensembles). Ainsi, la solution de
l’inéquation x < b est l’ensemble S = ]−∞; b[.

5.2 Quelques propriétés

Comme nous le verrons, les méthodes pour résoudre les inéquations sont semblables
à celles utilisées pour résoudre les équations. Les propriétés que nous allons voir sont
valables pour tous les types d’inéquations.

Pour énoncer ces propriétés, nous considérerons deux nombres réels a et b (a, b ∈ R) tel
que a < b. Des propriétés équivalentes peuvent être données pour a > b, a 6 b ou a > b.

5.2.1 Propriété d’addition

Pour tous les nombres réels a, b et c, avec a < b, on a :

a < b =⇒ a+ c < b+ c et a− c < b− c

Exemple

On considère les trois nombres 2, 3 et 7. Comme 2 < 7, on a alors que :

• 2 + 3 < 7 + 3 ou 5 < 10,

• 2− 3 < 7− 3 ou −1 < 4.

Cette propriété va nous permettre de passer un terme d’un membre de l’inéquation à
l’autre en l’additionnant (ou en le soustrayant) des deux côtés.

On peut ainsi transformer l’inéquation x+ 2 < 0 en une inéquation équivalente :
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Mathématiques, MAB 1
ère

année 5. Inéquations

x+ 2 < 0 −2 (Soustraire 2 aux deux membres)

x+ 2− 2 < −2 Calcul littéral

x < −2 Inéquation équivalente

L’ensemble des solutions de l’inéquation x+ 2 < 0 est donc S = ]−∞;−2[.

5.2.2 Propriété de multiplication

Pour tous les nombres réels a, b et c, avec a < b, on a :

a < b et c > 0 =⇒ a · c < b · c et
a

c
<

b

c

a < b et c < 0 =⇒ a · c > b · c et
a

c
>

b

c

Exemples

1. On considère les trois nombres 2, 5 et 7. Comme 2 < 7, on a alors que :

• 2 · 5 < 7 · 5 ou 10 < 35,

• 2

5
<

7

5
ou 0, 4 < 1, 4.

2. On considère les trois nombres −5, 2 et 7. Comme 2 < 7, on a alors que :

• 2 · (−5) > 7 · (−5) ou −10 > −35,

• 2

−5 <
7

−5 ou −0, 4 > −1, 4.

Remarque

La dernière propriété est source de beaucoup d’erreurs. Il faut y faire très attention. Si
on multiplie (ou divise) une inéquation par un nombre négatif, il faut changer le signe de
l’inégalité, c’est-à-dire :

< devient >,
> devient <,
6 devient >,
> devient 6.

Cette propriété n’a rien de comparable pour les équations.

5.2.3 Propriété d’inversion

Pour tous nombres réels a et b de même signe (donc a · b > 0), avec a < b, on a :

a < b et a · b > 0 =⇒ 1

a
>

1

b
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Mathématiques, MAB 1
ère

année 5. Inéquations

Exemples

1. On considère les deux nombres 2 et 5. Comme 2 < 5, on a alors que :

• 1

2
>

1

5
ou 0.5 > 0.2.

2. On considère les deux nombres −2 et −5. Comme −5 < −2, on a alors que :

• 1

−5 >
1

−2 ou −0.2 > −0.5.

5.3 Inéquation du premier degré

Définition 5.2
Une inéquation du premier degré est une inéquation qui peut être ramenée à la forme
générale

a · x+ b > 0

où a ∈ R∗, b ∈ R et le symbole > peut être remplacé par un des symboles <, 6 ou >.

Exemple

L’inéquation 2x+ 3 > 0 est une inéquation du premier degré.

Dans la suite de ce cours, nous allons travailler sur des exemples pour donner les idées
générales de résolution de différents types d’inéquations.

5.3.1 Résolution algébrique

La résolution algébrique d’une inéquation du premier degré est analogue à celle d’une
équation du premier degré, cependant il faut changer le sens de l’inégalité lorsqu’on
multiplie ou divise les deux membres par un nombre négatif.

Exemple 1

A résoudre : −3x+ 4 < 11.

On peut procéder de la manière suivante en s’inspirant de ce qu’on fait avec une équation
du premier degré et en respectant les propriétés énoncées au paragraphe précédant. Le
but est d’isoler x d’un côté de l’inéquation.

−3x+ 4 < 11 −4 (Soustraire 4 aux deux membres)

(−3x+ 4)− 4 < 11− 4 Réduire

−3x < 7 ÷(−3) (Diviser par −3, changer le sens de l’inégalité)

−3x
−3 >

7

−3 Simplifier

x > −7
3

Inéquation équivalente

L’ensemble des solutions de −3x+ 4 < 11 est S =
]
−3

7
; +∞

[
.
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Exemple 2

A résoudre : −6 < 2x− 4 < 2.

Un nombre réel est solution de cette inéquation si et seulement s’il est solution des deux
inéquations :

a) −6 < 2x− 4

b) 2x− 4 < 2

On résout alors chacune de ces deux inéquations séparément. Pour la première :

−6 < 2x− 4 +4 (Additionner 4 aux deux membres)

−6 + 4 < (2x− 4) + 4 Réduire

−2 < 2x ÷2 (Diviser par 2)

−1 < x Permuter les termes

x > −1 Inéquation équivalente

Pour la seconde :

2x− 4 < 2 +4 (Additionner 4 aux deux membres)

2x < 6 ÷2 (Diviser par 2)

x < 3 Inéquation équivalente

Ainsi, x est solution de l’inéquation de départ si et seulement si on a à la fois

x > −1 et x < 3,

c’est-à-dire −1 < x < 3. Ainsi, les solutions de l’inéquation sont tous les nombres appar-
tenant à l’intervalle ]−1; 3[.
En fait, cet intervalle correspond à l’intersection des deux intervalles qui représentent la
solution de la première et de la seconde équation : ]−1; 3[ = ]−1;+∞[

⋂
]−∞; 3[.

5.3.2 Résolution graphique

Pour résoudre une inéquation du type ax+ b > 0 (ou avec un autre signe d’inégalité), on
peut également observer le graphe de la fonction donnée par f(x) = ax+ b.

Exemple 3

A résoudre : 1
2
x+ 1 > 0.

La fonction donnée par f(x) = 1
2
x+ 1 coupe l’axe Ox en x = −2.

On observant le graphe de f esquissé ci-dessous, on constate que

1

2
x+ 1 > 0 si x > −2
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y

1

2

−1

1 2−1−2−3

y = 1
2
x+ 1

x

L’ensemble des solutions de l’inéquation est donc l’intervalle S = ]−2;+∞[.

On peut s’inspirer de l’exemple ci-dessus pour construire un tableau qui résume la
résolution graphique des inéquations qui peuvent se ramener à la forme :

ax+ b > 0 ou ax+ b < 0 (a 6= 0)

a > 0 a < 0

Graphe de
f(x) = ax+ b

- b
a

- b
a

Valeur de
x

− b

a
− b

a

Signe de
ax+ b

− 0 + + 0 −

Solutions de
ax+ b > 0

]

− b

a
; +∞

[ ]

−∞;− b

a

[

Solutions de
ax+ b < 0

]

−∞;− b

a

[ ]

− b

a
; +∞

[

Un tableau similaire pourrait être construit pour les inéquations pouvant se ramener à
la forme ax + b > 0 ou ax + b 6 0 (a 6= 0). En fait, il suffit de modifier la forme des
intervalles et d’inclure à chaque fois la borne − b

a
.

5.4 Inéquations de degrés égal ou supérieur à 2

Définition 5.3
Une inéquation du deuxième degré est une inéquation qui peut être ramenée à la
forme générale

a · x2 + b · x+ c > 0

page 93
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où a ∈ R∗, b, c ∈ R et le symbole > peut être remplacé par un des symboles <, 6 ou >.

Une inéquation polynomiale de degré supérieur à 2 est une inéquation qui peut
être ramenée à la forme générale

p(x) > 0

où p(x) est un polynôme de degré supérieur à 2 et le symbole > peut être remplacé par
un des symboles <, 6 ou >.

Exemple

L’inéquation 3x2 + 4 > 0 est une inéquation du deuxième degré et l’inéquation
3x3 − 2x2 + x 6 0 est une inéquation polynomiale de degré 3.

5.4.1 Résolution algébrique

La résolution algébrique d’une inéquation du deuxième degré du type ax2 + bx + c > 0
ou de degré supérieur du type p(x) > 0 utilise fortement la résolution de l’équation
du deuxième degré correspondante ax2 + bx + c = 0 ou, respectivement, de l’équation
correspondante p(x) = 0. Nous allons à nouveau prendre un exemple pour comprendre
comment cela fonctionne.

Exemple 4

A résoudre : 2x2 − 6x+ 4 < 0.

1) On commence par résoudre l’équation correspondante : 2x2 − 6x+ 4 = 0.

Le discriminant vaut ∆ = (−6)2− 4 · 2 · 4 = 4 et les deux solutions sont alors données

par la formule : x1,2 =
−(−6)±

√
4

2 · 2 . Après calcul, on trouve que x1 = 1 et x2 = 2.

2) On peut factoriser notre polynôme du deuxième degré et écrire que 2x2 − 6x+ 4 =
2(x− 1)(x− 2).

Au niveau de l’inéquation, on utilise cette factorisation pour passer à une nouvelle
inéquation équivalente à la première.

2x2 − 6x+ 4 < 0 Factoriser

2(x− 1)(x− 2) < 0 Inéquation équivalente

3) On doit maintenant étudier le signe de 2(x − 1)(x − 2) suivant les valeurs de x, afin
de déterminer celles qui le rendent positif. Pour déterminer le signe de ce produit, on
étudie le signe de chacun de ses facteurs :

a) Pour 2, on a que 2 > 0.

b) Pour x− 1, on a trois solutions possibles :
• x− 1 > 0, si x > 1,
• x− 1 = 0, si x = 1,
• x− 1 < 0, si x < 1.

c) Pour x− 2, on a trois solutions possibles :
• x− 2 > 0, si x > 2,
• x− 2 = 0, si x = 2,
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• x− 2 < 0, si x < 2.

Pour 2(x− 1)(x− 2), on construit un tableau de signes :

x 1 2

2 + + + + +

x− 1 − 0 + + +

x− 2 − − − 0 +

2(x− 1)(x− 2) + 0 − 0 +

Ce tableau de signes a été construit de la manière suivante :

1) Sur la première ligne, on représente les valeurs possibles de x (en fait la droite
réelle). On construit une colonne pour chacune des racines et une colonne pour
chacun des intervalles compris entre deux racines ou entre l’infini et une racine
(première et dernière colonne).

Important ! Dans la première ligne du tableau, les racines sont classées par ordre
croissant.

2) On construit ensuite une ligne pour chacun des facteurs qu’on a déterminés et on
étudie le signe de ces derniers. Pour chacune des colonnes construites (pour chaque
racine et chaque intervalle), on détermine si le facteur est positif (+), nul (0) ou
négatif (−) sur ceux-ci.

3) Sur la dernière ligne, on étudie le signe de l’expression de départ : 2(x− 1)(x− 2).
Pour cela, on résume chacune des colonnes en utilisant la règle des signes (+·+ = +,
+ · − = − ,. . . voir page 12).

4) On lit sur la dernière ligne du tableau que l’inéquation proposée a comme solution
tous les x tels que 1 < x < 2. L’ensemble des solutions est donc S = ]1; 2[.

Méthode générale de résolution

Si l’inéquation ne se ramène pas après simplification à une inéquation du premier degré,
on suit la démarche suivante :

1. On regroupe tous les termes dans le membre de gauche pour que celui
de droite soit égal à zéro.

2. On factorise (si possible) le membre de gauche en le mettant sous la
forme d’un produit (ou d’un quotient).

3. On étudie le signe de chacun des facteurs dans un tableau de signes
(voir les exemples).

4. On conclut en observant la dernière ligne du tableau.

Exemple 5

A résoudre : x3 > 4x2 + x− 4
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Pour résoudre cette inéquation, on suit la démarche proposée ci-dessus.

x3 > 4x2 + x− 4 −4x2 − x+ 4 (Membre de droite = 0)

x3 − 4x2 − x+ 4 > 0 Factoriser

(x+ 1)(x− 1)(x− 4) > 0 Inéquation équivalente

On voit immédiatement que les facteurs s’annulent en −1, 1 et 4. On construit le tableau
de signes :

x −1 1 4

x+ 1 − 0 + + + + +

x− 1 − − − 0 + + +

x− 4 − − − − − 0 +

(x+ 1)(x− 1)(x− 4) − 0 + 0 − 0 +

L’ensemble des solutions est donné par : S = [−1; 1]⋃ [4; +∞[.

5.4.2 Résolution graphique

Pour résoudre une équation polynomiale du type p(x) > 0 (ou un autre signe d’inégalité)
de manière graphique, on résout également l’équation p(x) = 0, puis, au lieu de construire
la tableau de signes, on observe le graphe de la fonction donnée par f(x) = p(x) afin de
déterminer les solutions de l’inéquation.

Exemple 6

A résoudre : x2 + 4x− 5 < 0.

1) On recherche les solutions de l’équation correspondante : x2 + 4x− 5 = 0. On trouve
x1 = 1 et x2 = −5.

2) On réalise une esquisse du graphe de la fonction donnée par f(x) = x2 + 4x− 5 (cas
où a > 0). Celle-ci est donnée ci-dessous. On l’observant, on constate que :

x2 + 4x− 5 < 0 si − 5 < x < 1

y

2

4

−2
−4
−6
−8

1 2−1−2−3−4−5−6

y = x2 + 4x− 5

x

L’ensemble des solutions de l’inéquation est donc l’intervalle S =]− 5; 1[.

On peut s’inspirer de l’exemple ci-dessus pour construire un tableau qui résume la
résolution graphique des inéquations qui peuvent se ramener à la forme :

ax2 + bx+ c > 0 ou ax2 + bx+ c < 0 (avec a > 0)
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Mathématiques, MAB 1
ère

année 5. Inéquations

a > 0

∆ > 0 ∆ = 0 ∆ < 0

Graphe de
f(x) = ax2 + bx+ c

x1 x2 x1

Valeur de
x

x1 x2 x1

Signe de
ax2 + bx+ c

+ 0 − 0 + + 0 + +

Solutions de
ax2 + bx+ c > 0

]−∞; x1[
⋃

]x2; +∞[ R \ {x1} R

Solutions de
ax2 + bx+ c < 0

]x1; x2[ pas de solution (S = ∅)

Un tableau similaire pourrait être construit pour les inéquations pouvant se ramener à
la forme ax2 + bx+ c > 0 ou ax2 + bx+ c 6 0 (a > 0). De même, on pourrait construire
ce tableau pour a < 0 (laissé au lecteur).

5.5 Inéquations rationnelles

Définition 5.4
Une inéquation rationnelle est une inéquation qui peut être ramenée à la forme
générale

p(x)

q(x)
> 0

où p(x), q(x) sont des polynômes et le symbole > peut être remplacé par un des symboles
<, 6 ou >.

Exemple

L’inéquation
x2 − 3x+ 2

3x− 2
6 0 est une inéquation rationnelle.

Exemple 7

A résoudre :
(x+ 2)(3− x)

(x+ 1)(x2 + 1)
6 0.

L’expression est déjà factorisée, on peut donc directement établir le tableau de signes.
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x −2 −1 3

x+ 2 − 0 + + + + +

3− x + + + + + 0 −
x+ 1 − − − 0 + + +

x2 + 1 + + + + + + +

(x+ 2)(3− x)

(x+ 1)(x2 + 1)
+ 0 − + 0 −

La solution de notre problème est donc l’ensemble S = [−2;−1[⋃ [3; +∞[.

Remarques

1. Le quotient n’est pas défini en x = 1 (on a 1
0
). x = 1 ne peut donc pas être une

solution ! Dans le tableau, lorsque le quotient n’est pas défini, on achure les points ou
les intervalles où ceci a lieu (dans la dernière ligne).

2. Le terme (x2 + 1) est toujours positif, il n’a donc pas d’effet sur le signe du quotient.
On pourrait ainsi omettre la ligne correspondante dans le tableau.

Exemple 8

A résoudre :
x+ 1

x+ 3
6 2.

Attention ! Une erreur fréquente est de multiplier par x + 3. Or, on n’a pas le droit
de multiplier l’inégalité par le dénominateur de la fraction s’il contient une variable. En
effet, comme la valeur de x est inconnue, on ne sait pas si c’est un nombre positif ou
négatif ! On ne sait donc pas si le sens de l’inéquation changera après multiplication.
On ne peut multiplier (ou diviser) les deux côtés d’une inégalité que par des
valeurs connues (des constantes). La résolution correcte est la suivante.

x+ 1

x+ 3
6 2 −2 (Membre de droite = 0)

x+ 1

x+ 3
− 2 6 0 Mettre au même dénominateur

x+ 1− 2(x+ 3)

x+ 3
6 0 Réduire

−x− 5

x+ 3
6 0 ·(−1) (Multiplier par −1)

x+ 5

x+ 3
> 0 Inéquation équivalente

x −5 −3
x+ 5 − 0 + + +

x+ 3 − − − 0 +

x+ 5

x+ 3
+ 0 − +
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L’ensemble des solutions est donné par S =]−∞;−5]∪]− 3;+∞[.

Le nombre −5 est inclus puisque le quotient s’annule en −5. Le quotient n’est pas défini
en −3 ; ce nombre n’appartient donc pas à l’ensemble des solutions.

5.6 Fonction valeur absolue et fonctions définies par

morceaux

Le graphe de la fonction valeur absolue donnée par f(x) = |x| est représenté ci-dessous.
Cette fonction permet, en langage familier, ”d’ôter” le signe d’un nombre, et de le rendre
positif.

On constate que ce graphe est formé de deux demi-droites, la demi-droite d’équation
y = −x pour les x négatifs et la demi-droite d’équation y = x pour les x positifs.

y

1

2

3

4

−1

1 2 3−1−2−3

y = |x|

x

On peut donner une expression de cette même fonction sans utiliser le symbole valeur
absolue, | . |, en séparant, dans la définition de f , les x positifs des x négatifs.

Définition 5.5
La fonction valeur absolue est définie par :

f : R −→ R

x 7−→ |x| =
{
−x si x < 0
x si x > 0

Exemples

1) |5| = 5 puisque 5 > 0.

2) | − 5| = −(−5) = 5 puisque −5 < 0

Une fonction donnée de cette façon est dite définie par morceaux ou définie par inter-
valles. On donne ci-dessous 3 exemples de telles fonctions.
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Exemples

1.

y

1

2

3

−1

1 2 3−1−2−3

y =
1

2
x+

3

2

y
= −

x
+
3

x

f(x) =







1
2
x+ 3

2
si x < 1

−x+ 3 si x > 1

2.

y

1

2

3

−1

1 2 3−1−2−3

y
= −

x
+
1

y
= −

x
+
3

x

f(x) =







−x+ 1 si x < 1

−x+ 3 si x > 1

Le graphe de cette fonction présente un
saut en x = 1.

3.

y

1

2

−1

−2

1 2 3−1−2−3

y = sgn(x)

b x

La fonction signe donnée par f(x) =
sgn(x) prend la valeur 1 si x est posi-
tif, la valeur −1 si x est négatif et la
valeur 0 si x est nul. Elle est définie
par morceaux et peut être donnée par
l’expression :

sgn(x) =







−1 si x < 0
0 si x = 0
1 si x > 0

On peut également utiliser le symbole valeur absolue pour poser une inéquation.

Exemple 9

A résoudre : |x| < 3.

Essayons de comprendre ce que veut dire |x| < 3.

Si x > 0, cela signifie que x < 3. Si x < 0, cela veut dire que −x < 3, donc x > −3 (on
multiplie par un nombre négatif, le signe de l’inéquation change). On en déduit :

|x| < 3 est équivalent à − 3 < x < 3.

De même, pour |x| > 3 on a :

|x| > 3 est équivalent à x < −3 ou x > 3.

On peut généraliser ce qui précède et on obtient, si a et b sont des nombres réels, :

1) |a| < b est équivalent à −b < a < b,
2) |a| > b est équivalent à a < −b ou a > b.
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Chapitre 6

Nombres complexes

6.1 Introduction

Dans le premier chapitre de ce cours, nous avons décrit les ensembles de nombres suivants :

1. N = {0; 1; 2; . . .}, l’ensemble des nombres naturels ;

2. Z = {. . . ;−2;−1; 0; 1; 2; . . .}, l’ensemble des nombres entiers ;

3. Q =

{
p

q
| p ∈ Z et q ∈ Z∗

}

, l’ensemble des nombres rationnels ;

4. R, l’ensemble des nombres réels. Cet ensemble est constitué des nombres rationnels et
des nombres irrationnels.

Nous avons alors remarqué que N ⊂ Z ⊂ Q ⊂ R.

Historiquement, ces ensembles de nombres ont été définis successivement.

Les nombres naturels ont été les premiers à être utilisés. En effet, c’est cet ensemble de
nombres qui est utilisé la plupart du temps pour compter. Historiquement, le zéro n’est
pas apparu en même temps que les autres nombres. On le rencontre pour la première fois
en Inde.

Dans N, l’opposé d’un nombre n’existe pas ou, de manière équivalente, l’équation x+1 = 0
n’a pas de solution. Par contre, dans Z, cette équation admet une solution : −1. Z est
une extension de N.

Dans Z, l’inverse d’un nombre différent de 1 n’existe pas ou, de manière équivalente,
l’équation 2x = 1 n’a pas de solution. Par contre, dans Q, une solution existe : 1

2
. Q est

une extension de Z.

Dans Q, il n’existe pas de nombre ayant pour carré 2 ou, de manière équivalente, la
diagonale d’un carré de côté 1 n’est pas mesurable ou l’équation x2 = 2 n’a pas de
solution. Par contre dans R, cette équation admet 2 solutions :

√
2 et −

√
2. R est une

extension de Q.

Dans R, il n’existe pas de nombre ayant pour carré −1 ou, de manière équivalente,
l’équation x2 = −1 n’a pas de solution.

Plus généralement, l’équation x2+a = 0, avec a un nombre réel positif (a ∈ R∗
+), n’admet

pas de solution dans R car il n’existe pas de nombre réel ayant un carré négatif : x2 = −a.
Si on ”résolvait” tout de même cette équation, on trouverait :

x = ±
√
−a = ±

√

a · (−1) = ±
√
a

︸︷︷︸

∈R

·
√
−1
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Le problème se ramène à la non-connaissance de
√
−1. Si l’on connaissait la valeur de√

−1, toutes les équations de la forme x2 + a = 0 (avec a ∈ R) pourraient alors être
résolues. Par contre, la valeur de

√
−1 ne serait évidemment pas un nombre réel.

Ainsi, l’objectif de ce cours est de définir un ensemble de nombres tel que les racines de
nombres négatifs soient définies. Nous noterons ce nouvel ensemble C et nous appellerons
ces nouveaux nombres nombres complexes. Dans cet ensemble, nous allons introduire
un nouveau symbole qui représentera

√
−1 :

i =
√
−1

On peut montrer que dans C toute équation polynomiale de degré n admet n solutions
(théorème fondamental de l’algèbre). De plus, en utilisant cet ensemble, il est possible de
déterminer une formule qui permet de résoudre toutes les équations du troisième degré.

6.2 Présentation des nombres complexes sous forme

cartésienne

Définition 6.1
On appelle nombres complexes, sous forme cartésienne, les expressions de la forme

z = a + bi

où a et b sont des nombres réels et i représente
√
−1.

Le nombre a est appelé partie réelle du nombre complexe z, on la note : a = Re(z).
Le nombre b est appelé partie imaginaire du nombre complexe z, on la note : b = Im(z).

Comme on considère que i représente
√
−1, on peut poser que :

– i2 = (
√
−1)2 = −1

– i3 = i2i̇ = (−1) · i = −i
– i4 = i2 · i2 = (−1) · (−1) = 1
– i5 = i4 · i = 1 · i = i
– i6 = i4 · i2 = 1 · i2 = i2 = −1
– . . .

Ainsi, pour tout nombre naturel n, on a :

i4n = 1, i4n+1 = i, i4n+2 = −1, i4n+3 = −i

Remarque

Deux nombres complexes z1 = a1 + b1i et z2 = a2 + b2i sont égaux se leurs parties réelles
et imaginaires sont égales :

z1 = z2 ⇐⇒
{

a1 = a2
b1 = b2
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6.2.1 Addition, soustraction, multiplications sous forme carté-

sienne

Pour additionner ou soustraire deux nombres complexes sous forme cartésienne, pour
multiplier un nombre complexe sous forme cartésienne par un scalaire ou pour multi-
plier deux nombres complexes sous forme cartésienne entre eux, on procède comme s’il
s’agissait d’opérations sur les binômes mais en tenant compte que i2 = −1.

⊲ (a+ bi) + (a′ + b′i) = (a+ a′) + (b+ b′)i

⊲ (a+ bi)− (a′ + b′i) = (a− a′) + (b− b′)i

⊲ λ · (a+ bi) = λa+ λbi

⊲ (a+ bi) · (a′ + b′i) = aa′ + ab′i+ a′bi+ bb′i2 = (aa′ − bb′) + (ab′ + a′b)i

6.2.2 Division

Pour diviser deux nombres complexes sous forme cartésienne, on amplifie la fraction afin
de faire disparâıtre la partie imaginaire au dénominateur :

a + bi

a′ + b′i
=

a + bi

a′ + b′i
· a

′ − b′i

a′ − b′i
=

aa′ + bb′ + (a′b− ab′)i

(a′)2 + (b′)2
=

aa′ + bb′

(a′)2 + (b′)2
+

a′b− ab′

(a′)2 + (b′)2
i

Si le dominateur de la fraction est le nombre complexe z′ = a′+b′i, on amplifie la fraction
par le nombre complexe z′ = a′ − b′i.

6.2.3 Nombre complexe conjugué

Définition 6.2
On appelle nombre complexe conjugué du nombre complexe z = a + bi le nombre
complexe :

z = a− bi

Propriétés - nombre complexe conjugué

La notion de nombre complexe conjugué vérifie les propriétés suivantes :

1) La somme de deux nombres complexes conjugués est un nombre réel :

z + z = a+ bi+ a− bi = 2a ∈ R

2) Le produit de deux nombres complexes conjugués est un nombre réel :

z · z = (a + bi) · (a− bi) = a2 − abi+ bai− b2i2 = a2 + b2 ∈ R

3) z1 + z2 = z1 + z2

4) z1 · z2 = z1 · z2

5)

(
z1
z2

)

=
z1
z2

6) z = z

7) Re(z) =
z + z

2
et Im(z) =

z − z

2i
=

z − z

2
i

Ces propriété sont valables pour tout z, z1, z2 ∈ C.
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6.2.4 Résolution d’équations du deuxième degré

Pour rechercher les racines carrées d’un nombre complexe z = a+bi (il y en a deux !), par
exemple pour la résolution d’une équation du deuxième degré, on procède comme suit.

Si on appelle x+ yi les racines carrées de z, on peut poser, par définition :

(x+ yi)2 = a+ bi ou x2 − y2 + 2xyi = a + bi

Comme les parties réelles et imaginaires doivent être égales pour que 2 nombres complexes
soient égaux, on peut poser : {

x2 − y2 = a
2xy = b

ce qui nous donne un système de deux équations à deux inconnues qu’on résout par

substitution en remplaçant y par
b

2x
dans la première équation. L’équation à résoudre

devient

x2 −
(

b

2x

)2

= a ou 4x4 − 4ax2 − b2 = 0

On obtient alors que

x2 =
4a±

√
16a2 + 16b2

8
ou

a±
√
a2 + b2

2

Comme a2 + b2 > 0, il y aura deux solutions pour x2. De plus, comme a2 + b2 > a2, une
des solutions sera positive, l’autre négative et ne conviendra pas pour x2. Finalement, on
a :

x1,2 = ±

√

a +
√
a2 + b2

2
et y1,2 =

b

±2
√

a+
√
a2+b2

2

Exemple

Résoudre : 1
2
z2 − 4z + iz + 5− 10i = 0

On commence par calculer le discriminant associé à cette équation :

∆ = (−4 + i)2 − 4 · 1
2
· (5− 10i) = 16− 8i+ i2 − 10 + 20i = 5 + 12i

On cherche ensuite les racines carrées x+ yi de 5 + 12i. On peut poser :

(x+ yi)2 = 5 + 12i ou x2 − y2 + 2xyi = 5 + 12i

En identifiant les parties réelles et imaginaires, on obtient le système

{
x2 − y2 = 5
2xy = 12

En isolant y dans la deuxième équation et en injectant sa valeur dans la première
équation, on doit maintenant résoudre l’équation

x2 −
(
6

x

)2

= 5 ou x4 − 5x2 − 36 = 0 ou (x2 − 9) · (x2 + 4) = 0
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Ainsi x2 = 9 ou x2 = −4 ce qui est impossible. Les deux racines carrées de 5+ 12i
sont donc

x1 = 3 → y1 =
6

3
= 2

x2 = −3 → y2 =
6

−3 = −2

Ainsi, x + yi = ±(3 + 2i). En utilisant la formule de résolution des équations du
deuxième degré, on obtient comme solutions de l’équation de départ

z1,2 =
−(−4 + i)± (3 + 2i)

1
ou z1 = 7 + i et z2 = 1− 3i

6.3 Présentation des nombres complexes sous forme

trigonométriques

6.3.1 Plan de Gauss, module et argument

Dans un plan Oxy (notion définie dans le chapitre ”Ensembles”), tout nombre complexe
z = a + bi peut être représenté par un point M(a; b) dont l’abscisse est la partie réelle
de a et l’ordonnée la partie imaginaire b et, réciproquement, tout point P (x; y) du plan
Oxy peut être considéré comme l’image géométrique du nombre complexe z′ = x+ yi.

On introduit ainsi une bijection entre C et les points du plan.

Définition 6.3
Le plan ainsi défini est appelé plan complexe ou plan de Gauss.

L’axe des x est appelé axe des réels.
L’axe des y est appelé axe des imaginaires.

R

Ri

θ

b

ρ

(a; b) = a+ bi

O

b
=

I
m
(z
)

a = Re(z)

Définition 6.4
Tout nombre complexe z = a+ bi peut être repéré dans le plan de Gauss par :

a) la distance, notée ρ ou |z|, entre l’origine et le point M(a; b) représentant z :

ρ = |z| =
√
z · z =

√
a2 + b2

On appelle cette distance le module de z.
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b) l’angle orienté, noté θ ou arg(z), entre l’axe des réels et le segment [OM ] :

θ = arg(z) = arctan
(
b
a

)
+ k · 2π si a > 0

et

θ = arg(z) = arctan
(
b
a

)
+ π + k · 2π si a < 0

On appelle cet angle l’argument de z.

Le nombre complexe z de module ρ et d’argument θ se note souvent :

[ρ; θ]

On appelle cette notation la forme trigonométrique de z

On peut passer aisément de la forme trigonométrique, [ρ; θ], à la forme cartésienne, a+bi,
d’un nombre complexe z en posant :

a = ρ cos(θ)

b = ρ sin(θ)

ou de manière équivalente :

z = a + bi = ρ · (cos(θ) + sin(θ) · i) = ρ cos(θ) + ρ sin(θ) · i

Remarques

1. Si z est un nombre réel, |z| =
√
zz =

√
z2 est la valeur absolue de z.

2. Deux nombres complexes z1 et z2 sont égaux sous forme cartésienne ou sous forme
trigonométrique si :

a1 + b1i = a2 + b2i ⇐⇒ a1 = a2 et b1 = b2

[ρ1; θ1] = [ρ2; θ2] ⇐⇒ ρ1 = ρ2 et θ1 = θ2 + k · 2π, k ∈ Z

Propriétés - module

Le module vérifie les propriétés suivantes :

1) |z| > 0 et |z| = 0⇔ z = 0

2) |λ · z| = |λ| · |z|, avec λ ∈ R

3) ||z1| − |z2|| 6 |z1 + z2| 6 |z1|+ |z2|
︸ ︷︷ ︸

Minkowski

4) |z| = |z|
5) |z1 · z2| = |z1| · |z2|

6)

∣
∣
∣
∣

z1
z2

∣
∣
∣
∣
=
|z1|
|z2|

7) |Re(z)| 6 |z| et |Im(z)| 6 |z|
Ces propriétés sont valables pour tout z, z1, z2 ∈ C.
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Remarque

Les fonctions vérifiant les deux premières propriétés et la propriété de Minkowski sont
appelées des normes.

6.3.2 Addition, soustraction et multiplication par un scalaire

Cette manière de présenter les nombres complexes n’a aucun intérêt en ce qui concerne
ces opérations.

Dans le plan de Gauss, l’addition et la soustraction équivalent à des translations. La
multiplication par un scalaire équivaut à une homothétie de centre O et de rapport ce
scalaire.

6.3.3 Multiplication

Soient deux nombres complexes z1 = [ρ1; θ1] et z2 = [ρ2; θ2]. On peut multiplier ces deux
nombres complexes de la manière suivante :

z1 · z2 = ρ1(cos(θ1) + sin(θ1)i) · ρ2(cos(θ2) + sin(θ2)i)

= ρ1ρ2 · [(cos(θ1) cos(θ2)− sin(θ1) sin(θ2))
︸ ︷︷ ︸

cos(θ1+θ2)

+ (cos(θ1) sin(θ2) + cos(θ2) sin(θ1))
︸ ︷︷ ︸

sin(θ1+θ2)

i]

= ρ1ρ2 · (cos(θ1 + θ2) + sin(θ1 + θ2)i) = [ρ1 · ρ2; θ1 + θ2]

On remarque alors que lorsqu’on multiplie des nombres complexes, les modules se multi-
plient et les arguments s’additionnent :

z1 · z2 = [ρ1; θ1] · [ρ2; θ2] = [ρ1 · ρ2; θ1 + θ2]

Remarque

Dans le plan de Gauss, la multiplication par z = [ρ; θ] équivaut à une rotation d’angle θ,
suivie d’une homothétie de rapport ρ.

6.3.4 Inversion

Soit le nombre complexe z = [ρ; θ]. Pour déterminer l’inverse de ce nombre complexe, on
prend l’inverse de son module et l’opposé de son argument :

1

z
=

[
1

ρ
;−θ

]

En effet, on a bien que :

z · 1
z
= [ρ; θ] ·

[
1

ρ
;−θ

]

=

[

ρ · 1
ρ
; θ + (−θ)

]

= [1; 0] = 1
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6.3.5 Division

Soient deux nombres complexes z1 = [ρ1; θ1] et z2 = [ρ2; θ2]. On peut déterminer le
quotient de ces deux nombres complexes de la manière suivante :

z1
z2

= z1 ·
1

z2
= [ρ1; θ1] ·

[
1

ρ2
;−θ2

]

=

[
ρ1
ρ2

; θ1 − θ2

]

On remarque alors que lorsqu’on divise deux nombres complexes, les modules se divisent
et les arguments se soustraient :

z1
z2

=
[ρ1; θ1]

[ρ2; θ2]
=

[
ρ1
ρ2

; θ1 − θ2

]

Remarque

Dans le plan de Gauss, la division par z = [ρ; θ] équivaut à une rotation d’angle −θ,
suivie d’une homothétie de rapport 1

ρ
.

6.3.6 Elévation à une puissance

Soit le nombre complexe z = [ρ; θ]. Pour élever le nombre complexe z à la puissance n,
zn, il suffit de le multiplier n fois par lui-même. En effectuant les diverses multiplications
successives, on obtient :

zn = [ρ; θ]n = [ρn;nθ]

On remarque que pour élever un nombre complexe à la puissance n, on élève le module
à la puissance n et on multiplie l’argument par n.

6.3.7 Extraction des racines n-ièmes

Soit le nombre complexe z = [ρ; θ]. On cherche ici les nombres qui élevés à la puissance
n donnent le nombre z. D’après ce qui précède, il faut prendre un nombre complexe dont
le module est n

√
ρ et dont l’argument est θ

n
. Comme θ est défini à k ·2π près, θ

n
sera défini

à k·2π
n

près. Il y aura donc n modules différents par tour. Ainsi tout nombre complexe
possédera n racines n-ièmes distinctes.

Les racines n-ièmes de z = [ρ; θ] sont données par :

n
√
z =

[

n
√
ρ;

θ + k · 2π
n

]

avec 0 6 k < n, k ∈ N.

Remarques

1. Comme

[

1;
k · 2π
n

]n

= [1n; k · 2π] = 1, on peut en déduire que les racines n-ièmes

de z = [ρ; θ] s’obtiennent en multipliant une des racines n-ièmes de z par les racines
n-ièmes de l’unité.

2. Dans le plan de Gauss, les n racines n-ièmes de z sont situées sur un cercle de centre
O et de rayon n

√
ρ. Si on relie ces racines par des segments de droite, elles forment un

polygone régulier à n côtés.
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6.3.8 Formule de Moivre

Soit un nombre complexe z de module 1. Il peut s’écrire

z = [1; θ] = cos(θ) + sin(θ)i

Si on l’élève à la puissance n, on obtient

zn = [1; θ]n = [1n;n · θ] = cos(nθ) + sin(nθ)i

Proposition 6.1
La formule appelée formule de Moivre est l’égalité suivante :

(cos(θ) + sin(θ)i)n = cos(nθ) + sin(nθ)i

Exemple

Si on applique la formule de Moivre pour n = 2, on a

(cos(θ) + sin(θ)i)2 = cos(2θ) + sin(2θ)i

ou

cos2(θ) + 2 cos(θ) sin(θ)i− sin2(θ) = cos(2θ) + sin(2θ)i

Ainsi, par identification des parties réelles et imaginaires, on a

cos(2θ) = cos2(θ)− sin2(θ)

sin(2θ) = 2 cos(θ) sin(θ)

qui sont les formules trigonométriques de duplication.
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6.4 Exercices

1) Soient les nombres complexes z1 = 1 + 4i et z2 = 5− i. Calculer :

a) z3 = z1 + z2 b) z4 = 3z1 c) z5 = z1 · z2

d) z6 = z21 e) z7 =
1

z1
f) z8 =

z1
z2

2) Soient les nombres complexes z1 = 7 − 5i, z2 = 2 + i, z3 = −5 + 2i, z4 = −10 − 3i,
z5 = 8 et z6 = 8i. Calculer :

a) z1 − z3 − z5 b) z1z2z3 c) z23 + z24

d) iz4 − z3z6 e) Im(z4) f) Re(z21z3)

g) Im(2z2 − 3z3) h)
z1
z6

i)
z1
z2

3) Trouver l’ensemble des nombres complexes z tels que z′ = (z − 1)(z − 2i) soit

a) un nombre réel b) un nombre imaginaire pur

4) Trouver l’ensemble des nombres complexes z tels que z′ =
z + 2i

z − 2
soit

a) un nombre réel b) un nombre imaginaire pur

5) Démontrer les formules :

Re(z) =
z + z

2
et Im(z) =

z − z

2i
=

z − z

2
i.

6) Résoudre les équations :

a) z + 2iz = 8 + 7i b) (1 + i)z + (5− 3i)z = 20 + 20i

c) (2 + 2i)z − 3Re(z) = −18 + 30i d) Im(z+1)+ i ·Re(−z+2) = −1
2
−6i

7) Résoudre les systèmes d’équations :

a)

{
3x + 2y = 7 + i
5x − 3y = −1 + 8i

b)

{
ix − 5y = 13
2x − 3iy = 13i

8) Résoudre les équations :

a) x2 + x+ 1 = 0 b) 6x2 + (7− 13i)x− 3− 7i = 0

9) Ecrire sous forme cartésienne les nombres complexes suivants donnés sous forme tri-
gonométrique :

a) z1 = [2; π] b) z2 =
[√

2;
π

6

]

c) z3 =

[
1

2
;
5π

4

]

10) Soient z1 =
[
2; π

4

]
, z2 =

[
3; π

6

]
, z3 =

[
5; π

6

]
et z4 =

[
1; 5π

6

]
. Calculer :

a) z1 · z2 b)
z1
z2

c) z3 · z4 d)
z3
z4
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11) Calculer le module et l’argument des nombres complexes :

a) z1 = 4 + 2i b) z2 = 3− i c) z3 = −4 + 2i

d) z4 = −3− i e) z5 = z1 + z2 f) z6 = z1 · z2

g) z7 = z21 h) z8 =
1

z3
i) z9 =

z3
z4

12) Calculer, en utilisant la forme trigonométrique, les produits et les quotients suivants,
puis exprimer les résultats sous forme cartésienne.

a) (1 + i)(
√
2−
√
2i) b) (1−

√
3i)(−4

√
3 + 4i) c)

1− i

1 + i

d)
4 + 4

√
3i√

3 + i
e)
−1 +

√
3i√

2 +
√
2i

f)
3 + i

2 + i

13) Calculer :

a) (1− i)37 b)

(
3

5
+

4

5
i

)1000

c) (
√
2−
√
3i)21

14) Soit z =
1 +
√
3i

1− i
.

a) Représenter z5.

b) Déterminer les nombres entiers n pour lesquels zn ∈ R.

15) Calculer et construire :

a) les racines carrées de −81.
b) les racines carrées de 16i.

c) les racines cubiques de
1 + i√

2
.

d) les racines cubiques de −46 + 9i.

e) les racines sixièmes de 1 +
√
3i.

16) Résoudre les équations :

a) z2 + (5− 2i)z + 5− 5i = 0 b) z3 + z2 + z + 1 = 0

c) z4 − iz3 − z2 + iz + 1 = 0 d) z6 − (1 + 12i)z3 − 13− 9i = 0
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6.5 Solutions des exercices

1) a) z3 = 6 + 3i b) z4 = 3 + 12i c) z5 = 9 + 19i

d) z6 = −15 + 8i e) z7 =
1

17
+
−4
17

i f) z8 =
1

26
+

21

26
i

2) a) 4− 7i b) −89 + 53i c) 112 + 40i

d) 19 + 30i e) −3 f) 20

g) −4 h) −5
8
− 7

8
i i)

9

5
− 17

5
i

3) a) z′ est un réel si z = a+ bi est tel que 2ab− 2a− b+ 2 = 0

b) z′ est un imaginaire pur si z = a+ bi est tel que (a− 1
2
)2 − (b− 1)2 + 3

4
= 0

4) a) z′ est un réel si z = a+ bi est tel que a− b− 2 = 0

b) z′ est un imaginaire pur si z = a+ bi est tel que (a− 1)2 + (b+ 1)2 = 2

6) a) z = 2 + 3i b) z = −5i c) z = 12 + 3i d) z = 8 +
1

2
i

7) a) x = 1 + i, y = 2− i b) x = 2i, y = −3

8) a) x1,2 =
−1 ± i

√
3

2
b) x1 = −

1

2
+

1

2
i x2 = −

2

3
+

5

3
i

9) a) z1 = −2 b) z2 =

√
2

2
+

√
6

2
i c) z3 = −

√
2

4
−
√
2

4
i

10) a)

[

6;
5π

12

]

b)

[
2

3
;
π

12

]

c) [5; π] d)

[

5;
−2π
3

]

11) Réponses :

1 2 3 4 5 6 7 8 9

mod.
√
20

√
10

√
20

√
10

√
50

√
200 20

√
20
20

√
2

arg. 0, 464 −0, 322 2, 678 3, 463 0, 142 0, 142 0, 927 3, 605 −π
4

12) a) 2
√
2 b) 16i c) −i

d) 2
√
3 + 2i e) 0, 966 + 0, 259i f) 1, 4− 0, 2i

13) a) −262144 + 262144i b) −0, 865− 0, 501i

c) 21200629, 67 + 5231678, 51i
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14) b) Les multiples de 12.

15) a) 9i −9i

b) 2
√
2(1 + i) −2

√
2(1 + i)

c) 0, 966 + 0, 259i
−
√
2

2
+

√
2

2
i −0, 259− 0, 966i

d) 2 + 3i −3, 598 + 0, 232i 1, 598− 3, 232i

e) 1, 105 + 0, 195i 0, 384 + 1, 055i −0, 722 + 0, 860i

−1, 105− 0, 195i −0, 384− 1, 055i 0, 722− 0, 860i

16) a) z1 = −2 + i z2 = −3 + i

b) z1 = 1 z2 = i z3 = −i
c) z1 = 0, 951− 0, 309i z2 = 0, 588 + 0, 809i z3 = −0, 588 + 0, 809i

z4 = −0, 951− 0, 309i

d) z1 = 2 + i z2 = −1, 87 + 1, 23i z3 = −0, 13− 2, 23i

z4 = 0, 79 + 0, 79i z5 = −1, 08 + 0, 29i z6 = 0, 29− 1, 08i
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