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Chapitre 1

Notions fondamentales

1.1 Ensembles et sous-ensembles

Définition 1.1
Une collection d’objets est un ensemble lorsqu’on peut dire avec certitude si un objet
donné appartient ou non a la collection. Ces objets sont les éléments de I'ensemble.

N’importe quel objet (mathématique ou non) peut étre considéré comme un élément d’un
ensemble (y compris un ensemble!).

Notation

1. On représente généralement un ensemble par une lettre latine majuscule : E.

2. Les éléments d'un ensemble sont notés entre accolades et séparés par des points-
virgules.

3. Si I’élément = appartient a I’ensemble F, on écrit x € E.

4. Si I'élément x n’appartient pas a I'ensemble F, on écrit = ¢ E.

Exemples

— L’ensemble des nombre de 0 a 6 y compris : E={0;1;2;3;4;5;6}.
Ici, on a :
0€E, 4€Fk, 10 ¢ F.

— L’ensemble des éléves d’'une classe : F'= {Aline; Bernard;. . .}.

On peut définir un ensemble de deux manieres différentes :
1. en énumérant ses éléments, G = {5;10; 15;20; 25; .. .}.

2. en donnant une condition d’appartenance. La notation est alors légerement plus
sophistiquée. Par exemple, on traduit la phrase

7 H est 'ensemble des ¢léments de E tels que leur carré est plus grand ou égal a 15”7
S ——— N———— , _

~
= {3 on don?lggn nom I n?>15
on écrit la condition & ’aide d’une formule

général aux éléments ~ . ) L i
de I’ensemble grace au fait qu’on a donné un nom aux éléments

par
H={ne E|n*>15}

3



Mathématiques, MAB 197 année 1. Notions fondamentales

Cas particulier

Si un ensemble F ne contient aucun élément, on 'appelle ensemble vide et on le note
{} ou @.

Définition 1.2
Si tous les éléments de I’ensemble A appartiennent a I’ensemble B, on dit que A est un
sous-ensemble de B.

Exemple
A={1;2:3;4}, B={1;2;3;4;5;6} et C={3;4;5;6}

L’ensemble A est un sous-ensemble de B, mais A n’est pas un sous-ensemble de C.

Définition 1.3
Soit A et B des sous-ensembles d’un ensemble E. On dit que

1. A est inclus dans B si tout élément de A appartient a B. On note A C B. Dans
ce cas, A est un sous-ensemble de B.

2. A contient B, lorsque tout élément de B appartient a A. On note A O B. Dans ce
cas, B est un sous-ensemble de A.

3. A est égal a B, lorsque tout élément de A appartient a B et que tout élément de B
appartient a A. On note A = B.

Syntaxe

Nous venons de rencontrer deux signes mathématiques qu’il s’agit de ne pas confondre :

Nom Terme de gauche | Symbole | Terme de droite
Appartenir a Elément € Ensemble
Etre inclus dans Ensemble - Ensemble
Etre égal a Elément = Elément
Etre égal a Ensemble = Ensemble
Contenir Ensemble > Elément
Contenir Ensemble D Ensemble

On a I’équivalence suivante lorsque A est un ensemble.

reAs{z}CA

Remarques

1. A ¢ B signifie qu'il existe au moins un élément de A qui n’appartient pas a B.

2. Soit un ensemble E = {a;b; c}.
a € Eet {a} C E sont des notations correctes, a C E ne 'est pas.
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1.2 Les ensembles de nombres

Les mathématiciens ont classé les nombres dans des ensembles, appelés ensembles de
nombres. Ces derniers sont désignés par des symboles universellement adoptés :

1. IN=1{0;1;2;3;4;5;6...}|: 'ensemble des nombres naturels.

C’est cet ensemble de nombres que nous utilisons la plupart du temps pour compter
(des objets, de I'argent, etc.). Historiquement, le zéro n’est pas apparu en méme
temps que les autres nombres. On le rencontre pour la premiere fois en Inde. Les
Hindous (sanscrit) I'ont désigné par le mot "sunya” qui signifie : vide ou nul. Les
Arabes l'ont repris en le transformant quelque peu pour donner ”sifr”. Le zéro n’a
été importé en Furope qu’au début du XIII® siecle par Fibonacci. Les Européens
(en latin) ont transformé ”sifr” en ”zephirum” qui donnera zéro et en ”cifra” qui
donnera chiffre.

2. |Z={...;-3;,—-2;—-1;0;1;2;3...}| : 'ensemble des nombres entiers (relatifs).

Ensuite, les nombres négatifs sont apparus et, mis ensemble avec les nombres na-
turels, ont formé ’ensemble des nombres entiers. Moins utilisés que les nombres
naturels dans la vie de tous les jours, on les trouve notamment dans I'expression de
la température. Leur présence permet a la soustraction d’exister quels que soient
les nombres que 1’on soustrait : sans eux, 2 — 3 n’existerait pas.

3. Q= {]—) | p,q €Z,q # O} : ensemble des nombres rationnels (fractions).
q

Tous les nombres pouvant se mettre sous forme de fraction sont des nombres ra-
tionnels. On en utilise tous les jours lorsqu’on parle de centimetres, de décilitres,
de centiemes de seconde, de moitié, de tiers, etc.

Exemples

— Les nombres entiers (v = 7).
— Les nombres a virgules ayant un développement décimal limité ou périodique

(125=213=3)

En termes mathématiques, p est le numérateur (vient du mot numéro ou nombre,
car il compte) et ¢ est le dénominateur (vient de dénommer, car il correspond a
un nom comme demi, tiers, dixieme, etc.).

4. : ’ensemble des nombres réels.

Finalement, il y a des nombres qui ne sont pas des fractions. Ils sont appelés les
nombres irrationnels (les nombres a virgule ayant un développement décimal
illimité non périodique). Ils ont été découverts par les Grecs (qui ont eu de la peine
a en accepter 'existence). Ils apparaissent par exemple lorsqu’on étudie la longueur
des cotés d'un triangle, le périmetre d’un cercle, etc.

L’ensemble des nombres réels est constitué des nombres rationnels et des nombres
irrationnels.

On a les inclusions

NCZCQCR‘
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Proposition 1.1
Le nombre v/2 est un nombre réel irrationnel (il n’est pas un nombre rationnel).

Démonstration. Nous allons effectuer une démonstration par l'absurde. Principe d'un
telle démonstration : supposer le contraire de ce que 'on désire démontrer et montrer
que cette supposition est impossible (en exhibant une contradiction).

Supposons que v/2 est un nombre rationnel.
= il existe a,b € Z, b # 0 et a, b premiers entre eux (c’est-a-dire ¢ irréductible) tel
que V2 = 7

= 2= ‘Z—j et donc a? = 2b%. On en conclut que a?

un nombre pair.
= q est pair. En effet, élever au carré conserve la parité :
- si m est pair, m = 2n, m* = 4n? = 2(2n?), m? est pair.

- si m est impair, m = 2n + 1, m? = 4n? +4n + 1 = 2(2n* + 2n) + 1, m? est

impair.
= il existe a’ tel que a = 2a’. On obtient que a®> = 4(a’)? = 2b® et donc que
b = 2(a')?.

= b? est pair. Par la méme réflexion que ci-dessus, il existe b tel que b = 2V'.
_a __2d __da
=>V2=5=%=7

= La fraction § n’est pas irréductible. Ceci est en totale contradiction avec notre

supposition de départ.

Il découle de cette remarque que v/2 n’est pas un nombre rationnel. O

Conventions complémentaires

On introduit encore les conventions d’écriture suivantes :
-R'={zxeR|z#0}
-Ry={zxeR|z>0}

-R_o={zxeR|z<0}

Les combinaisons de ces conventions sont possibles : R’ ...

Ces combinaisons s’appliquent par analogie aux autres ensembles de nombres (natu-
rels,. .. ).

1.2.1 La droite réelle

On représente les nombres réels par une droite, appelée la droite réelle.
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1.2.2 Ecriture décimale

L’écriture décimale permet de représenter TOUS les nombres réels d'une fagon agréable,
mais qui n’est en général PAS EXACTE. Cette écriture permet de placer avec une précision
relative n’importe quel nombre réel sur la droite réelle.
Voici quelques nombres écrits sous forme décimale.

2 1 2 5

- =04 —=0.125 - =056 — =
3 8 3 13

2=120

0.384615 V2 =1.414213. ..

Les nombres rationnels peuvent s’écrire sous forme de nombres décimaux limités (comme
2 et 3) ou périodiques (comme 2 et =), contrairement aux nombres irrationnels dont
le développement décimal est TOUJOURS infini et non-périodique (comme /2 et 7 =

3.14159265 . . .).

1.2.3 Notation scientifique

La notation scientifique permet d’écrire des nombres "tres grands” ou "tres petits”.

Si on se donne un nombre a € R, on I’écrira de la maniere suivante en notation scientifique
a=*tx-10"

avec 1 <z < 10 (x € R) et n € Z. En d’autres termes, on écrit le premier chiffre non
nul du nombre suivi d'une virgule et des chiffres suivants. On multiplie ensuite par la
puissance de 10 adéquate pour retrouver le nombre de départ (on doit avoir une égalité!).
Le nombre de chiffres écrits est appelé le nombre de chiffres significatifs. Il est en

général fixé par le contexte. Afin de raccourcir I'écriture la plupart des calculatrices
écrivent :

+xEn aulieude £z-10"
Exemples
nombre décimal notation nb de chiffres
nombre exact arrondi scientifique significatifs

2 2 2-10° 1

: 0.5 5-107" 1

3 0.50 5.0-107" 2

= 1.3 1.3-10° 2

-3 —0.333 -3.33-107* 3
V119 10.9087 1.09087 - 10! 6

220 1048576 1.048576 - 10° 7
(—2)% —5629499534 - - -7 | —5.629 - 101° 4
3100 5153775207 -- -7 | 5.1537752 - 10%7 8
(1™ 0.0000000---? | 1.9403-10~% 5
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La notation scientifique permet de se donner un ordre de grandeur du nombre en question.
Plutot superflue dans les premiers exemples, elle est ESSENTIELLE dans les deux derniers
exemples !

1.2.4 PPMC, PGDC et nombres premiers

Définition 1.4 (Rappel)
Soit a et b deux nombres naturels non nuls (a,b € N*), alors :

1. a est un multiple de b s’il existe un nombre naturel ¢ tel que a =b- c.

2. b est un diviseur de a s’il existe un nombre naturel c tel que a = b - c.

Exemples

1. 32 est un multiple de 8, car 32 =4 - 8.
2. 7 est un diviseur de 21, car 21 =17 - 3.

Définition 1.5 (Rappel)

1. Un multiple commun de plusieurs nombres naturels est un nombre naturel qui est
multiple de chacun d’eux. Le plus petit multiple commun de plusieurs nombres
est appelé le ppmc de ces nombres.

2. Un diviseur commun de plusieurs nombres naturels est un nombre naturel qui est
diviseur de chacun d’eux. Le plus grand diviseur commun de plusieurs nombres
est appelé le pgdc de ces nombres.

Exemples

1. 36 est le ppme de 3, 9 et 12.
2. 8 est le pgdc de 16, 24 et 40.

Définition 1.6
Un nombre entier naturel p est premier s’il admet exactement deux diviseurs, 1 et lui-

meme.
Propriétés
1. Tout entier naturel supérieur ou égal a 2 admet au moins un diviseur premier.

2. Il existe une infinité de nombres premiers.

Démonstration. Nous allons démontrer la seconde propriété. On doit cette preuve a Eu-
clide.

Supposons que cet ensemble soit fini. Il contient n nombres pi, ps, ..., py.

Posons N = p; -py-...-p,+ 1. N n’est pas premier par hypothese. N admet donc au
moins un diviseur premier p; qui doit étre py, ps, ...ou p, : N = ¢ - p;. Ainsi,

I = N—=pi"p2-eo o Pn=q"Pi—pP1-D2"---"Dn
1 = pz‘(q—Pl'p2'---'pi_1-p,-+1-...-pn)

Del=pi(g—p1-pa--.. Pi—1-Piz1-----Pn), o0 tire que p; divise 1, ce qui est impossible. [
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Théoréme 1.2 (Théoreme fondamental de I'arithmétique)
Tout nombre entier naturel supérieur ou égal a 2 peut s’écrire comme un produit de
nombres premiers. Cette décomposition est unique a I'ordre des facteurs pres.

On appelle cette décomposition la décomposition en facteurs premiers du nombre.
Exemples

- La décomposition de 720 en facteurs premiers est : 720 = 2* - 3% . 5.
- La décomposition de 4200 en facteurs premiers est : 4200 = 23 -3 .52 - 7.

1.3 Calcul littéral

Le calcul arithmétique consiste a prendre des nombres ”connues” et a exécuter sur ces
derniers des opérations : addition, soustraction, multiplication et division.

Le calcul littéral (ou algébrique), quant & lui, consiste & manipuler des expressions
littérales (c’est-dire avec des nombres et des lettres qui représentent des nombres). Par
rapport au calcul arithmétique, une partie des nombres ”connus” est remplacée par des
lettres désignant des nombres "inconnus”. Il y a plusieurs raisons pour lesquelles le calcul
algébrique est essentiel.

La premiere est pour éviter de faire le méme calcul un nombre important de fois en
raison du fait qu’une ou plusieurs données du probleme peuvent varier, tel que le prix
de I'essence, par exemple. Le calcul algébrique permet d’arriver a une réponse simplifiée
dépendant des (ou de la) données qui varient.

La deuxieme est que, parfois, les valeurs de certaines données d'un probléme ne seront
connues que plus tard, mais que cela ne devrait pas nous empécher d’avancer dans la
résolution du probleme.

La regle d’or est la suivante :

LA PRESENCE DE LETTRES DANS UN CALCUL NE CHANGE RIEN A LA FACON DE
CALCULER. UNE LETTRE NE FAIT QUE REPRESENTER UN NOMBRE QUELCONQUE !

1.3.1 Propriétés des opérations

Propriétés de ’addition

1) L’addition est commutative : a+b=b+a (B+4=7=4+3)

2) L’addition est associative : a+(b+c)=(a+b)+c (2+4(3+4) = (24+3)+4)
3) 0 est 'élément neutre : at+0=a (24+0=2)

4) —a est 'élément opposé dea: a+ (—a) =0 (34 (=3) =0)

Propriétés de la multiplication

1) La multiplication est commutative : a-b=b-a (3-4=12=4-3)
2) La multiplication est associative : a-(b-c)=(a-b)-c (2:(34)=(23)49)
3) 1 est 'élément neutre : l-a=a (1-2=2)
4) Sia#0, é est I’élément inverse de a : «a - é =1 (3- é =1)
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La multiplication est distributive par rapport a I’addition

a-(b+c)=a-b+a-c (1.1)

Pour réaliser le produit de deux sommes, on utilise plusieurs fois la distributivité de la
multiplication par rapport a l'addition :

(a+b)(c+d)=alc+d)+blc+d) = ac+ ad+ bc + bd

Exemples
1) Distributivité : 2- (34+4)=14=2-3+2-4

2) Produit de deur sommes : (2+3)-(4+5)=2-(4+5)+3-(44+5)=2-442-
0+3-443-5=45

Définition 1.7
Deux termes techniques sont liés a la distributivité.

Développer : C’est 'opération qui consiste a passer du membre de gauche de 1'égalité
(1.1) au membre de droite de la méme égalité. Elle consiste donc & transformer
un produit en une somme en ”effectuant” la multiplication selon la regle de
distributivité.

Mettre en évidence : C’est 'opération qui consiste a passer du membre de droite de
I'égalité (1.1) au membre de gauche de la méme égalité. Elle consiste donc a repérer
dans une somme de termes le facteur qui est commun a tous les termes de la somme
et a transformer cette somme en le produit du terme commun et de la
somme (entre parenthéses) des termes restant selon la régle de distributivité.

Exemples
1) Pour développer l’expression 2-(5+8) on effectue la multiplication pour obtenir :
2.(5+8) =2-5+2-8

2) Dans la somme 2 -5+ 2 -8, on peult mettre le facteur 2 en évidence car il est
commun aux deux termes de la somme :

2.5+2-8=2-(5+8)

On réalise donc lopération inverse de celle effectuée en 1.
Il est possible de montrer que ces propriétés impliquent :
a-b=0=a=00ub=20

C’est une relation nous utiliserons tres fréquemment.

Propriétés des nombres opposés

1) —(-a)=a (—(~4) = 14)

2) (-a)-b=—(a b)za (=b)  ((~4)5 = —(20) = 4:(-5))
3) (=a)- (= b) b ((~3) - (~4) = 12)

4) (-1)-a=- ((-1) 4= —4)
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Propriétés des fractions
Rappel

Une fraction représente le quotient (= division) de deux nombres a et b. Elle est un

nombre qu’on note
a

b

ol a est le numérateur (ou dividende), b le dénominateur (ou diviseur) et — la barre
de fraction.

2
Ezxemple : R est un fraction qui correspond au nombre 0,4. Elle se lit "deux cinquieme”.

Plusieurs fractions peuvent représenter le méme nombre (penser a 3 = g = __—155 = % =

On peut utiliser le produit en croix pour vérifier si deux fractions sont égales.

%:g,si a-d=b-c
Exemple.%:}—gcar2-15:3-10
Les opérations sur les fractions suivent les regles ci-dessous :
o - a c¢_a-d+tb-c 2 4 25434
Clieation - L _a-c 2 1 2.1
2)  Multiplication : A Rl (5 . ﬁ)
vision - p_a.c_ad 5 _2.3_24
3) Division : A <§:3_4:.3>
;. _e_—e_ @ 222
4)  Opposé : ; 5 — (3_ . __3>

On transforme une fraction en une autre fraction équivalente par la suite d’opérations :

a a a-m
I
b b

a m
b m b-m

En lisant de gauche a droite, on amplifie la fraction. En lisant de droite a gauche,
on simplifie la fraction. On dit qu’une fraction est irréductible si on ne peut pas la

simplifier (comme pour 2).

Nous reviendrons plus en détails sur ces concepts au paragraphe (1.5).

Priorité des opérations

L’ordre de priorité des opérations s’établit ainsi (plus le numéro est élevé, plus la priorité
est grande) :

Priorité 4 - les parentheses ()
Priorité 3 - l'exponentiation y” et les fonctions (sinus, cosinus, etc.)
Priorité 2 - la multiplication et la division

Priorité 1 - l'addition et la soustraction
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La regle de priorité est la suivante :

1. en lisant de gauche a droite, quand un nombre se trouve entre deux signes opéra-
toires, c’est 'opération prioritaire qui est effectuée en premier.

2. si les deux opérations ont le méme niveau de priorité, elles sont effectuées dans
lordre d’écriture.
Regle des signes

Lorsqu’on a une multiplication ou une division entre deux nombres, la régle des signes
s’applique.

nombre multipli@tion nombre || nombre
ou division
+ - ou + + +
+ - ou + — —
- ou -+ + -
— - ou -+ — +

On peut aussi utiliser des phrases mnémotechniques du style : les amis de mes amis sont mes amis ; les amis de mes ennemis

sont mes ennemis ; les ennemis de mes amis sont mes ennemis ; les ennemis de mes ennemis sont mes amis.

1.3.2 Les puissances et les exposants

Définition 1.8
Un nombre a multiplié n fois par lui-méme, a-a-...-q, est appelé puissance n-eéme
———

a apparait n fois

de a et est noté a. On dit également “a élevé a la puissance n” ou plus rapidement "a
puissance n”. Dans I’écriture a™, on appelle a la base et n 'exposant.

Ezemple : 3-3-3-3-3-3 =3°

P
3 apparait 6 fois

Propriétés

— Pour multiplier 2 puissances de méme base, on additionne les exposants :

‘an.am:an+m‘

Exemple : 2° -2 =(2-2-2-2-2)-(2-2-2-2) = 2°

Pourn=0:a"-a°=a" =

De plus :

sin > m.
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— Pour multiplier 2 puissances de méme exposant, on multiplie les bases :

a-b" = (a-b)"

Exemple : 2833 = (2-2-2)-(3-3-3)=(2-3)-(2-3)- (2-3) = 6°

— Pour élever a des puissances successives, on multiplie les exposants :

Ezemple : (3%2)> =(3-3)-(3-3)-(3-3) =3¢

Ces formules ne sont valables, pour 'instant, que pour a et b des nombres réels (a,b € R)
et n et m des nombres naturels (n,m € N). On les généralisera dans la suite du cours.

1.3.3 Les racines

Définition 1.9

L’opération prendre la racine d’'un nombre est l'inverse de 1’élévation d'un nombre a
une certaine puissance. On définit la racine n-éme (n € N*) d’'un nombre a (avec
a € Ret a>0), notée {/a, comme I'unique nombre réel x > 0 qui satisfait

" =a
Le symbole o/ est appelé radical , I’expression sous le radical est appelé radicande et
n l'indice.

Si n = 2, on écrit simplement \/a et on lit racine carrée de a.

Exemples

1. V0 =0 (car 02 =0)

2. VA =2 (car 2 est l'unique nombre réel positif tel que 2° = 4. Remarque :
(—2)? = 4 également, mais —2 est un nombre réel négatif!)

3. V/8=2 (car 2’ =38)

Si a et b sont des nombres réels strictement positifs (a,b € R%) et n, m, p des nombres
naturels strictement positifs (n,m,p € N*), on a les propriétés suivantes :

Ja=Vb<=a=b

(%)n:a \7@_:%% \

nam:(%)m n %:n% npamp:nam

Attention!
~ Va2t #a+b eneffet : V32 +42=/25=5#43+4=7T
- \/a+b7é\/5+\/5,eneffet:\/4+ =V13#V4+v/9=5
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1.3.4 Identités remarquables

Les identités remarquables sont des formules qu’il est bon de reconnaitre en toute
circonstance. Elles vont revenir dans tous les chapitres. Pour la plupart ce n’est quun
rappel.

a+b)* = a® + 2ab + b (a —b)? =a*—2ab+V?
# = a® + 3a%b + 3ab® + b® (a —b)* = a® — 3a®b + 3ab® — b*
Y= a4+ 4a’b + 6a*b* + 4ab® + b* (a —b)* = a* — 4a’b + 6a°b* — 4ab® + b*

Ces égalités se lisent dans les DEUX sens (comme toute égalité). Il est facile de les retrouver
en développant le terme de gauche. Par contre, il est important de les connaitre afin de
pouvoir les reconnaitre lorsque seul le terme de droite est présent.

Reprenons la premiere de ces formules. On peut écrire : (a +0)>=1-a*>+2-ab+ 1V
On appelle le 71”7 devant a? le coefficient de a?; le coefficient de ab est 2, celui de b? est
1.

Dans les formules de la premiere colonne, la puissance a laquelle on a élevé (a + b) est
chaque fois augmentée de 1. Observez ce qui se passe :

- A chaque puissance correspond une suite de coefficients.
Ezemples : a la puissance 2 correspond : (1;2;1), a celle de 8 correspond : (1;3;3;1).

- En lisant de gauche a droite, les exposants de a sont décroissants par pas de 1, ceux
de b croissants par le méme pas.

Pour le cas général (a + b)", les coefficients sont donnés par le triangle de Pascal.

n
0| 1

17 1 1

211 2 1

3] 1 3 3 1
411 4 6 4 1
5/ 1 5 10 10 5 1
6| 1 6 15 20 15 6 1

Le triangle de Pascal

D’autre identités sont également tres utiles

(a+b)-(a—0b)=a*—b
(a+0b)(a* —ab+b?*) = a® + b
(a—b)(a®+ ab+V?*) = a® — b*

(a+b+c)* =a*+ b+ + 2ab + 2ac + 2be
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Applications

1. 38-42 = (40 — 2) - (40 + 2) = 40% — 22 = 1600 — 4 = 1596
2.212=(20+1)2=202+2-20+1 =400+ 40 + 1 = 441
3. 352 = (30 + 5)% = 30% 4+ 2 - 150 + 52 = 900 + 300 + 25 = 1225

Démonstration. Nous allons démontrer quelques-unes des identitées proposés ci-dessus.
Les autres démonstrations sont laissées au lecteur.

. (a+b)2=(a+b)-(a+b) =ala+b)+bla+b) = a®+ab+ba+b* = a? 4 2ab + b?
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1.4 Polynomes

1.4.1 Monomes

Définition 1.10

On appelle monéme les nombres réels, les lettres, qui sont appelées indéterminées ou
les expressions qui peuvent étre obtenues par la multiplication a partir des nombres réels
et des lettres.

Un monoéme en une indéterminée est le produit d’'un nombre réel, a, et d’'une puis-
sance d'une indéterminée, généralement noté x, :

a-x"

Le nombre réel a est le coefficient du monome.

La puissance de I'indéterminée, x", est la partie littérale du monome et son exposant,
n € N, est le degré du monome.

Deux mondmes sont semblables si et seulement si leurs parties littérales sont égales.

Exemples

1) 4z%y, xy’z, —2x, 5, 0 sont des mondmes.

2) x 4+ x + x est un monome, forme réduite : 3x.
1+ 3z n’est pas un monome car cette expression n’est pas le produit de nombres
et/ou de lettres.

3)

Monéme 5o | —3a2% | Iat x? —V22% | 7,8
- 7
Coefficient 5 -3 3 1 —V2 7,8
Partie littérale | =« x? x? x? 3 =1
Degré 1 2 4 2 3 0

4) 2% et —32% sont deuz monomes semblables.
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Opérations sur les monomes

Somme : On obtient la somme de monomes semblables en conservant la partie littérale
commune et en additionnant les coefficients. On utilise la distributivité de la mul-
tiplication sur I'addition.

Produit : On obtient le produit de deux monomes en multipliant leurs coefficients entre
eux et leurs parties littérales entre elles (addition des puissances). On utilise la
commutativité et ’associativité de la multiplication.

Exemples

1) Somme : 5z* + 8x° s (5+8) - 2% = 1322

2) Produit : 5% - 82° ‘2" 5.8 - 22 - 3 “Z 4022+3 = 402°

1.4.2 Polynoémes

Définition 1.11
On appelle polynéme tout monome et toute somme de monomes.

Exemples

1) T2%y + 8xyz — 3y323 et —4a® + Sxy — x + 2y — 4 sont des polynomes.

2) % + 3z, 52152 et 3z + 2/ ne sont pas des polynomes.

Pour la suite de ce cours nous considérerons uniquement des polynoémes formés de mono-
mes en une indéterminée, que nous noterons .

On polynome est sous forme réduite si ses monomes semblables sont regroupés en
un seul terme. Pour obtenir un polynome sous forme réduite, on somme ses mondmes
semblables en utilisant la regle d’addition ci-dessus.

Exemples

1) 22% — 3z + 2 est un polynéme sous forme réduite. Il a trois termes.

2) Ta? — 3z + 22% — 4 n’est pas un polynome sous forme réduite, puisqu’il contient
les deuz termes semblables Tx? et 2x2. Forme réduite : 92> — 3x — 4

Définition 1.12
Un polynéme (en une indéterminée), nommé p(x), s’écrit de maniere ”générale”

p(T) = apa" + ap_1 2"+ ap 12" P 4+ apr® + T+ ag

avec ay € R, a, #0et n € N.
La valeur de 'exposant le plus grand, n, est appelée le degré de p(z), noté deg(p(x)).

Le nombre a; est appelé le coefficient de rang ¢ de p(x) et a, le coefficient dominant.

On écrira généralement un polyndéme de maniere ordonnée, c’est-a-dire en écrivant ses
termes dans l'ordres des degrés décroissants.
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Exemples
Polynome Degré | Coeff. dom. | a5 | as | ag | as | a1 | ag
p(r) =525 + 22* + 322 + 5 5 51210 1]3]1]0
p(z)=—-23+2*+5 3 —1 —|=|=111]0]5
plx) = 52 +2 1 3 — =] =] =132
p(z) =6 0 6 — |- —=-|=-1]1-16

Evaluation d’un polynome

On peut évaluer un polynome p(z) en n’importe quel nombre réel a en remplacant
I'indéterminée x par le nombre a et en évaluant la valeur de ’expression ainsi obtenue.
On note cette valeur p(a).

Exemple

Soit le polynome p(x) = —a® + 22* —x — 7
Sia=2:p2)=-23+2-22-2-7=-8+8-2—-7=-9
Sia=—5:p(—5)=—(=5)3+2-(=5)% —1-(=5)—T=125+50+5—7=173

Opérations sur les polynomes

Egalité : Deux polynomes sont dit égaux s’ils sont de méme degré et si tous leurs
coefficients de rang ¢ correspondants sont égaux.

Somme : On additionne deux polynomes en regroupant les termes semblables, méme
puissance de I'indéterminée, et en les additionnant (équivalent a réduire la somme
des deux polynomes).

Opposé : On obtient 'opposé d'un polynome en changeant le signe de chacun de ses
termes. (Cela revient a le multiplier par —1.)

Différence : On soustrait un polynome d’un autre polynome en y additionnant son
OppOSeE.

Produit : On multiplie deux polynomes en multipliant chaque monome du premier par
chaque monome du second et on réduit la somme de monomes obtenue. (On ap-
plique & plusieurs reprises la distributivité.)

Exemples
Soit les polynomes p(x) = 22* — 4z + 6 et q(x) = 2* + 3z — 5.
1) Egalité :

p(x) =222 — 4z + 6 =6 — 4o + 20> = —dv + 6+ 22° = 2(2® — 20 +3) = ...
2) Somme :

p(z) +q(z) = (22% -4z +6) + (2? + 3z — 5)

(222 + 2?) + (—4a + 32) + (6 — 5)
= 3?—z+1
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3) Opposé :
—p(z)=—-1-(222 — 4+ 6) = —22° + 42 — 6
4) Différence :
p(z) —q(z) = (22% — 42 +6) — (2*> + 3z —5)
(2:62 4z +6) + (—2* — 3z +5)
202 — %) + (—4x — 3z) + (6 + 5)

5) Produit :
p(x)-qlx) = (22% —4x +6) - (2® + 32— 5)
= 222 (22 + 32 —5) + (—4x) - (2> + 32 —5) +6 - (22 + 3z — 5)
= 2% 2%+ 227 3z + 22 - (—H)+
(—4x) - 2? + (—4x) - 3z + (—4z) - (—5)+
6-2>+6-3x+6-(—H)
= 2zt + 623 — 1022 — 42 — 1222 + 20z + 622 + 18z — 30
= 22 + 223 — 162% + 38z — 30
On peut remarquer que : 4 = deg(p(x) - q(x)) = deg(p(x)) + deg(q(z)) = 2 + 2.

Formule des degrés

Soit p(z) et g(z) deux polyndémes. On a la formule suivante :

deg(p(x) - q(v)) = deg(p(z)) + deg(q(z))

Cette formule se démontre facilement en utilisant la définition du produit de deux po-
lynomes.

1.4.3 Factorisation d’un polynome

La factorisation ou décomposition en facteurs consiste a trouver, pour un polynéome
p(z) de degré supérieur ou égal a 2 donné, un produit de polynomes de degré supérieur
a 0 qui lui soit égal et dont les facteurs ne peuvent plus étre décomposés.

La factorisation est le processus inverse du développement. Ainsi, pour controler si une
factorisation est correcte, il suffit de développer le produit obtenu et voir s’il correspond
au polynome de départ.

Exemple

Le polynome x* — 9 peut se décomposer ainsi : 2> — 9 = (x + 3)(z — 3).

On donne ci-dessous quelques procédés permettant d’effectuer cette transformation tres
importante et parfois difficile. D’autres technique seront données dans la suite du cours.

Mise en évidence

On repere d’abord dans la somme de termes a décomposer le facteur qui est commun a
tous les termes de la somme et on utilise ensuite la distributivité pour écrire un produit.
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Exemples

1) 2 —8x = x(x — 8) — On a mis x en évidence.

2) 6ax + 6a = 6a(x + 1) — On a mis 6a en évidence (ne pas oublier le +1 dans
la parenthése).

3) a(x+y)+bx+y) = (a+b)(xr+y) — Le facteur x +y est commun auz deux
termes de la somme.

4) —1223y + 242%y* + 62y = 62y(—222 + 4oy + y?)

Utilisation des identités remarquables

On peut utiliser les identités remarquables vues au paragraphe (1.3.4) pour factoriser un
polynome.

Exemples

1) 92% — 25y = (3z — 5y)(3z + 5y)
2) da? —4x +1= (22 — 1)?
3) a® — 6a*b + 12ab® — 8b% = (a — 2b)3

Décomposition d’un trinéme du second degré

Essayons de déterminer « et 5 de manieére a pouvoir écrire :
2+ 70+ 12 = (x+a)(z+ )
La forme réduite du membre de droite de cette égalité est égale a
2° + (a+ B)z + af
Pour que les deux membres soient égaux, il faut donc que
a+pB="7 af =12

Ces deux égalités sont vraies si « = 3 et § = 4. On obtient ainsi la décomposition du
trinome du second degré donné en un produit de deux facteurs du premier degré :

2+ T+ 12 = (v +3)(x +4)

La décomposition d'un trindme du second degré dont le coefficient dominant est 1 est
ainsi ramenée a la recherche de deux nombres dont

— la somme est égale au coefficient de rang 1,

— le produit est égal au coefficient de rang 0.

Méthode des groupements

Elle consiste a former plusieurs groupes de termes (dans les exemples les plus courants 2
groupes), de telle maniére que 1'on puisse

— soit utiliser une identité remarquable,

— soit mettre en évidence un facteur commun auz différents groupes.
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Exemples

1) 22 -2zy+vy* -1 = (22 —2zy+y?) -1 ass. addition
= (z—y)?-1 identité remarquable
= [(x—y)+1][(zx —y)—1] identité remarquable
= (z—y+)(z—y-—1) ass. addition

2) ar+br—ay—by = (ax—ay)+ (bx —by) ass. et comm. addition
= a(r—y)+b(r—vy) mise en évidence
= (r—vy)la+b) mise en évidence

Méthode de factorisation

Pour décomposer un polynome, il faut souvent appliquer plusieurs des méthodes décrites
ci-dessus. On procede dans l'ordre suivant :

1. mise en évidence des facteurs communs a tous les termes,
utilisation d’une identité remarquable,

2.
3. méthode de décomposition pour les trinomes du second degré,
4.

méthode des groupements.

Exemples

1) 3622 —100 = 4(92* —25) mise en évidence
= 43z —5)(3z+5) identité remarquable
2) 5a* —5b* — 5a*c? 4+ 5b*c* = 5[(a® —b?) — *(a® — b?)]
= 5(a*-0*)(1-c?)
5(a—"0b)(a+b)(1 —c)(1+c¢)

1.5 Fractions rationnelles

Définition 1.13
On appelle fraction rationnelle le quotient de deux polynomes en une indéterminée,
p(x) et q(z) :

ou ¢(x) n’est pas le polynéme nul (¢(z) # 0).
p(z) est appelé le numérateur de la fraction et ¢(x) le dénominateur.

Exemple
2 8x2 —3 2 1
. —xi_ 1’ x_gx j_;r R sont des fractions rationnelles.

Pour travailler avec ces fractions rationnelles, il est nécessaires de définir des opérations
entre ces fractions. Ces dernieres devront étre des prolongements des définitions des
opérations sur les polynomes, et donc concorder avec celles-ci, car tout polynome p(z) # 0

p(x)

peut étre vu comme la fraction rationnelle : —=. La méme remarque est valable pour

les nombres réels.
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1.5.1 Opérations sur les fractions rationnelles

Convention d’écriture : Dans ce paragraphe, les lettres A, B, C' et D représenteront
des polynomes (en une indéterminée). En particulier, on pourrait voir ces lettres comme
représentant des nombres réels (qui sont des polynomes de degré 0) et retrouver ainsi les
opérations décrites au paragraphe (1.3.1).

Simplification d’une fraction rationnelle

On simplifie une fraction rationnelle en remplagant dans le numérateur et le dénomina-
teur un facteur (polynéme) qui leur est commun par 1 (= on divise le numérateur et le
dénominateur par un méme facteur).

AC A1 A

B-C B-1 B

Une fraction rationnelle simplifiée au maximum est dans sa forme irréductible.

Remarque

Pour simplifier une fraction rationnelle, on factorise d’abord son numérateur et son
dénominateur, puis on simplifie par les facteurs communs.

Exemples
21 . -1
p2_ 37 313
14 2.7 2.1 2

On a simplifié la fraction % par 7.

2) > =3c+2 (z-2)(z—-1) (z—2)-1 -2
2—-1 (a+1)(x—-1) (z+1)-1 a+1
On a stmplifié la fraction par x — 1.
24+ 6x+9 (z + 3)? (z + 3)? r+3

5 :173+x2—69::x(x2—|—x—6) :x(a?—l—?))(x—Q) ::1:(:17—2)

322 -3  3(x*-1) 1-(z+1(x—-1) =x-1

4)12x+12:12(x+1): Az+1) 4

Amplification d’une fraction rationnelle

On amplifie une fraction rationnelle en multipliant son numérateur et son dénominateur
par un méme polynéme (non nul).

A-C
B-C

C’est donc la transformation inverse de la simplification.

A
B

Deux fractions rationnelles sont alors équivalentes si on peut passer de I'une a 'autre
par simplifications et/ou amplifications.
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Exemples
4 4.7 28
] —_ = — = —
) 5 5.7 35

On a amplifié % par 7

r—2 (z—-2)(x—1) 2°>—-3r+2

r—5 (z—5)(zx—1) 22—-6x+5

On a amplifié la fraction par x — 1. Il suffit de simplifier la fraction du milieu
par x — 1 pour obtenir l’égalité.

2)

Somme de deux fractions rationnelles

Pour additionner deux fractions rationnelles, on procede de la maniere suivante :

1) déterminer un multiple commun aux dénominateurs des deux fractions — un
polynome qu’on peut obtenir par multiplication a partir des dénominateurs des deux
fractions,

2) amplifier les deux fractions pour obtenir aux dénominateurs le polynome déterminé
en 1 — on dit qu'on met les fractions au méme dénominateur,

3) additionner les numérateurs en conservant le dénominateur commun.

A+C’_A-D+B-C’_A-D+B-C’
B D B-D B-D  B-D
Cette méthode fonctionne aussi quand on veut additionner un polynome et une fraction

rationnelle. Il suffit d’écrire le polynéme p(x) sous la forme @ et d’appliquer la méthode
ci-dessus.

Remarque

Le dénominateur ”préféré” (parce qu’il rend les calculs plus simples!) est le multiple
commun des deux dénominateurs du plus petit degré possible.
On l'appelle le ppmc des deux dénominateurs.

Exemples
1)3+5—9+10—9+10—19
4 6 12 12 12 12

Dénominateur commun : 12 — ppmec de 4 et 6.

a’> —a a—2_a2—a+a—2_a2—2

2 = -
) a+1+a+1 a+1 a+1
Addition directe car les deux fractions sont déja au méme dénominateur.
2 -7 2(z +2) (=7)(z —3) 2r+4—Tr+21
r—3 z+2 (x=3)(z+2) (x—3)(z+2) (x —3)(z+2)
—bx + 25 (=5)(x —5)

(x=3)(z+2) (z—-3)(x+2)
Dénominateur commun : (x — 3)(x +2) — produit de v — 3 et x + 2.
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p 2 LT 2 (-T)(x—3)  2-Tz+21
(z—-3)(x+2) z+2 (z-3)(z+2) (r=3)(z+2) (z-3)(xz+2)
—Tx + 23
(x —3)(x +2)

Dénominateur commun : (x — 3)(x +2) — ppme de (x — 3)(z + 2) et x + 2.

Opposé d’une fraction rationnelle

L’opposé d’une fraction rationnelle s’obtient en prenant I’opposé soit de son numérateur,
soit de son dénominateur.

Exemples

3 =3 3
1 _, = — = —
/ 4 4 —4

) 5 3
est l'opposé de .
> —3x+2 —a*+3rx—-2 2 —3r+2
-1  z2-1 2241
22 — 3z + 2
x? —1

2)

est 'opposé de la fraction rationnelle

Différence de deux fractions rationnelles

Pour soustraire une fraction rationnelle d’une premiere fraction rationnelle, on addi-
tionne a la premiere 'opposé de la seconde.

A C_A —C_AD B(C)_AD-BC
B D B D B-D B-D B-D
Exemples
1)3 1_3+—1_3+—2_3—2_1
4 2 4 2 4 4 4 4
Q)az—a a—2_a2—a+(—1)(a—2)_a2—a—a+2_a2—2a+2
a+1 a+1 a+1 at+1 a+1  a+1

Produit de deux fractions rationnelles

Pour multiplier deux fractions rationnelles, on multiplie leurs numérateurs entre eux et
leurs dénominateurs entre eux.

A C A-C
B D B-D
Pour multiplier un polynome par une fraction rationnelle, il suffit, comme pour ’addition,
d’écrire le polynome p(x) sous la forme @ et d’appliquer la regle ci-dessus.
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Exemples
2 4 2-4 8

3'5 3.5 15
r—3 -2 (z—=3)(x—2) a*—5x+6
z+1 z+1 (z+D(@+1) 22+22+1

2)

Inverse d’une fraction rationnelle

L’'inverse d’une fraction rationnelle est obtenue en inversant son numérateur et son
dénominateur (si le numérateur et le dénominateur sont différents de zéro).

A inverse B
B A
Exemples
3
1) 1 est l'inverse de 3
22 — 31+ 2 2 -1

2)

est linverse de la fraction rationnelle

2 —1 22 —3r+2°

Quotient de deux fractions rationnelles

Pour diviser une fraction rationnelle par une seconde fraction rationnelle, on multiplie
la premiere par I'inverse de la seconde.

3_A.C_AD_AD
& B'D B C B-C
Exemples
i3 1 3.7 2
2 45 5 20
2)i—j_x—?)‘x%—l_(x—?))(x—l—l)_x—?)
22 o+l x—-2 (e+D)(x—2) z-2

1.6 Symbole de sommation

Définition 1.14
Le symbole de sommation, noté a ’aide de la lettre grec 3, s’utilise pour désigner de
maniere générale la somme de plusieurs termes.

Soit n termes aq, as, ..., a,. La somme de ces n termes s’écrit de la maniere suivante a
I’aide du symbole de sommation :

a1+a2+...+an:Zak
k=1
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On appelle k£ l'indice de la somme. Il permet de décrire la maniere dont on somme les
éléments.

Le nombre se trouvant a droite de 1’égalité sous le symbole de sommation est la valeur
de départ de I'indice de sommation, ici 1, et le nombre au-dessus du symbole la valeur
finale de I'indice, ici n. La somme porte sur toutes les valeurs de k comprises entre ces
deux bornes (bornes comprises).

Le symbole de sommation permet donc d’écrire des sommes d’un nombre important de
termes de maniere précise et condensée sans utiliser les points de suspension.

L’indice de sommation peut étre utilisé pour décrire les termes de la somme de maniere
directe et les bornes sur I'indice de sommation peuvent avoir d’autre valeurs que 1 et n.

Par exemple, la somme des puissance de 2 comprises entre 6 et 27 peut s’écrire
27
> 2
k=6

au lieu de 2° 4+ 27 + ... 4+ 220 4+ 2%7,

Donnons d’autres exemples pour bien comprendre cette notation.

Exemples

~

8
. Zk:3+4+5+6+7+8:33
k=3

4
2. sz:21+22+23+24:30
k=1

Y (K-1)=1 -1+ -1+ -1)+#-1)=0+3+8+15=26

k=1
4> (B =1)=0+3+8+15+...+(n’ 1)
k=1
4
5. ) (k—1P=02-1P +3B-1°+(4-1°=1"+2°+3" =36

k=2

Proposition 1.3
Soient n € N*; zy,....2, €ER; y1,...,y, ERet a € R.

Le symbole de sommation possede les propriétés suivantes :

LY (@ntye) =Y a+ Yt
k=1 k=1 k=1
2. Za-xk:a-Zxk
k=1 k=1
3. Za:n~a
k=1

Ces propriétés du symbole de sommation découlent directement de 'associativité et de
la commutativité de ’addition ainsi que de la distributivité de la multiplication sur 1’ad-
dition.
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1.7 Principe de récurrence

Nous allons décrire ci-apres un principe qui nous permettra de démontrer certaines rela-
tions utiles pour la progression du cours.

Proposition 1.4 (Principe de récurrence)
Soit P(n) une propriété de l'entier n € N. On suppose qu’on a les deux assertions sui-
vantes :

1. P(0) est vraie (ancrage);
2. pour tout n € N, P(n) implique P(n + 1) (hérédité).
Alors P(n) est vraie pour tout n € N.

L’hypothese d’hérédité signifie que si P(n) est vraie alors P(n + 1) l'est aussi. Dans ces
conditions, on comprend bien que P(n) est vraie pour tout n. En effet, P(0) est vraie
par 'hypothese d’ancrage, donc P(1) 'est par hérédité, donc P(2) aussi pour la méme
raison, etc.

Exemple

A laide du principe de récurrence, nous allons démontrer la relation :
. n-(n+1)
1+2+3+... = E k= ——
+2+3+...+n 2 5

pour tout n € N*. Cette propriété dépend donc de n et pourrait étre désignée par
P(n), pour reprendre la notation proposé ci-dessus. On procéde en deux étapes :

1. Ancrage : La formule est vraie pour n = 1 :

212

1= — = OK.
2

Cette égalité est vraie et la relation est donc vraie pour n = 1 (autrement

dit : P(1) est vérifiée).
2. Hérédité On suppose que la formule est vraie pour n quelconque. On montre

alors qu’elle est vraie pour n+1.

n-(n+1

Hypothese : 1 +24+3+...+n = %

n+1)-(n+2)
2

On doit donc montrer la seconde égalité en s’appuyant sur la premiére. Pour
cela, on part du terme de gauche de la seconde éqalité et par une suite
d’égalités on essaie d’obtenir le terme de droite :

Conclusion : 1+2+3+...+n+(n+1)=
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“(n+1
1+243+...+n+(n+1) = %jL(nle)

Hyp::%m
n-(n+1)+2-(n+1)
2
(n+1)-(n+2)

2

Nous venons de prouver l’hérédité de notre formule : P(n) = P(n+1).

La formule :

N n-(n+1)
Zk_f
k=1

est donc vraie pour tout nombre naturel positif n par le principe de récurrence.

Remarque

Cette formule est a connaltre par coeur !
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1.8 Exercices

1) Placer chacun des nombres suivants dans la bonne ”"plage” (ne reporter que la lettre
correspondante) :

a=0 b=—1,2

c:% d:g

e=3,48 f=m

g="2 h=+/36 <:>Z Q|R]|C
i=vT =2

b= =2 I= 8

m = 2,999 n = 2,999

2) Ecrire en notation scientifique :

a) 14000000 b) 1,004 c) 0,000004
d) 0,00081 e) 143 f) 23,090

3) Indiquer la décomposition en facteurs premiers de 14’520, 10’725 et 9’126 ; déterminer
ensuite leur pgdc et ppme.

4) Supprimer les parentheéses inutiles :

a) (§)+2+(4~3)—1 b) (4-2)+5-(2+x)

i

¢) (+2)-(z—1)+@Bz2)—(x+2) d) (=372 (x—4)+(x+2)3

5) Simplifier les quotients suivants :
55 24 + 18 24 + 18 8+ 12
2 33 b5 ) —7 U 158

6) Additionner les fractions suivantes et simplifier :

4 1 4 9 6 3 1 3
242 b) =42 e 4 -+ 2
) 373 ) 5+3 ) svit3 ) 3+
3 4 4 9 3 5 4 11
2 4= ) 242 v 2 h) =4 =
) nts ) 5t 15 8 173 ) 57 12
)2 3 1 )6+ L2, 1 k)7+3 19
714 2 Vg T T3 o 8 42476
1) §+l_|_g H’l) l+2+§+1 Il) E+4_5+@+§
5710 3 16 378" 6 84 54 45 ' 56
) 54 140 65 119 ) 242 ) 243
O [— [ [ [
72733 117 189 V21 Vo
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7) Effectuer les multiplications suivantes :

o 495 475 s s ) 161 676 615 686
125 304 405 363 368 343 624 819
o 883 192 527 216 o (o). (1,7
279 289 882 128 6 10 11 4
8) Effectuer les divisions suivantes :
3 15 1212 60 30
— = — b) — =+ — — = —
RESYI ) 917 13 ©) 397 13
) 3600 | 2772 e) 9251 | 783 f) 9.7
4225 © 4433 5819 ~ 621 11~ 132
9) Effectuer les calculs suivants :
i 90 14 25 16
e y BE
140 T 245 72 360 175
T =T
225 616 1439
) %_3%0 f) % + % 1- 1;41
€) 10 100 — - T R
E 243 Ft%
53 125 35 203 204 255 252
) B0 .3 by 213 200 . 28 515 _
& "1T_1 T3 T 00 418 - 1173 813
273 3 1071 ~ 1197 1058 1334
1 1
i) —— = ... ) 3+ ——F=...
) 57 e 3% T
1+T’§ T 8 ' 40

10) Effectuer les opérations suivantes sans machine et donner les résultats sous forme de
puissances entieres positives. (m,n € N et a,b,c € RY)

a) 3*.37 b) 2°.7° c) (3%)*

d) 5%.5° e) 27427 f) 3%+43%+43°
g) 4°.8° h) 3°.2° i) 5-25°

j) 9-(3%)3 k) (9-3°%)° 1) 4%+ 43

m) 97+ 9 n) 8% +4° 0) a’-a°

p) b’ ¢ q (8™)* r) a®+a?

s) a-b”-(a-b)P° t) 2(ab®) - (3a%D) u) 2(ab®)? - (3a%b)
v) (2ab%)? - (3a%b) w) 2m.2" X) 2™+ 2" (3 cas)
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11) Effectuer les opérations suivantes sans machine et donner les résultats sous forme de
puissance entieres positives. (m,n,p € N% et a,b,c,z,y,z € R%)

a) 22"y’ Sry"z’ b) x?y(3x"y*" PP c) [(2%y) - (3z™y* 2P T3))?
d) (—ab™)* e) (—a)"™ (2 cas) f) Bamb"( )3

g) ((2a™)%a*)? h) (=22%°) - (2* +9°) 1) (=22°9°)° (2% + %)’
j) (2" T3a™) + 2"t k) a® = (a®™ +a™) ) (a®™ = a®™) +a™

12) Calculer mentalement : 322, 282, 21 - 19, 352, 65°.

13) Quel terme faut-il ajouter aux bindmes suivants pour les transformer en carrés par-

faits ?
a) 1+ 6z b) 4a*b* + 9 c) 16a* — 8a’y?
d) 2%+ bz e) 4b* + 922 f) 4a*b* — ab?

14) Développer et réduire le plus possible. Indiquer le degré du polynéme obtenu.
a) —xr’r? + 22° + 8% — 3xa? b) (z—2)-3x
c) (2% —3)(a? +4) d) (z—D(2*+z+1)

15) Compléter :

a) 2a(a+0b) —3b(a—10b) = b) 1—(x—1)+2Bzx—-1) =
¢) (x+2)(z+7)= d) (z—6)(z+38)=
e) (Bz+2)°= f) (52* —2)* =
g) (a*—3a)? = h) (—=7a®b+ 3ab*c)* =
i) ((a+b)—(c+d)*= i) (bx — Tay +3y)* =
k) (a®b*+c)- (a®b* —¢) = ) (2 —=b5x+1)*=
m) (a+a*) - (a—a®)-(a*+a°) = n) (z*—1)- (22 -1) (2 +1) =

16) A T'aide du triangle de Pascal établir la formule générale de (a + b)", n € N*,

Montrer que le nombre de grilles différentes possibles au jeu de la Loterie a numéros
est donné par le coefficient de a®*® du développement de (a + b)*.

Plus généralement, le nombre de sous-ensemble de k objets choisis parmi n est donné
par le coefficient de a*b"~* du développement de (a + b)™.

Montrer que le nombre de sous-ensembles d'un ensemble a n objet est 2.

17) Mettre en évidence le facteur commun :

a) 21st + Tt b) 5m + 15mn ¢) 22z — 33xy

d) 6ab — 12b+ 6bc e) 2ab + 4b* + 6bc f) 15a*b — 10ab + 5a
g) 152%y — 5xy + 102y h) 162%yz + 24zy2? i) a(c+d)+b(c+d)
) alz—y)—(z—y) k) r(a+2ab)—s(a+2ab) 1) z(z+y)—ay—y°
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18) Décomposer en produits de facteurs irréductibles :

a) y°2° — 3yz b) 1—8z+ 1627 c) 4x* — 9y?

d) 92° — 362 e) wy*+ 2y +x f) 5y° — 5y

g) 2* + 31 +2 h) y* 4 15y + 56 i) y*— 15y + 56

j) 2* — 21 —35 k) 22° + 14z + 24 1) 52%+ 152 — 50

m) z°+ xy + 22 + 2y n) 12y —16x+27y—36 o) 8z —4ay — 6 + 3y
p) 3z%y? —542® — 92%y  q) 366> — 100 r) b — bc?

19) Décomposer en produits de facteurs irréductibles :

a) Ta+ Tab— Ta® b) 4a* -1 c) a®—8

d) xz(a—1b)+3(a—0b) e) a®—3a*>+ 27— 9a f) 2°+52+6

g) a®—a+2a* -2 h) (22 —1)2=3(x*—1) i) a* +0b* — 24%°

i) (ma—=0+4(a+b) k) 1—2a%° ) a'+1-2a?

m) a®+a*+1+a n) 2a® —6a* + 6a — 2 o) a*+2ab— z*+b?
p) 2+ 2% — 6z q) a®—b° r) 2t — 22%°% 4+t
s) 2a* —4a—6 t) a®+1—-0b*—2a u) ax® —a

v) 2a+2b— (a+b)? w) 22% — Tz +3 x) (a* +b%)? — 4a?

20) Ecrire I'inverse des expressions suivantes :

1
a) x b) x—2 c) 3z d) g
3 ) 1
— f — h) 0
) ) 9 )
21) Simplifier :
4m3n? 5a + 5b b —b)?
2) 84m>n’p b) a+ ) a+a Q) (a—10)
35minp? Ta+ T 2ab b—a
22 +4x — 21 4a® — 9 522 + bry 8a’b — 16ab?
©) —=— b . 8) 55 5.2 h) oo —asp
x+7 10a — 15 3z? — 3y 12a%x — 48b%x

22) Simplifier le plus possible et effectuer :

2) xirx;l b) I1_03'x1—53

°) 7'I1+4y 4 (I+5)'x2+1gx+25
e) 2?53_% f) _%2+%

&) 21;+(e+12)2 b) 7x17y+7
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23) Effectuer et simplifier, s’il y a lieu :
a a a 2a
2.2 | e ——
a) 2+3 ) 5T F +a
2 a 1 1
£_2 d) =+ =
°) a 2 )a+b
4 1 20  4da
= .- F P
R v ) 3+3
1 1 rT+y xT—y
h _
8 31T o1 ) = 2
N 1 . 1
V3 1 V=i
2 3 1 2a
k 1 —
) x+2+x—3 ) a+b a®—b?
2 1 4 3r—2y 4dy+2x 22y —9x
R s R it ) 5 15
o) 6 5 2 ) 2c 8 +§
rx(3x—2) 3x—-2 a? P2 @t a
24) Effectuer et simplifier, s’il y a lieu :
) 4z n 8 +2 b) 122 3 +5
a — J— —
3r—4 322 —4x =z 20 +1 22242 «x
3a+2b 2a®—20* 2a+3b a—>b 3a? a
c) + - d) - +
a ab b az—b B+ a?—ab+ b?
x(14+y) z—y 1 x—y 1 xy
— f
°) o gl g ):):2—:):y+y2 x+y+x3+y3
) 20+ 1 6z n 3 ) 2 1 4
& 2 +4r+4 22-4 -2 r—2 x+2 122-4
) 2x + 6 n 5%5 L 7 i 3z T 4z
1 J— —
21 62+9 22-9 13 Y 9 5 2x+5 412—_25
K) 16x n 5 _x—4 ) 3—617_ 2+ 5z
20 +8 224+ x—-12 x-—3 A2 — 1 42?2+ 42+ 1
dx? —4x 2?2+ 32— 10 81 —54x 4+ 922 222 —6x+4
m) - n) -
2+ —2 3 — 4x 322 — 152+ 18 422 — 8z +4
1 5 2
) a3 3 ) o1 T 243
i_ P T
T z+1 +3
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25) Simplifier le plus possible et effectuer :

3(a2—b?)  10c
5bc 9(a + b)
a’® —4r*  a® = 2ax
a? +4ax ~ ax + 422
3a’b? — 6b%c
— 4a?c + 4¢?

a)

c)

)

26) Simplifier :
Tty _ z—y
Y Tty
a) m
T4y T—Yy
a—1 + m
4
a—2 + a8
23443
z2—y2
e) x2—xy+y2
Ty

c)

27) Lequel de ces calculs est correct ?
a) 6+3-2=9-2=18
b) 4+5-(6+3)=4+45=49
c) 13-44+5=9+5=14

d) 2+10-17—-7=12-10 =120

e) 6+5=2=8
)

f

5:249—4(2+5)=19—28 = —

a> — x> a®>—b N ax
a+b ax -+ x? “ a—x

(2723 — 8y%) (x — 4y)

22(3x — 2y?)
a?+ab+b* -0
a® + b3 a? —ab + b?
x+y+%
.CB2
x+y+7
2 z3
14 -
T —a
=
abe azl 4 b1 el

bc 4+ ac — ab

6+3-2=6+6=12
445-(6+3)=9-9=281
13-44+5=13-9=4
2410-17—-7=2+4170— 7 = 165
6+45 =6+5=11
5:2+9—4(2+5)=55—-28=27

28) Ecrire les expressions suivantes en termes algébriques :

a) l'entier suivant le nombre entier n

le triple du nombre n

I'inverse de

b)
)
)
) un nombre pair
)
)
) T'opposé de x

c
d
e
f) une puissance de 2
g
h

le double de 'entier précédant le nombre entier n
le produit de deux nombres entiers consécutifs

i) le double du carré de l'inverse de 'opposé de l'entier précédant le quadruple du

nombre entier n
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29) Associer la bonne description aux expressions algébriques :

rT+y est un produit

2 —y? est le double du carré d'une somme

2(x +y)? est le carré du double d'une somme
(r —y)? est la somme des carrés

xy est le carré d’'une somme
(z +y)? est une somme
(x —y)(z+vy) est le carré d’une différence
2xy est la différence des carrés
(2(x +y))? est un double produit

2?2 + 12 est le produit d’'une somme par une différence

30) Rendre rationnel le dénominateur des fractions suivantes :

o) VE+5 b) Vt—4 0 81x2 — 16y> Q) 1622 — 3
Vt—5 Vi+4 3VE — 2y 2V —\/J
31) On donne les valeurs de z1,...,x7 et ny,...,ny dans le tableau ci-dessous.
Indice ¢ | Valeur de z; | Valeur de n;

1 0 1

2 1 1

3 2 2

4 3 )

5 4 7

6 5 8

7 6 2

Avec des données ci-dessus, calculez les expressions suivantes :
5 6 4 4 4
i=2 k=1 i=1 '

32) Démontrer :

a) 1+4+49+.. . +n°=) k=

k=1
1 1 1 "1 1
l+=-+=-+... +—= — =2 —
c) totgtetm o7 5

1 n
d -
) ;4/&—1 2n—+1

(k+1)(k+2)—4 n?
°) Z (k+1)(k+2)  n+2

k=1
n

1 n
b Z(Sk—2)(3k+1) T 3n+1

k=1
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g) n(n+1)(n+ 2) est divisible par 6 ¥n € N.

h) 7" 4+ 2 est divisible par 3 Vn € N.
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1.9 Solutions des exercices

2) i) 1,4-107
1) 8,1-1074

3) 14’520 =23-3-5-11%2, 10’725 = 3 - 52
pgdc = 3, ppme = 23 - 33 - 52 . 112 . 132

3
4) a) S 424431

¢) (x4+2)-(z—1)+3-z—(x+2)

5
5 — b) 7
) a) 5 )
5 8
2 ° 2
6) a) 3 b) 3 c)
19 49 4
g) 3—2 ) % ) ;
N
g D °) 54
3 3
7) a) 3 b) 1
1 1
8) a) R b) -
29 108
T =
9 7
1 = !
9) a) b) 50 c) 3
513 2
g) 3 h) 230 i) -

i) 1,004
m) 1,43

10°
102

k) 4-107°
n) 2,3090 - 10!

11-13, 9126 = 2 - 33 . 132

b) 4-2+5-(2+x)
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10) a) 3" b) 14° c) 38 d) 5° e) 2° f) 3°
g> 221 h) 66 23 1) 513 J) 317 k) 321 1) 218
m) 3° n) 28 o) a! p) (b-c)® q) 2™ r) a®
s) a®- b t) 6a’b u) 6a°0Y  v) 24a°0Y  w) 2™t
om=n sim>n
X) 1 sim=n
127" sim<n
11) a) 10xn+1yn+3z5 b) 9x2n+2y4n+lz2p+6 C) 9$2n+4y4n+222p+6
d) a4b4n e) a” si n pair f) 3ambn+15c3m
—a sl n impair
g> 64a6m+8 h) _2x7y3 1) _8x19y12
,]) xn+2 k) aﬁm 1) a4m
12) 322 =1024, 28% =784, 21-19=1399, 35%=1225, 65%=4225
13) a) 2 +62+9 b) 4a’b* + 9+12ab? c¢) 16a* — 8a’y*+y*
b? 1
d) 2%+ but—- e) 4b* + 92'24+12b%z° f) 4a?b* — ab2+1—6
14) a) 2%+ 52°, deg=6 b) 32 — 67, deg= 2
¢) x4+ 2% — 12, deg=4 d) z° -1, deg=3
15) a) 2a® — ab + 3b* b) bx
¢) x*+9x+14 d) 2?42z —48
e) 92°+ 12z +4 f) 252% — 202% + 4
g) a® — 6a® + 9a* h) 49a*V? — 42a3b*c + 9ab°c?
i) a®+b* + 4 d* 4 2ab + 2cd — 2ac — 2ad — 2bc — 2bd
j) 492y — 702y + 2527 + 302y — 4227y + 9y
k) aS® — c? 1) z*—102° +272% — 102 + 1
m) a* — a*? n) o — 2z +1
17) a) Tt(3s+1) b) 5m(1+ 3n) c) 11z(2 — 3y)

d) 6b(a—2+c¢)
g) bry(3z — 1+ 2y)
i) (a=1)(z —vy)

e) 2b(a+ 2b+ 3¢)
h) 8zyz(2x + 32)
k) a(1+2b)(r—s)
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18) a) yz(y?z* —3) b) (1 —4z2)? c) (2 + 3y)(2z — 3y)
d) 9z(x + 2)(x — 2) e) x(y+1)> f) by(y+ 1)y —1)
g) (z+1)(z+2) h) (y+7)(y+38) ) (y="7)(y—28)
i) (@=17)(z+5) k) 2(z +3)(z+4) ) 5(z+5)(x—2)
m) (x+y)(z+2) n) (4o +9)(3y —4) o) (4z —3)(2x —vy)
p) 3*(y —6)(y + 3) q) 4(3b+5)(3b—5) r) b(b+c)(b—c)
19) a) Ta-(b—a+1) b) (2a+1)-(2a—1) ¢) (a—2)-(a®+2a+4)
d) (x+3)-(a—Db) e) (a—3)*(a+3) f) (x+3)-(x+2)
g) (a+2)-(a+1)-(a—1) h) (z+1)-(z—-1)-(x4+2)(x—2)
i) (a+0)*-(a—b)? j) (a+b)-(24+a+b)-(2—a—-0)
k) (14+zy)-(1—zy) ) (a+1)*(a—1) m) (a+1)-(a*+1)
n) 2(a—1)> o) (a+b+=z)-(a+b—z) p) z-(r+3)-(x—2)
qQ) (a+0b)-(a—0b)-(a*—ab+?) - (a* +ab+ b?) 1) (z+y)? (z—y)?
s) 2-(a—3)-(a+1) t) (a+b—1)-(a—b—1)
w a-('+1)-(@*+1) - (z+1)-(z—1) v) (a+b)-(2—a—b)
w) (22 —1)(z — 3) x) (a+0b)*(a—b)?
1 1 ,
20) a) - b) o c) 3 d) z
) 2 n L 5 — h) —-
12n 5) 1+0
21) a) S b) = c) 5 d) b—a
2a 4+ 3 5% 2ab
¢) ¢-3 h = T pr— b St
1 3 T+y T
2) &) o b3 ) = ) 55
¢) 8 £ — ) (e—1)e+2) h) x‘;y
5a 14a (2+a)(2—a) a+b
23) a) 5 b) 1 c) o d) 7
7 T
°) 3 ) 2 ® Grne-n MY
N1 L 2—x S5z 1
U 15 i b eoe-y Y.

page 38



Mathématiques, MAB 197 année 1. Notions fondamentales
) 1 ) 1 ) 52° + 4 ) 2z —1
m n) —r—- 0)
a+2 T 3Y 22(3z — 2) P x
2(2z + 3) 23z +1) b—a
24 b 0 d
) 2 3r—4 ) x °) ) a? —ab+ b2
1 22 r+5 1
f e h
e) 1 ) 23+ 43 8) (x 4+ 2)? ) x—2
, 14z + 15 . dx(x +4)
i) j)
(x+3)(x—3) (2z —5)(2z +5)
Tr? — 247 + 21 —1lz -5
k) ) ——
(x+4)(x —3) (2z +1)2
4a? —x —5 5% — 20z + 14
m) ——— n)
z(r +2) 2(x —2)(x —1)
0) z(3z + 5) ) 222 + Tx + 15
(z +2)%(z — 2) P 10+ 7
2(a — b) a*(a —b) z(a + 2x)
25 h) —— T
) a) — ) — ) —
) (z — 4y) (922 + 6xy? + 4y*) 0 302 f) 1
2z a? —2c a? — b?
2y Y a’ —9a + 16 r—1
26 — b) = —_—
) ) x? 4+ y? ) x °) a? — 10a + 20 ) x2
2? — a? 1+a?
1 f) —— h) 1
°) ) 2ax + br — ab &) 1+a )
i) a j) 1
28) a) n+1 b) 3n c) 2(n—1) d) n-(n+1)
1
e) 2n f) 27 g) — h) —=x
x
1 2
2
2 <1 — 4n)
29) r+y —> estune somme
22 —y? —  est la différence des carrés
2(x +y)? — est le double du carré d'une somme
(r —y)? — estle carré d'une différence
ry —> est un produit
(r+y)? — estle carré d'une somme
(x —y)(x+y) — estle produit d'une somme par une différence
2xy —  est un double produit
(2(z +y))*> — estle carré du double d'une somme
22 +y?> — est la somme des carrés
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30) a) t+i5_+2;)0\/% b) t+t1€i—168\/z_f
) (97 +4y) - (3vx +2/y) d) (4z+y)- (2Ve+/Yy)
31) a) 10 b) 24 c¢) 20 d) 54
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Chapitre 2

Equations

2.1 Généralités

Définition 2.1
Une équation est une égalité dont I'un ou les deux membres sont des expressions littérales
contenant une ou plusieurs lettres et des nombres.

Une lettre utilisée dans Iécriture d’une équation est une inconnue (ou une variable) des
le moment ol on s’intéresse a en déterminer la valeur pour que 1’égalité soit vérifiée. La
ou les inconnues sont généralement désignées par les lettres z, y ou z.

Exemple
1) 2> —5 = 4z : équation a une inconnue x.
S—— ~~
membre de gauche membre de droite

2) 4y — 1 =z : équation a deux inconnues x ety si on cherche a déterminer leur
valeur.

3) x+y =0b: équation a deux inconnues x ety si on cherche a déterminer leur
valeur et la lettre b représente une valeur fize.

Définition 2.2
Pour les définitions suivantes, on considere le cas d'une équation en une inconnue notée
x.

1) Un nombre a qui vérifie I’égalité quand il est substitué a l'inconnue z est appelé
solution ou racine de I’équation. On dit alors que a vérifie ou satisfait I’équation.

2) Une équation est résolue lorsqu’on a déterminé toutes ses solutions. La recherche de
ses solutions se nomme la résolution de 1’équation (on dira généralement ”résoudre
une équation”).

3) Toutes les solutions d'une équation forme ’ensemble des solutions, généralement
noté S. On énumérera parfois ces solutions en écrivant x; = ..., 1o = ..., T3 = ...,

Ces définitions peuvent s’étendre aux cas d’équations a plusieurs inconnues.

Exemple
5 est solution de l’équation x* —5=4x car 5> —5=20 et 4-5=20 .

Une autre solution de cette équation est —1 car (—=1)>—5=—4 et 4-(—=1) = —4 .

L’ensemble des solutions de cette équation est : S = {—1;5}.
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Définition 2.3
Deux équations équivalentes sont deux équations qui ont exactement le méme ensemble
de solutions.

Exemples
1) Les équations x —5 =8 —x et bxr = 32,5 sont équivalentes. Leur
ensemble de solutions est S = {%}

2) Les équations 10 —2y=vy>+y et 3> +3y—10=0 sont équivalentes.
Leur ensemble de solutions est S = {—5;2}.

3) Les équations Hxr =15 et 5x*> =15z ne sont pas équivalentes car 0 est
une solution de la deuziéme équation sans en étre une de la premiére.

Regles d’équivalence

Les regles suivantes permettent de transformer une équation en une équation équiva-
lente :

permuter les deux membres de 1’équation,
- effectuer du calcul littéral dans I’'un ou 'autre de ses membres,

- additionner (ou soustraire) un méme nombre, un méme monéme ou un méme
polynome aux deux membres de I’équation,

- multiplier (ou diviser) les deux membres de ’équation par un méme nombre
non nul.

Dans la pratique, on utilisera souvent une suite de transformations équivalentes sur
I’équation a résoudre afin d’obtenir une équation équivalente ou I’ensemble des solutions
est plus facile a déterminer.

Exemple

Pour résoudre l’équation 4(x + 2) = 9z — 12 + x, on peut procéder comme suit :

4(x+2) = 92 —12+ x| calcul littéral (CL)
dr+8 = 10z —12 +12 (ajouter 12 auzx deux membres)

4r 420 = 10z —4z (soustraire 4x auzr deur membres)
20 = 6bx permuter les deur membres
6x = 20 +6 (diviser les deuxr membres par 6)
r = Y

3

L’ensemble des solutions de toutes ces équations équivalentes (en particulier de
Iéquation de départ) est donc : S = {%}
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Remarques

Attention! Si on multiplie ou on divise les deux membres d’une équation par I'inconnue
ou par un polyndome, on peut obtenir une équation non équivalente a la premiere. On
peut supprimer ou ajouter des solutions.

— Si on multiplie les deux membres de I'équation —*5 = ﬁ par le polynéme x — 2, on
trouve I’équation x = 2. La deuxieme équation admet comme ensemble de solutions
S = {2} et la premiére S = () — En substituant 2 & = dans la premiere équation, on
obtient une division par 0. On a donc ajouté la solution égale a 2.

— Si on divise les deux membres de I’équation z?> = z par le monéme z, on trouve
I'équations x = 1. La deuxiéme équation a comme ensemble de solutions S = {1} et la
premiére S = {0; 1}. On a perdu une solution égale a 0.

Dans la pratique, on se permettra tout de méme de réaliser ces transformations dans

certaines résolutions mais il sera alors nécessaire de tester les solutions obtenues dans

I’équation de départ (en substituant ces solutions a l'inconnue, voir exemple au para-

graphe a complter).

Définition 2.4
On appelle zéros ou racines d’un polynéme p(x) les solutions de I’équation : p(z) = 0.

Si le nombre réel a est un zéro du polynéme p(z) alors p(a) = 0.

Exemple

2 est un zéro du polynéme p(x) = x2 —4 car 2 est solution de I’équation z* —4 = 0.
De plus, p(2) = 2% —4=0.

Dans la suite de ce chapitre, nous ne traiterons que des équations a une inconnue. On
désignera cette inconnue par la lettre x.

2.2 Equations du premier degré

Définition 2.5
Une équation du premier degré a une inconnue est une équation équivalente (qui
peut étre mise sous la forme) a I’équation :

ar+b=0 (2.1)

oua,beRetas#0.

Remarque

Dans une équation du premier degré, I'inconnue apparait seulement a la puissance 1. On
utilisera cette caractéristique pour identifier une telle équation.

Exemples
1)3x—2=0
2) 4 —3=8r—T7+2zx—1
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Solution

L’équation (2.1) possede une unique solution : z = ——.
a

Une équation du premier degré est rarement donnée sous la forme (2.1) et sa solution ne
peut donc pas étre donnée immédiatement comme ci-dessus. On utilisera alors les regles
d’équivalence pour résoudre une telle équation.

2.2.1 Principe de résolution

Marche a suivre pour résoudre une équation du premier degré :

1. réduire les polynomes figurant dans chacun des deux membres,

2. 7passer” les termes en z dans un des membres et les termes constants dans
lautre en utilisant la regle d’addition — obtenir une équation de la forme
axr = b,

3. isoler (on dit aussi expliciter) x en divisant les deux membres par a — obtenir
rT=...

Il arrive qu’une, ou plusieurs, de ces étapes soient inutiles ou que d’autres méthodes soient
plus avantageuses, selon les cas.

Exemple

Résoudre : dx +2 — (1 —z) =3z +4 — x.

dr+2—-(1—2) = 3x+4—a|CL (réduire les deux polynomes)
bx+1 = 2x+4 —1
Sr = 2x+3 —2x
dr = 3 =3
r =1

L’ensemble des solutions est : S = {1}.

2.3 Equations du deuxieme degré

Définition 2.6
Une équation du deuxiéme degré a une inconnue est une équation équivalente a
I’équation :

az® +br+c=0 (2.2)

oua,b,ceRetas#0.

Remarque

Dans une équation du deuxieme degré, I'inconnue apparait a la puissance 2 et éventu-
ellement a la puissance 1. On utilisera cette caractéristique pour identifier une telle
équation.
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Exemples

1) 322 —=2r+1=0
2) 4lx —2)? =22 —1

2.3.1 Résolution par factorisation

Proposition 2.1

Soit p(z) un polynéme et a(x), b(x), ..., m(z) des polyndmes tels que p(z) = a(z) - b(x) -
-m(x) : une factorisation de p(x).

L’ensemble des solutions de 1’équation

p(z) =0 ou (équivalent) a(xz)-b(zx)-...-m(x) =0

est égal a la réunion des ensembles de solutions des équations :

a(x) = 0,
b(z) = 0,
m(x) = 0.

Cette proposition découle immédiatement du fait qu’un produit de plusieurs facteurs est
nul si et seulement si au moins un de ces facteurs est nul.

En se fondant sur cette proposition, on peut résoudre certaines équations du deuxieme
degré en devinant une factorisation du membre de droite ou de gauche de 1’équation
(un polynome de degré 2) si le membre de gauche, respectivement de droite, est égal a
0. On utilise les techniques vues au chapitre (1.4.3) pour déterminer une factorisation :
mise en évidence, identité remarquable, ...

Exemples
1) Résoudre : x> 4+ 5x = 0.

En mettant x en évidence, on obtient [’équation équivalente :
z(x+5)=0

D’ou les 2 équations a résoudre :
* 1 =0
*x+5=0— 129 =-5
En conséquence : S = {0; -5}
2) Résoudre : x? — 2x — 24 = 0.
En devinant une factorisation du membre de gauche, on obtient [’équation
équivalente :
(x+4)(x—6)=0
D’ou les 2 équations a résoudre :
*r+4=0—72 =—4
¥ —6=0—22=0

En conséquence : S = {—4;6}
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3) Résoudre : x* = 3.

Cette équation est équivalente a l'équation x° —3 = 0. En utilisant une identité
remarquable, on devine une factorisation du membre de gauche :

(+v3)(x—v3) =0

D’ou les 2 équations a résoudre :
*r4+V3=0—1z=—-V3
*1—V3=0—19=13

En conséquence : S = {—\/g; \/g}

Remarque

Attention! L’équation de I'exemple 3) possede deux solutions : #+/3. Ce résultat est
vrai pour toutes les équations du type 22 = a avec a > 0, qui admettent comme solutions
les nombres ++/a. Il faut prendre garde a ne pas oublier la solution —/a!!!

2.3.2 Résolution a ’aide d’une formule

Proposition 2.2
Soit I’équation du deuxiéme degré az? +bx +c = 0 avec a # 0. On appelle discriminant
de cette équation le nombre :

A = b — dac

Le nombre de solutions de I’équation dépend du signe de A :

—b+ VA —b— VA

et Ty = ——7——)|

- si A > 0 : deux solutions distinctes : |xz; =
2a 2a

—b

- si A =0 : une solution double : T = 5 |
a

- si A <0 : pas de solution réelle (S = 0).

Démonstration. Soit I'équation ax? + bz + ¢ = 0 avec a # 0. On transforme le membre
de gauche par une suite d’égalités :

ax® + bx + ¢ = a-<x2+—x+—)

id. rem.

Comme a # 0, ’équation
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est équivalente a I’équation de départ. La suite de la résolution dépend du signe de btfzac.

Le dénominateur, 4a?, est toujours positif et le signe du numérateur, A = b —4ac, dépend
des valeurs de a, b et c.

Si A>0: ily a deux nombres dont le carré est %.
o\ . Vb2 — dac —b+ VA
* Premiere solution: 2 + — = ——— — 1 = —.
2a 2a 2a
) Vb2 — dac —b— VA
* Seconde solution : vt + — = ————— — By = ————.
2a 2a 2a

Si A=0: le membre de droite de I’équation vaut 0.

b
* Une solution double : v + — =0 — 21 = —.
2a 2a
b2—4

Si A <0: le membre de droite de I’équation est négatif : *—5* < 0.

b 2
* Pas de solution réelle : <x + 2—) < 0.
a

Principe de résolution

Marche a suivre pour résoudre une équation du deuxieme degré :

1. réduire les polynomes figurant dans chacun des deux membres,

2. 7passer” tous les termes en x dans un des membres en utilisant la regle d’ad-
dition — obtenir une équation de la forme ax? + bz + ¢ = 0,

3. appliquer la formule de résolution ou deviner une factorisation pour obtenir la
ou les solutions.

Exemple
Résoudre : 2+ (x — 3)*> =2? —3- (3z — 5) + 1.

2-(x—3)* = 22—3-(3x—5)+ 1| CL (réduire les deuz polynomes)
202 — 12x +18 = 22 —9x+ 16 —(2? — 92 + 16)
?*—=3z+2 = 0

On applique la formule de résolution des équations du deuxieme degré avec a = 1,
b=—-3etc=2.

— Calcul du discriminant : A = (=3)2 —4-1-2=1.

- A >0 : 2 solutions distinctes :

—(=3) + V1 _

* = 2
o 21
—(=3) = V1
:—:1
* 2 2.1

— Ensemble des solutions : S = {1;2}.
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2.3.3 Factorisation d’un polynéme de degré 2

Il est possible de factoriser directement un polynome de degré 2 si on connait ses zéros,
sans devoir tatonner.

Proposition 2.3
Soit p(x) = ax? + bx + ¢ un polynome de degré 2 avec a # 0 et le nombre A = b? — 4ac,
le discriminant de 'équation p(x) = 0.

Si A >0 : le polynéme p(x) possede deux zéros distincts z; et xo et on peut écrire :

p(r) = a(z — 1) (x — x5)

Si A =0 : le polynome p(x) possede un zéro double z; et on peut écrire :

2

p(r) = a(z — 1)

Si A <0 : le polynéme p(z) ne possede pas de zéro et on ne peut pas le décomposer en
un produit de deux facteurs du premier degré.

Remarque

Attention! Lorsqu’on utilise cette proposition pour factoriser un polynome de degré 2,
il ne faut pas oublier le coefficient dominant comme premier facteur!!!

Démonstration. Soit p(x) = ax?+bx+c un polynome de degré 2 avec a # 0. On considere
ici uniquement le cas A = b?> — 4ac > 0. La démonstration des autres cas est laissée au
lecteur.

Lors de la démonstration de la formule de résolution des équations du deuxieéme degré,

on a vu que ax’ +br+c=a-

b\? b —dac .
r+— ) ————|. Comme A > 0, on peut utiliser
2a 4a?

les identités remarquables et obtenir :

b\> b —dac b A b A
a- (x—l-%) —T] = a- <m+%—%> : <x+%+2—\/a_>
. _<$_ —b+\/K> _ ( - —b—\/K>_
2a 2a
= a (_:c—xl)-(x—xg) _
U
Exemple
Le polynome de degré 2, p(x) = 22 + bx — 3, posséde deux zéros : v, = % et

To = —3. On peut donc écrire la factorisation :

p(x):2~($—%)~($+3):(2x—1)($+3)
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2.3.4 Formules de Viete

Théoreme 2.4
Si p(z) = az® + bx + ¢ est un polynoéme du deuxieme degré avec a # 0 qui admet deux
zéros distincts x; et x4 alors :

1+ = —
Formules de Viete

Ty - T2 =

Q|0 Qo

Démonstration. Soit p(x) = ax? + bx + ¢ (a # 0) un polynéme du deuxieme degré avec
deux zéros distincts x; et x9. On peut écrire que

ar’ +br+c=a-(x— 1) (x—29) = ar® — a(xy + 22)2 + az 29

Par identification des coefficients :

— z* . a = a ,
— x b = —a-(r1+x2) (1),
— 1 ¢ = a- 1129 (2).
De I’équation (1), on tire que x1 4+ x5 = —g et, de I'équation (2), que zyz9 = g. O

On pourra utiliser ces formules de Viete pour deviner les zéros d’un polynome du deuxieme
degré et ainsi déterminer une factorisation de ce polynome.

Exemple

Les racines de x> — 5x + 6 sont, d’apres les formules de Viéte, deux nombres dont

-5
la somme est ——— =5 et le produit 1= 6. En tatonnant, on trouve que ces deux
nombres sont 2 et 3.
On peut donc écrire que : 2> —bx +6=1-(x —2) - (x —3) = (x — 2) - (x — 3).

2.4 Equations bicarrées

Il existe un type particulier d’équations de degré différent de 2 qu’on peut résoudre a
I’aide de la formule vue au paragraphe précédent.

Définition 2.7

Une équation bicarrée a une inconnue est une équation équivalente a I’équation :
az® +bx" +c=0 (2.3)

oua,b,c e R, a+#0etneN.

Exemples

1) 42° +22% — 6 = 0 : équation bicarrée avec n = 3.

2) =221 —72° + 1 =0 : équation bicarrée avec n = 5.
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2.4.1 Principe de résolution

Marche & suivre pour résoudre une équation bicarrée (équation 2.3) :

1. poser t = a" et substituer — on obtient I’équation du deuxieme degré
at?> + bt +c =0,

2. trouver les solutions t; et ty (si elles existent) de cette équation a I'aide de la
formule de résolution ou d’une factorisation,

3. résoudre les équations z" = t; et " = t5 (inconnue : x).

Exemple

Résoudre : 4a* 4+ 1122 — 3 = 0. On reconnait une équation bicarrée avec n = 2. On
pose alors t = 2% et on substitue pour obtenir :

42 +11t—-3=0

On peut résoudre cette équation a l’aide de la formule de résolution des équations
du second degré avec a =4, b= 11 et c = —3.
— Calcul du discriminant : A =112 —4 -4 - (=3) = 169 = 132,
- A >0 :2 solutions distinctes :
—11+169 —11+13 1

x t — —_ —
! 24 8 4
—-11—-+v169 —11-13
* t2 = = = -3
2-4 8
Pour la derniére étape, on utilise la relation entre x et t pour poser les équations :
1 1 1 1 1
* 22 =t — 2> =-.D lutions : 11 =/~ = = et Ty = —/ ~ = —=
x 1 x 1 Deus solutions : z, 1= et 1 5
* 12 =ty — 12 = —3. Pas de solution : un nombre élevé au carré ne peut pas

étre négatif.

L’ensemble des solutions est : S = {—1:1}.

2.5 Equations polynomiales

Définition 2.8
Une équation polynomiale de degré n a une inconnue est une équation équivalente a
I’équation :

p(x) =0 (2.4)
oll p(T) = apx™ + ap 12" + ap_22™ 2 + ... + ax? + a7 + ag est polyndome de degré n
(avec a, # 0).

Remarque

Dans une équation polynomiale, I'inconnue apparait élevée a une ou plusieurs puissances.
La puissance la plus élevée nous donne, en principe, le degré du polynome p(x). On
utilisera ces caractéristiques pour identifier une telle équation.
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Exemples

1) 22% — 42 +2 = 0 : équation polynomiale de degré 3.
2) 8zt — 322 4+ 2 = 72 + 92 — 2x : équation polynomiale de degré 5.
3) bad —22% —x + 1 =53 — 3 : équation polynomiale de degré 2.

2.5.1 Division euclidienne
Rappel

La dwision euclidienne d’un nombre naturel ¢ par un nombre naturel b a été étudiée a
I’école secondaire. Par exemple, pour diviser 535 par 6, on suit le schéma suivant :

) 6

89

=~ ot
co W

©
©

O‘lO‘l‘
= o

ol 89 est le quotient de la division et 1 le reste. Plus généralement, pour a et b, on
obtient :
a=0b-q+r

ou a est appelé le dividende, b le diviseur, q le quotient et r le reste qui doit étre le plus
petit nombre positif ou nul possible.

A partir de la "méme” idée, on va pouvoir diviser deux polynomes en faisant apparaitre
un reste et un quotient.

Définition 2.9
Diviser un polynoéme p(z) par un polynéome d(x) a l'aide d’une division euclidienne
revient a chercher des polynomes ¢(z) et r(x) tels que

p(x) = d(z) - q(z) + r(z)
avec deg(r(z)) < deg(d(x)).
On appelle p(z) le dividende, d(z) le diviseur, ¢(z) le quotient et r(z) le reste.

Pour réaliser cette division, nous allons utiliser ’algorithme de division ci-dessous
illustré par un exemple.

Pour diviser p(z) = 6x* + 42® — 72? + 3 par le polynéme d(x) = 22? — 1, on part du
tableau suivant :
6zt + 43 — Ta? + 3| 222 -1

On place a gauche le dividende en laissant un espace vide pour les puissances de x
"absentes” dans le polynome et a droite le diviseur.

On suit ensuite les pas de ’algorithme :
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1) Déterminer le monoéme m(z) par lequel il faut multiplier le terme de plus haut degré
du diviseur, ici 222, pour obtenir le terme de plus haut degré du dividende, ici 6%
— Réponse : m(z) = 322

2) Reporter m(x) dans la partie réservée au quotient (sous le diviseur).

3) Multiplier d(x) par m(z) et reporter le résultat sous le dividende en respectant les
puissances de x —» Produit : 322 - (222 — 1) = 62? — 322

4) Soustraire ce produit du dividende pour trouver un polynéme s(z) — Différence :
s(x) = (62 + 42 — T2 + 3) — (62" — 322) = 4a® — 422 + 3.

5) - Si deg(s(x)) < deg(d(x)) : stop!

- Sinon : recommencer en 1 en prenant s(z) comme "nouveau” dividende.

On obtient alors :

62t + 43 — Ta? + 3| 222 -1
e 62* — 3a? 322 + 21 — 2
43 — 4x? + 3
e 428 — 2x
— 42% + 22 + 3
O — 4a? + 2
2 + 1

La derniere ligne de gauche fournit le reste et la ligne sous le diviseur le quotient. On a
ainsi :
62! +42° —72* +3= (20" —1)- (32® + 20 — 2) + 2z + 1)
—_———— — N —

~
dividende diviseur quotient reste

Définition 2.10
Un polynéme p(x) est dit divisible par un polynéme d(z) si le reste de la division de
p(z) par d(z) vaut zéro.

Remarque

Si le polynome p(x) est divisible par le polynéme d(z), il existe un polynoéme ¢(z) tel
que :

p(z) = d(z) - q(x)
On peut donc écrire p(x) comme le produit de 2 polynéme. On obtient alors une facto-
risation de p(x).

Proposition 2.5

Si p(z) est un polynéme de degré n et d(x) un polynome de degré m, le quotient de la
division de p(z) par d(x) est un polynome de degré n — m et le reste un polynéme de
degré inférieur a m.

Il découle de cette proposition que le reste de la division d'un polynome de degré quel-
conque par un polynome de degré 1 est de degré 0, donc un nombre réel.
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Théoreme 2.6
Le reste de la division d’un polynéme p(z) par le polynéome x — a vaut p(a), avec a € R.

Démonstration. Si q(x) est le quotient et r (un nombre réel!) le reste de la division de
p(z) par x —a, on a :
p(x) = (x —a)-q(z) +r
En remplagant x par a, on obtient p(a) = (a — a) -q(a) +r = r. O
T

I1 découle du théoreme précédent et de la définition de la divisibilité le théoréeme suivant :

Théoreme 2.7
Soit p(z) = apx™ + ap_12""
équivalentes

L4 ..+ a1z + ag. Les trois propositions suivantes sont
1. a est une solution de I’équation p(z) = 0,

2. a est une racine de p(x),

3. p(x) est divisible par x — a.

avec a € R.

Exemple
Divisons p(x) = x* — 32% 4+ 222 — x + 2 par d(z) = x — 2 a Uaide de lalgorithme de
diwvision.
ot — 323 + 222 —x + 2 | x—2
e 2t — 223 2 —a? -1
— 2+ 22 — x4+ 2
O - 23 + 222

—x + 2
O —-—x+ 2

On obtient alors :
vt =323+ 22 —x+2=(2—2)- (2* — 2% - 1)

Ainsi, p(x) est divisible par x —2 car le reste est nul. 2 est donc une racine de p(z),
ce qu’on peut facilement vérifier : p(2) =21 —-3-23+2-22 -2+ 2 =0.

2.5.2 Schéma de Horner

Le schéma de Horner s’avere souvent tres utile lorsqu’on désire :
— diviser un polynome p(x) par le polynome x — a,

— évaluer un polynome p(x) en a.

avec a € R.

Nous allons illustrer I'utilisation de ce schéma de Horner par un exemple.

On désire diviser le polynome p(x) = 22* — 323 — 222 —5x+4 par le polynéme d(z) = z—2.
On pourrait utiliser ’algorithme de division et trouver que :

20t — 323 — 22 —Sr+4=(r—-2)-(22° +2°—-5) -6 (2.5)
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On peut également partir du tableau suivant (schéma de Horner) :
2 -3 —2 -5 4

2

Les nombres de la premiere ligne sont les coefficients du polynome, y compris ceux valant
0! Le @ de la deuxiéme ligne du tableau est le zéro du diviseur d(z) = = — 2.

On construit ensuite, en partant du coin inférieur gauche, le schéma suivant :

-5 4
@ @

WS 0@
ST

2 -3
@

4
I

+/@/+/@/
2 1

ot P [|\3

La derniere ligne fournit les coefficients du quotient ¢(z) = 223 +2? —5 et le reste r = —6.
On retrouve donc bien I’équation (2.5).

De plus, la valeur de p(x) en 2 est égale au reste r = —6 donnée par le schéma de Horner :
p(2)=2-21-3.23-2.22-5.2+4=—6.

2.5.3 Principe de résolution

Pour les équations de degrés 3 et 4, il existe des formules du méme type que celles que
nous avons rencontrées pour le degré 2. Elles sont cependant relativement compliquées et
on ne les utilisera pas dans ce cours. En 1826, Abel, mathématicien norvégien, a montré
qu'une équation du cinquieme degré ou plus ne peut se résoudre par radicaux (pas de
solutions générales comme pour les équations du second degré).

Dans ce cours, nous allons utiliser une technique qui permet de résoudre un petit nombre
d’équations polynomiales de degré supérieur a 2 et qui se base sur les techniques de
division de polynomes.

Soit p(z) un polynome de degré supérieur a 2. Marche a suivre pour résoudre 1’équation
p(z) =0:

1. chercher par tatonnement une solution, a, de ’équation,

2. diviser le polynome p(z) par le bindbme x — a, — on obtient une polynome
q(z) tel que p(z) = (z —a) - q(z),

3. - sideg(q(z)) > 2 : recommencer en 1 en considérant 1'équation ¢(z) = 0,

- si deg(q(z)) < 2 : résoudre I'équation ¢(z) = 0 a 'aide des techniques vues
dans les chapitres précédents.

Remarques

1) Pour résoudre une équation polynomiale quelconque, il faut, avant de pouvoir débuter
la procédure décrite ci-dessus, se ramener a une équation équivalente avec un des deux
membres égal a zéro.
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2) La solution a obtenue par tatonnement est une racine de p(x) car p(a) = 0.

3) D’une maniére générale, on cherche tout d’abord des racines entiéres proches de zéro
en testant dans 'ordre les nombres : 0, 1, —1, 2, —2, 3, =3, ...

4) Le degré de g(z) est strictement inférieur a celui de p(x) ce qui permet de ”simplifier”
le probléme (on ne peut pas itérer les opérations sans fin).

Exemple

Résoudre : x® + 2% — 4o — 4 = 0.

Essais successifs pour découvrir une solution :
~w=0-—0"4+0°-4-0-4=0: Non
~2x=1—13412-4-1—-4=0 : Non

—a=—1— (134 (=1)2—4. (1) =40 :0.K

= 11 = —1 est solution de [’équation.
On divise alors le polynéome x® + x* —4x —4 par le bindme v+ 1 a laide du schéma
de Horner.
1 1 —4 —4
~1 0 4 )
1 0 -4 o

On obtient I’égalité 3 + 2* — 4z — 4 = (z + 1)(2* — 4).
On résout alors I’équation x> —4 = 0. Cette équation est une équation du deuzicéme

degré qu’on peut résoudre par factorisation en utilisant une identité remarquable.
On trouve l’équation équivalente

(x—=2)(z+2)=0

qui admet comme solution xo = 2 et x3 = —2.

L’ensemble des solutions de [’équation de départ est : S = {—2; —1;2}.

2.5.4 Factorisation d’un polynéme de degré supérieur a 2

Définition 2.11
Rappel : factoriser un polynome de degré n consiste a écrire ce polynéme sous forme
d’un produit de polynomes de degré plus petit que n.

Un polynome est dit irréductible s’il ne peut pas étre écrit comme un produit de deux
polynome de degré > 1.

Exemples

1) Le polynome x* + 4 est irréductible.
2) Le polynéme x? — 4 n’est pas irréductible, car x> —4 = (x — 2) - (v + 2)

Théoréme 2.8
Les seuls polynomes irréductibles sont les polynomes de degré 1 et les polynomes de degré
2 dont le discriminant est négatif.
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Ainsi, tout polynome peut s’écrire sous la forme d’un produit de polynomes irréductibles
de degré 1 ou 2.

Pour factoriser un polynome p(z) de degré n avec n > 2 sous cette forme, on va procéder
comme si on voulait résoudre 'équation p(z) =0 :

1. trouver une racine a de p(x),

2. diviser p(z) par x — a pour obtenir

p(z) = (x —a) - q(x),
ce qui permet d’effectuer une étape de la factorisation complete du polynome,

3. factoriser g(x) en partant de 1 si deg(q(z)) = n — 1 > 2 ou en utilisant les
résultats de la section (2.3.3) si deg(q(z)) = 2.

Remarques

1) Cette méthode ne permet pas de trouver la factorisation d’un polynome p(z) qui n’ad-
met pas de polynome de degré 1 dans sa factorisation. Ainsi, elle n’est pas utilisable
pour le polynome suivant qui se factorise pourtant facilement a I'aide d’une identité
remarquable : z* + 222 + 1 = (22 4+ 1)%

2) Cette procédure a une fin car le degré du quotient est toujours inférieur de 1 au degré
du polynéme de départ (dividende).

Théoréme 2.9
Un polynome de degré n a au plus n zéros.

En se basant sur ce théoreme et sur la procédure de factorisation ci-dessus, on peut,
comme pour les polynomes de degré 2, donner immédiatement la factorisation d’un po-
lynéme p(z) de degré n si on connait exactement les n zéros de celui-ci (donc I'ensemble
de ses zéros d’apres le théoreme).

Proposition 2.10
Soit p(x) = @™ +an_ 12" 4.+ arzt +ag et x1, To, ..., T, les n zéros de ce polynome.
On peut écrire :

plx)=ay, - (x—x1) - (r—x2) ...  (x — 1)

Remarque

Attention! Lorsqu’on utilise cette proposition pour factoriser un polynome de degré n,
il ne faut pas oublier le coefficient dominant comme premier facteur!!!

Exemple

Soit le polynome p(z) = 32> + 222 — Tx + 2. Ses 3 zéros sont : 1y =1, 1y = —2 et
1
T3 = 3-

Une factorisation de ce polynome en un produit de facteurs irréductibles est :

pa) =3 (1) (@ +2) (- 3)
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Les zéros dans la proposition ci-dessus ne sont pas nécessairement tous différents. Par
exemple, p(z) = z° + 2% — 5z + 3 se factorise

p(z) =(z+3)-(z-1)-(z-1)

Si un facteur x — a apparait m fois, alors a est un zéro de multiplicité m du polynome
p(z). Dans I'exemple ci-dessus, 1 est un zéro de multiplicité 2, et —3 un zéro de multiplicité
1.

A Tinverse, si a est un zéro de p(z) de multiplicité m, alors p(x) admet le facteur (z —a)™
dans sa factorisation.

Le théoreme suivant permet de ”"deviner” plus facilement un zéro de certains polynome
qu’en testant tous les nombres entiers proche de zéro.

Théoréeme 2.11
Soit p(r) = apx™ + ap_12"* + ... + a1z + ap un polynome a coefficients entiers.

1) Sia est un zéro entier de p(x), alors a est un diviseur de ay.

2) Sia = % est un zéro rationnel de p(z), avec u et v premiers entre eux, alors u est un
diviseur de aq et v un diviseur de a,,

Exemple

Déterminer les zéros rationnels de p(x) = 323 + 22 — Tw + 2.
Les zéros entiers possibles sont £1, £2, car les diviseurs de 2 sont £1 et +2.

Les zéros rationnels possibles sont +1, £2, ﬂ:%, ﬂ:%, car les diviseurs de 3 sont £1
et £3 et les diviseurs de 2 sont £1 et £2.

On obtient ici les trois zéros du polynéome car p(1) =0, p(—2) =0 et p(z) = 0.

1
3

2.6 Equations rationnelles

Définition 2.12
Une équation rationnelle a une inconnue est une équation équivalente a 1’équation :

p(x) _
o =" (2.6)

ou p(z) et g(z) sont des polynomes.

Remarque

Dans une équation rationnelle, I'inconnue apparait au dénominateur d’une (ou plusieurs)
fractions. On utilisera cette caractéristique pour identifier une telle équation.

Exemples
3r — 2
1 =0
/ 4—x
1 2
r—2 = 3z
3 7 39

3) 2 - _—

x x—1 x(z —1)
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Solutions

Les solutions de ’équation (2.6) sont les solutions de 1'équation p(z) = 0 qui ne sont
pas solution de I'équation ¢(z) = 0. L’ensemble des solutions est donc donné par :

S={a€eR|pla)=0et g(a) #0}.

Une équation rationnelle est rarement donnée sous la forme (2.6). Il faudrait donc trou-
ver, par une suite d’opérations, une équation équivalente de la forme souhaitée pour
pouvoir ”calculer” ses solutions comme proposé ci-dessus. Dans la pratique, on procédera
généralement un peu différemment.

2.6.1 Principe de résolution

Marche a suivre pour résoudre une équation rationnelle :

1. déterminer le polynome de plus petit degré possible multiple de chaque
dénominateur — on appelle ce polynome le " ppmc” des dénominateurs,

2. multiplier chaque membre de 1’équation par ce "ppmc” et simplifier — les
dénominateurs ”disparaissent”,

3. résoudre I’équation ainsi obtenue,

4. vérifier les solutions obtenues dans 1’équation de départ !

Remarque

Attention! Le fait de multiplier les deux membres d’une équation par un polynome
peut introduire des solutions qui ne satisfont pas I’équation initiale. C’est pourquoi il est
nécessaire de tester les solutions trouvées dans I’équation de départ.

Exemples

1. Le "ppmc” des polynomes x* - (x —2) et x - (x —2)*- (x +4) est le polynome
23 (x—2)% (v +4).
Pour construire ce "ppmc”, on multiplie chacun des facteurs différents appa-
raissant dans les polynomes initiaux. Si un méme facteur élevé a différentes
puissances est présent dans plusieurs polynomes, on ne considere que la puis-
sance la plus grande pour la construction du "ppmc”.
1 32

-2 x+2 5x-10

On détermine d’abord le "ppmc” des dénominateurs qui est le polynome 5 -

(x —2) - (x +2). Ensuite, on procéde comme décrit ci-dessus :

2. Résoudre :

m_i2 — mi—|—2 = ﬁ 5(x —2)(z +2) (multiplier par
le 77ppmc77)
26t 3-5(x;i>2gx+2> = 2R | simplifier
5(r+2)—3-5(x—2) = 2(x+2) CL
—10x +40 = 2x+14 —40
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—10z = 2z —-36| -2z
—12z = —-36 +(—12)
r = 3
Important! Il faut maintenant vérifier la solution obtenue en substituant 3 a
x dans [’équation de départ.
Vérification
1 3 2

2

- — O.K.
3—2 3+2 5 o
—_——

L’ensemble des solutions, apres vérification, est : S = {3}.

2.7 Equations irrationnelles

Définition 2.13
Une équation irrationnelle a une inconnue est une équation ou l'inconnue figure sous

un radical o/ .-

Exemples
1) V3r—2=28

2) V24+x+4—+v10—-3x =0
3) Vaxr —3 = /522 —To +2+23x —4

2.7.1 Principe de résolution

Marche a suivre pour résoudre une équation irrationnelle :

1. isoler un radical p/77 dans un des membres de I'équation a ’aide des regles
d’équivalence,

2. élever les deux membres de I’équation a la puissance n — le radical isolé
disparait,

3. répéter les points 1 et 2 afin de faire disparaitre l’ensemble des radicauz,
4. résoudre I'équation a une inconnue obtenue,

5. wvérifier les solutions obtenues dans 1’équation de départ !

Remarque

Attention! Le fait d’élever a la puissance n les deux membres d’une équation peut
introduire des solutions qui ne satisfont pas 1’équation initiale. C’est pourquoi il est
nécessaire de tester les solutions trouvées dans I’équation de départ.
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Exemple

Résoudre : /x+5+x—1=0.

Ve+5+z—-1 = 0 —(x — 1) (isoler le radical)
Vr+5 = —xz+1 (...)% (élever au carré)

r+5 = (—x+1)* | développer
r+5 = 22 —2x+1|—(z+5)
0 = 22 -3z —4

On résout alors I'équation du deuziéme degré 2 —3x —4 = 0 a laide de la formule
de résolution avec a =1, b= —3 et c = —4.

— Calcul du discriminant : A = (=3)2 —4-1-(—4) = 25 = 52

- A >0 : 2 solutions distinctes :
 —(3)+V25 345

- 4
0 2.1 2
—(=3)—v25 3-5
2.1 2

Important! Il faut maintenant vérifier les solutions obtenues en les substituant a
x dans ’équation de départ.

Vérification
* VI+5+44—1=0— Non
=3

¥ V-1+5+(-1)—1=0 — O.K.
=2

L’ensemble des solutions, apres vérification, est : S = {—1}.
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2.8 Exercices

1) Dans chacune des formules physiques suivantes, exprimer chaque lettre au moyen des
autres.

M1y [ 1, 1 1 1
a) F=G = b)T:27T\/; c) xziat + xg d)ﬁzﬁljt§2

2) Résoudre les équations suivantes.

a) 10xr —38+5x=20r — 18+ 42z — 11 b) 4x+ 7+ 20z — 17 = 24z — 10

c) —z+8=—-1+2x d) ©—10=-9+ 3z
e) de+12—(1—z)=bx+2 f) de+12—(1—2)=5zx+11
g) dxr+3=2(Tx—1) h) 7(z+2)—2=2(z—-1)
i) dv—(z+3)=5—(1-3z) i) (B3x—2)*=(z —5)(97 +4)
K) Gr—T) 2 +1)—10x(z —4)=0 1) 3;x—927$
m) 1;1:3232 n) ng%E—i—%—x:lS
o) -5 =1+3 p) %x+2:3—%:ﬂ
3) Résoudre les équations suivantes.
a) (r—2)(z+3)=0 b) 3z —1)(3—4z)=0
c) x(2x+7)=0 d) 2z +1)?=0
e) > +4x =0 f) x =32
g) 22 —-9=0 h) (z—2)?=9
i) (x+5)*=-5 j) 1—(4z+11)*=0
4) Résoudre les équations suivantes.
a) 32°+T7r—-3=0 b) 222 —2—1=0
¢) V3z® —4x+2V3=0 d) z(r+V2) = V2(z — V?2)
e) 22— (3—V2)r+v2=0 f) 22 —V3(2 - V3)x =6V3
g) x(z+V5) =2z h) 2% — 22 +22 =0
i) 2° 4 62° + 52 =0 j) 2t —2* 622 =0
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5) Résoudre les équations suivantes.
r—3 r—3
=5 b =0
5 3 1 1 1
C) = a d) =
r+1 z+1 2 r—4 2z+4+1
-5 -7 1 —1
e) x @ _ f) x x _1
r—3 x—1 2x-2 r—1 x
1 4 8 x 2z
s R R e
i 1 1 4 i 5 n 4 1
i) =+ === =
xr 2 9 I R |
6) Résoudre les équations suivantes.
a) 2+ vV1—-5t=0 b) V222 -1=2
c) Vi—z+b==x d) 3v2z —3+2y7T—z=11

e) v=44++4x—19

g) VT—-2r—+V5+z=+4+3z

i) 2Wr+1=+3x—-5

f) v+ vVbr+19=—1
h) vV11+8r+1=+v9+4x
i) V1+4vr=vr+1
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2.9 Solutions des exercices

2) a) S={-1} b) S=R c) S={3}
e) S=10 f)y S=R g)S:{%}
i) S=10 ) S={-% k) S={f}
m) S = {6} n) S = {54} o) S ={24}

3) a) S={-32} b) S={52} c) S={-%0}
e) S={-4;0} f) S={0;3} g) S=1{-3;3}
i) S=10 j) S={-3-3}

1) a) §={T2B) b) §={-%1} c) S
d) S=0 e) S=0 f) S
g) S={0;2—+5} h) S = {0} i S
i) S=1{-20;3}

5 a) S={4} b) S ={3} c) S={3}
e)S:{z—;’} f) S=0 g) S=10
i) S={-%3} j) S={0;5}

6) a) S={2} b) §={1} c) S={6}
e) S={5T7} f) §={-3} g) S={-1}
i) S={3} j) S={0;4}

page 63

d) §={-3}
h) S = {4}
D S = {0}
p) S={%

d) S={-0,5}
h) §={-1;5}

d) §={-5}
h) S ={-3:0}

d) 5= {6}
W §={-3



Chapitre 3

Déterminants

3.1 Déterminants d’ordre 2

Définition 3.1
On appelle déterminant d’ordre 2, et on note

a; by
as by

le nombre a1by — a9b;.

Exemple
5 2

1) 14 =5-4—-1-2=18
2 5

2) 41 =2-1-5-4=-18

3.1.1 Aire d’un parallélogramme

On peut utiliser un déterminant d’ordre 2 pour calculer 'aire d’un parallélogramme.
Considérons un plan muni d’un repere orthonormé d’origine O, et deux points A et B
de coordonnées (ay;az) et (by;be). L'aire du parallélogramme construit sur OAB (voir le

dessin ci-dessous) vaut exactement :

a; by
A= = a1by — a9b
as bz 102 — G201
Yy
bot
’ B(by; b2)
a2}
A(al;a2)
O 'bll all ]
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Démonstration. On peut se convaincre de ce résultat en remarquant que a;by est 'aire
d’un rectangle de largeur a; et de hauteur by auquel on soustrait asb; qui est ’aire d’'un
rectangle de hauteur as et de largeur b;.

Or, sur le dessin ci-dessous, en déplagant les parties hachurées du rectangle O PQR (d’aire
a1by) et en éliminant les deux parties foncées (d’aire totale agby), on retrouve le pa-
rallélogramme de départ dont 1’aire vaut donc bien a1by — asb;.

On peut également se persuader de ceci en utilisant du papier et des ciseaux.

Remarques

— On constate qu’en inversant les deux colonnes du déterminant, on trouve le résultat
opposé. Le déterminant peut donc étre interprété comme une aire signée.

— On peut facilement voir que le déterminant est nul si les trois points O, A et B sont
alignés.

3.2 Déterminants d’ordre 3

Définition 3.2
On appelle déterminant d’ordre 3, et on note

a; by
as by ¢
az bs c3

le nombre &1[)203 + agblcz + &2[)301 - agbgcl — a1b302 — &26103.

Pour calculer un tel déterminant, on utilise le tableau suivant :

a1 by &1 ai by
\ N N
as bg Co as b2
> N \
as b3 C3 a3 b3
NN\
+ + +

On effectue le produit des éléments sur les diagonales puis on somme ces produits; les
diagonales descendantes sont affectées du signe +, les diagonales montantes du signe —.
Ce procédé est appelé regle de Sarrus.
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Remarque

Attention! La regle de Sarrus ne marche que pour des déterminants d’ordre trois.

Exemple
1 2 —4
La valeur du déterminant| 2 0 4| est donnée par
-3 1 0
1 2 —4 1 2
\ N
0 Y0 427 0 =1.0.042-4-(=3)+(-4)-2-1
N
—(=3)-0-(—4)—1-4-1-0-2-2=—36
RS NP (78)-0-(=4)
NN N
+ o+

3.2.1 Volume d’un parallélépipede

On peut utiliser un déterminant d’ordre 3 pour calculer le volume d’un parallélépipede.
Considérons celui représenté ci-dessous et construit sur le tétraedre OABC. Son vo-
lume peut s’exprimer en fonction des coordonnées des points A(aq; as;as), B(by;by; b3) et
C(cq;¢9;¢3). 11 est donné par le déterminant d’ordre 3 :

a; b o
V =| as b2 (&)
as bg C3

z
B(b1; b2 b3)
Y

Aai;az;asz)

xT

3.3 Quelques propriétés des déterminants

Définition 3.3

Le transposé d’un déterminant D est un déterminant D’ obtenu en permutant, dans D,
chaque colonne avec la ligne de méme rang (premiere ligne avec premiere colonne, ... ).
Une colonne ou une ligne d'un déterminant est appelée une rangée.

Exemple

Le déterminant transposé de D =

W DN =
(@) RN QTSN
N QS
co Ot DN
O O W

7
8 | est le déterminant D' =
9
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Remarque

Si D' est le transposé de D, D est le transposé de D'.

Voici quelques propriétés des déterminants particulierement utiles. Elles s’appliquent aux
déterminants de tous les ordres, mais nous utiliserons des déterminants d’ordre trois pour
illustrer notre propos.

Propriétés
Soit a;, b; et ¢; (i =1,2,3) des nombres réels.

1. Deux déterminants transposés sont égaux.

a b o ay G2 as
Exemple D Qo bg Cy | = bl bg bg
az by c3 Ci Cy C3

2. Sil’on permute deux rangées paralleles d’un déterminant D, la valeur du déterminant
obtenu est 'opposée de celle de D.

by a1 a b o
Exemple N bg A9 Co |= —| Q2 bg Cy
b3 as c3 as bs c3

3. Si un déterminant a une rangée formée uniquement de zéros, alors il est nul.

aq bl C1
Exemple : 1 0 0 0 |=0
as bg C3

4. Si on multiplie tous les éléments d'une rangée par un nombre A, alors la valeur du
déterminant est multiplié par .

)\al bl C1 ap bl &1
Exemple N )\CLQ b2 Cy | = - (45} b2 (&)
)\&3 bg C3 as b3 C3

5. Si deux rangées paralleles d'un déterminant sont proportionnelles (donc éventuelle-
ment identiques), alors il est nul.

a; o«ap €
Exemple : | as aas co |=0 avec o € R.
a3 «oagz C3
6. Si on ajoute aux éléments d’'une méme rangée d’'un déterminant une combinaison
linéaire des éléments correspondants de rangées paralleles, alors le déterminant ne
change pas de valeur.

ap by ¢+ aa; + Bby a; by
Exemple : | as by co+ aas+ by |[=|as by ¢ avec a, 5 € R.
as bg 03+aa3+ﬁbg as bg C3
7. (Corollaire des propriétés 3 et 6) Si les éléments d'une rangée d'un déterminant
peuvent étre obtenus par une combinaison linéaire des éléments correspondants de
rangées paralleles, alors il est nul.

aq bl C1
Exemple : as by Ca =0 avecvy,0€R.
yai + das Yby 4+ dby  ycy 4 dco
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3.4 Déterminants d’ordre n

Définition 3.4
On appelle déterminant d’ordre n, et on note sous la forme d’un tableau de n lignes
et m colonnes

aix Az - Qip
ag1  A22 A2p,
Ap1 Ap2 - Ann
le nombre
n n
_ } : _ i+1
D = ai - A = E a1 - (—1) - M
i=1 i=1
ou

— a;; est I’élément situé a la i-eme ligne et a la j-eme colonne,
— M;j est le mineur de 1'élément a;; défini comme le déterminant obtenu en suppri-

mant dans le tableau représentant le nombre D les rangées (lignes et colonnes) qui
contiennent a;;,

— Ajj est le cofacteur de I'élément a;; qui est défini par : A;; = (—=1)"7 - M;;.
Un déterminant d’ordre n est donc égal a la somme des produits des éléments de la

premiere colonne par les cofacteurs correspondants. On dit dans ce cas que le déterminant
est développé par rapport a la premiere colonne.

Proposition 3.1

Un déterminant d’ordre n peut étre développé par rapport a n’importe quelle rangée
et est donc égal a la somme des produits des éléments d’une rangée par les cofacteurs
correspondants.

En développant par rapport a la i-eme ligne, on obtient :
n n
D=3 ay-Ay=y ay-(=1)" - My
j=1 j=1
En développant par rapport a la j-éme colonne, on obtient :
n n
D=3 ay Ay=) ay-(=1)7 - M.
i=1 i=1

Remarque

Pour un déterminant d’ordre n, les cofacteurs obtenus sont d’ordre n—1. On peut calculer
ces derniers en utilisant la méme définition. Le processus de calcul est donc itératif jus-
qu’au moment ol on obtient des déterminants d’ordre 2 qu’on peut facilement calculer.
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Exemples
aix G2 13
1) Soit D = 921 Q922 Q923
a31 a3z a3z

Le cofacteur de asy est :

Ay = (_1)2+1 G2 Giz | _ | d12 013
a3z a33 az2 G33
Le cofacteur de a3 est :
Ajs = (_1)1+3 (21 G2 | _ | G21 G22
’ az1 as2 az1  asz
-1 2 0 —2
2 —1 1 2
2) Calculer la valeur de D = 1 4 -3 _1
1 1 0 1

Important ! Pour réduire au maximum le nombre de calculs (et donc leffort),
on va toujours choisir de développer un déterminant selon la rangée comportant
le plus de 0 possible : ici la troisieme colonne.

-1 2 -2 -1 2 =2
D = 1-(=1)*%. 1 4 —1|=3-(=1)*3.] 2 -1 2
11 1 11 1

= <—1>'<<—1>"111 _H‘l"? ﬂ“" s :?D

(e {72 e )
= (-1)-(-5—4+46)—-3-(3—-8+2)
= 12
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3.5 Exercices

1) Calculer les déterminants :

1 2 —1 1 0 7 -7 9
D | 3‘ b)‘ 3 —2‘ C)‘ 0 3‘ d)‘ 1 —8‘
0 -1 2 0 3 2 2 —10
e>‘—1 0‘ f)‘—5 1‘ g)‘ 1 —4‘ h)‘ 3—15‘
2) Calculer les déterminants :
2 -1 =2 2 0 -5 3 7 4
Al 6 -1 1 Bl 5 3 3 Ol 0o 5 0
4 D 3 0 4 6 3 13 6
1 2 3 0 1 -1 1 0 8
d) 2 1 )| 2 4 -5 f) 1 16
1 3 2 -1 -1 1 3 0 4
3 2 1 4 =3 2
g | 1 —2 4 n| 5 9 -7
4 2 4 -1 4
3) Vérifier :
0 4 7 1 00 1 00
a) 0 0 1|=0 b) |0 a b|=|0 a ¢
0 0 0 0 ¢ d 0 b d
1 5 7 -1 3 =17
o 2 9 -5|=0 | 3 -9  51|=0
-2 —-10 —14 -8 24 -—-101
1 a b+c 0 1 1
e) |1 b atc|=0 f) 1 75 83|=0
1 ¢ a+b 0 2 2
1 21 43 0 a b 0 —a —b
g) 0 2 75|=6 h)|—a 0 c¢|=|a 0 —c
0O 0 3 b —c 0 b ¢ 0
a a d' a a a 0O a b
b b b=V U b jy|—a 0 ¢|=0
c d d e b —c 0
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4) Exprimer Dy, D3, Dy, D5, Dg a I'aide de Dy :

a
D1: b
D4: C

CLI

b/

C/

b/
Cl

CLI

al/

b/l

C//

b//

Cl/

al/

D

Ds

"

a

bl/

ad a
)
cd ¢

b ¢
/!

v
vod

5) Exprimer Dy, D3, D4, D5, Dg a 'aide de D; :

a
by

&1

2(1,1

—2by

D, =
D4 =
6) Vérifier :
2
a) 3
—2
1
c) 1
1
1
e) | 15
0

1

14
-1

a2

by

C2

2(1,2
—2b,y

1
16
1

as
b3 D2
C3
2&3
—2bs Dy
0 1
=| —9 4
8§ —5
0 -1
= 0 -1
1 3
0 0
= 1 -2
1 =2

aq a9 )\0,3
by by Ab3
(&1 Co )\Cg
ay bl C1
—bg —C3
(45} bg Cy
1
by | 4
7
1
| 1
2
-3
£) | -1
4

7) Résoudre en utilisant les propriétés des déterminants :

1 a b
1 z b
1 a =z

a)

0

8) Calculer les déterminants :

a)

1

—_

=N O N

0
1
1

—1
4
1
b}

r a 1
b) |a z 1|=0
a b 1
2 2
-2 1
2 b) -1
1 2
0O 0
0 1
1 -1
-1 0
1 0
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D3 =
Dg =
D3 =
D¢ =

2 3

5 6

8 9

3 2

1 4

2 2
—1 2
3 =3
—2 1
T

c) |1

1

4 =2
-1 0
-2 1
1 -1

C

by’
a”

c

A

C

(45} as
Aby  Abs
)\02 )\03
—a bl

a9 —bg
—asg bg
1 1 2
4 1 2
7 1 2
1 0 2
1 —4 4
2 =2 2
=0
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3.6 Solutions des exercices

1)

a) b b) —1 c) 0 d) 47

e) —1 f) 2 g) —14 h) 0

a) —70 b) —88 c) 30 d) 12

e) 1 f) —20 g) —6 h) 178

Dy = —D, D3 = —D, Dy =D, Ds = —D, D¢ = D,
D2 == )\Dl D3 - )\2D1 D4 - 4D1 D5 == D1 D6 - D1
a) S ={a;b} b) S ={a;b} c) S={1;a}

a) —61 b) 0 c) —20
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Chapitre 4

Systemes d’équations linéaires

4.1 Généralités

4.1.1 Systemes de deux équations linéaires & deux inconnues

Définition 4.1
Une équation linéaire & deux inconnues z et y est une condition pour (x;y) du type :

ar +by =c

ou a, b, ¢ sont des nombres réels.
Tout couple (z;y) qui vérifie ax + by = ¢ est une solution de I’équation.

Il existe une infinité de couples solutions. Dans le plan R?, I’ensemble de ces couples
définit une droite.

Exemple

L’équation

20 — 3y = —6
est une équation linéaire a deux inconnues. Quelques couples solutions de cette
équation :
17
On peut vérifier I’égalité si on substitue 3 ax etd ay :2-3—3-4=—6,; de méme

pour les autres couples de solutions.

Pour déterminer un couple de solutions, on peut isoler y par des transformations

équivalentes :
2v —3y = —6 —2x
-3y = —2z—-6|+(-3)
y = %x +2

puis choisir une valeur pour x, par exemple 3, et obtenir la valeur de y correspon-
dante en substituant 3 a x dans l’équation ci-dessus : y = % 34+2=4— on
obtient le couple solution (3;4).
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Pour dessiner la droite représentant [’ensemble des solutions de I’équation linéaire
a deuz inconnues 2x — 3y = —6 (cas général ax + by = c), on peut procéder comme
suit :

1) déterminer deux couples de solutions (x1;y1) et (z2;y2) de I'équation,

2) reporter dans le plan muni d’'un systeme d’axes (orthonormés) les points
(1;51) et (22;92) ,

3) tracer la droite passant par ces deux points.

Remarque

Une équation linéaire a deux inconnues ax + by = ¢ peut étre mise sous la forme (voir
I'exemple) :
y=mzx+h
ou m et h sont deux nombres réels. Cette équation s’appelle aussi équation réduite de la
droite formée par I’ensemble des solutions. On appelle :
— m la pente de la droite,
— h I'ordonnée a P’origine de la droite.
Nous reviendrons sur cette équation plus en détails dans la suite du cours.

Définition 4.2
Un systéme de deux équations linéaires a deux inconnues est une condition pour
(z;y) (ou de maniere plus générale (x1;z5)) du type :
ar+ by = et asT + bay = ¢
ou ay, asg, by, by, 1 et ¢y sont des nombres réels.

On convient, le plus souvent, de noter ce systeme comme suit :

amr + by =
4.1
{ asx + by = ¢ (4.1)

Une solution du systeme (4.1) est un couple de nombres réels (z;y) qui vérifie les deux
équations du systeme simultanément.

Résoudre un systeme d’équations signifie trouver toutes les solutions de celui-ci.
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Exemple
Le systeme
3r — y = 3
r 4+ 2y = 8
est un systeme de deuxr équations linéaires a deux inconnues qui admet comme

solution unique le couple (2;3). Comme pour les équations & une inconnue, on
donne l'ensemble de solutions sous la forme : S = {(2;3)}

4.1.2 Systemes de trois équations a trois inconnues

Définition 4.3
Une équation linéaire a trois inconnues x, y et z est une condition pour (z,y, z) du

type :
ar +by+cz=d
ou a, b, c et d sont des nombres réels.
Tout triplet (x;y;2) qui vérifie ax + by + cz = d est une solution de 1’équation.
Il existe une infinité de triplets solutions. Dans 'espace R?, I’ensemble de ces triplets
définit un plan.
Un systéme de trois équations a trois inconnues est une condition pour (x;y; z) du
type :
amxr + bly + ¢z = d1
o -+ bgy + oz = dg (42)
azr + bsy + c3z2 = d3
ou a;, b;, ¢; et d; (i = 1,2,3) sont des nombres réels.

Une solution du systeme (4.2) est un triplet de nombres réels (z; y; z) qui vérifie les trois
équations du systeme simultanément.

Exemple

Le systeme
2 — by + =z = -10
r + 2y + 3z = 26
-3z — 4y + 2z = 5

est un systeme de trois équations linéaires a trois inconnues qui admet comme
solution unique le triplet (—1;3;7). On note : S = {(—1;3;7)}

4.1.3 Systemes de m équations linéaires a n inconnues

Définition 4.4

Une équation linéaire a n inconnues i, xs, ..., x, est une condition du type :
a1+ asxo + ...+ apxy, =b (4.3)
ou aq, ..., a, et b sont des nombres réels. On peut remarquer que tous les x; sont a la

puissance 1, si ce n’était pas le cas, I’équation ne serait pas linéaire.

Un systeme de m équations linéaires a n inconnues x1, ..., x, est une condition composée
de m équations du type (4.3).
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Une solution d’un tel systeme est un n-uplets de nombres réels (z1; xs; . . . ; x,) qui vérifie
les m équations simultanément.

Exemple

Le systeme
rT — 42152 + r3 — 72154 = 23
—32151 + To — 95(33 56
— 4xy + 3x3 — 4x4 = 65

est un systeme de trois équations linéaires a quatre inconnues.

4.1.4 Systemes équivalents

Deux systemes sont équivalents s’ils admettent le méme ensemble de solutions. Pour
résoudre un systeme, on va transformer le systeme original en un systeme équivalent dont
les solutions peuvent étre déterminées de maniere simple.

Regles d’équivalence

Les regles suivantes permettent de transformer un systeme d’équations en un systeme
équivalent :

- permuter deux équations,
- multiplier une équation par un nombre réel non nul,

- additionner un multiple d’une équation a une autre équation.

4.2 Méthodes de résolution

Dans cette partie, nous allons décrire quatre méthodes de résolution de systemes de deux
équations linéaires a deux inconnues. On précisera a chaque fois si I'idée de la méthode
peut s’appliquer a d’autre types de systemes.

On cherchera donc a résoudre le systeme de deux équations linéaires a deux inconnues :

{alx + by = (4.4)

asx + by = ¢

ol ay, as, by, by, c1 et ¢y sont des nombres réels.

4.2.1 Graphiquement

Note : cette méthode ne s’applique qu’aux systémes de 2 équations a 2 inconnues.

Idée : La solution du systeme est l'intersection des ensembles de solutions de chaque
équation. Comme ’ensemble des solutions de chaque équation correspond a une droite,
la solution du systeme correspond au point d’intersection de ces deux droites.
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Principe de résolution

Marche a suivre pour résoudre le systeme (4.4) :

1) déterminer deux couples de solutions de la premiere équation et deux couples
de solutions de la seconde équation,

2) reporter dans un systeme d’axes (orthonormés) les points correspondant a ces
solutions,

3) tracer les deux droites passant par ces points représentant respectivement les
solutions de la premiere et de la seconde équation,

4) lire sur la représentation graphique les coordonnées du ou des (infinité) points
d’intersection — solution(s) du systeme.

Exemple
3r — y = 3
+ 2y = 8

— 2 couples solutions de 3z —y =3 : (0; =3) et (1,0).
— 2 couples solutions de x +2y =8 : (0;4) et (8,0).

Résoudre graphiquement le systeme : {

Résolution graphique :

-5 =4 43 =2 -1 2 3 4 5

Ensemble de solutions : S = {(2;3)}

Comme le graphique de toute équation linéaire ax + by = ¢ est une droite, tout systeme
de deux équations de ce type correspond a exactement un des trois cas énumérés dans le
tableau ci-dessous.
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. Coefficient . .
Graphique Nomb.re 09: clents Classification
de solutions des équations
UNE a , by systeme
seule solution as ' by déterminé
droites sécantes
/ AUCUNE e ﬁ ‘1 systeme
solution as by " oo impossible
droites paralleles
IINFINITE .
. a by _a systeme
de solutions Pl s D
(mais S 7& R x ]R) as 2 Co Indeterminé
droites confondues

Remarques

1. On note S = ) lorsqu’un systeéme n’admet pas de solution. Par exemple, le systéme

[\)

r + vy =1
r + y = 2

n’a pas de solution, car les deux équations sont contradictoires (droites paralléles).

. Avoir une infinité de couples solutions, ne signifie pas que tous les couples de

nombres réels sont solutions. Par exemple, le systeme

r + y =1
{23: + 2y = 2 (4.5)

a une infinité de solutions (droites confondues). Pour exprimer ’ensemble des so-
lutions, on peut choisir la valeur d’une variable arbitrairement, et la valeur de la
seconde variable sera déterminée d’apres la valeur de la premiere. On peut choisir
ici :

r=A avec A € R

et y est alors déterminée par :
y=1—\

A n’est pas une inconnue, mais un parametre, c¢’est-a-dire une valeur que 1’on peut
choisir arbitrairement.

On note l'ensemble de solutions ainsi : S = {(A\,1 —X) | A € R}.

4.2.2 Par substitution

Note : cette méthode peut s’appliquer a [’ensemble des systemes d’équations.

Idée : isoler une des inconnues dans une des équations puis remplacer cette inconnue par
la valeur trouvée dans les autres équations.
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Principe de résolution

Marche & suivre pour résoudre le systeme (4.4) :

1) expliciter (isoler) y dans la premiere équation — y est exprimé en fonction
de x,

2) remplacer (=substituer) y, dans la seconde équation, par son expression en
fonction de = trouvé en 1 — on obtient une équation a une inconnue, x,

3) résoudre I’équation obtenue en 2 — valeur(s) pour z,

4) substituer la (ou les) valeur(s) de x trouvée(s) en 3 dans I’équation de 1'étape
1 pour trouver les valeurs correspondantes de y — solution(s) du systeme.

Remarques

1. A T’étape 1, on peut choisir d’isoler x au lieu d’y. On modifie alors la procédure
pour étre cohérent avec ce choix.

2. A TI'étape 1, on peut choisir la seconde équation au lieu de la premiere.
3. Il n’y pas de regle pour savoir quelle équation et quelle inconnue choisir a 1’étape 1.
On effectuera cependant le choix qui "demandera” le moins de calculs et d’efforts.

Exemple

dr + y = 5

3r + 6y = —12

On exprime y en fonction de x dans la premiére équation. On écrira souvent ceci
de la maniére suivante.

Résoudre par substitution le systéeme : {

dr + y = 5 — y=5—4x (1)

3r + 6y = —12 —
On remplace alors y par 5 — 4x dans la deuxieme équation. On obtient I’équation
a une inconnue 3x + 6 (5 — 4x) = —12, qu’on résout :

=Y
3¢+ 6(5—4x) = —12| CL (réduire les deuz polynomes)
—2lz+30 = —12|-30
21z = —42]=(-21)
r = 2

On remplace ensuite x par 2 dans (1) :y=5—4-2= -3.

Pour vérifier la solution obtenue, on remplace x par 2 et y par —3 dans chaque
équation du systeme a résoudre :

1.2 +  (=3) =5  OK
3-2 + 6-(—=3) = —12 O.K.
Ensemble de solutions : S = {(2;—3)}.
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4.2.3 Par combinaisons linéaires

Note : cette méthode peut s’appliquer a [’ensemble des systémes d’équations linéaires.

Idée : on somme un multiple de la premiere équation avec un multiple de la seconde de
facon a obtenir une nouvelle équation ot au moins une inconnue a été éliminée.

Principe de résolution

Marche & suivre pour résoudre le systeme (4.4) :

Résoudre par combinaisons linéaires le systeme : {

2
S

+

3y
2y

27
1

1) choisir x comme inconnue & éliminer,

2) multiplier chaque équation par un facteur ”convenablement choisi” de maniere
a ce que x soit multiplié, dans chacune des équations, par des nombres opposés,

3) additionner les deux équations (=combinaison linéaire) — on obtient une
équation a une inconnue y,

4) résoudre I'équation obtenue en 3 — valeur(s) pour y,

5) recommencer en 1 en choisissant y comme inconnue a éliminer — solution(s)
du systeme.

Exemple

5

(=2)

27

2+ 3y
dor — 2y

-2
-3
I

Multiplication des mem-
bres de la 1°'¢ équation

par 5 et ceux de la 28me
par (—2)
10z + 15y = 135

Addition membre & mem-
bre des deux équations

19y = 133

Résolution de 1’équation a
une inconnue y (<19)

y=71

Multiplication des mem-
bres de la 1°® équation

par 2 et ceux de la 2°8me
par 3
dr + 6y = b4

Addition membre & mem-
bre des deux équations

192 = 57

Résolution de ’équation a
une inconnue z (<19)

r=3

Pour vérifier la solution obtenue, on remplace x par 3 et y par 7 dans chaque
équation du systeme a résoudre :

2:3 + 3-7
5-3
Ensemble de solutions : S = {(3;7)}.

2.7
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Remarques

1. On combinera parfois les méthodes de résolution par substitution et par combinai-

son linéaire.

. Dans un systeme d’équations, on dit qu'une équation est indépendante si elle ne
peut pas étre obtenue en combinant d’autre équations du systeme.

Dans un systeme d’équations,

— il n’y a pas de solution quand il y a plus d’équations indépendantes que d’incon-
nues,

— il y a une infinité de solutions quand il y a plus d’inconnues que d’équations
indépendantes.

. Soient n; le nombre d’inconnues et n. le nombre d’équations indépendantes d’un
systeme. Le nombre n = n; — n. est appelé nombre de degrés de liberté.

Le nombre de degrés de liberté nous indique le nombre d’inconnues dont on pourra
choisir la valeur. Par exemple, pour le systéme (4.5), on an =2 —1 =1 degré de

liberté (on a donc pu choisir la valeur de I'inconnue ).

4.2.4 Par les formules de Cramer

Note : cette méthode ne s’applique qu’aux systemes de deuxr équations linéaires a deux

inconnues et aur systemes de trois équations linéaires a trois inconnues.

Idée : on applique des formules qui donnent directement les solutions.

Théoréme 4.1

] p 4 . e s s b g
Soit le systeme d’équations linéaires : { ma A+ oy €1

aox -+ be = (9

On appelle D =

b , . o .
Zl bl ‘ le déterminant principal de ce systeme.
2 02

— Si D # 0, ce systéme admet pour solution unique le couple (z;y) tel que :

a b

T=Tp o YT

a G
Gy Co
D

Formules de Cramer

— Si D =0, ce systeme peut ne pas avoir de solution ou une infinité de solutions.

Pour démontrer ce théoreme, il suffit d’isoler y dans ’équation a,x + byy = ¢;, puis de
le substituer dans I’équation suivante. En isolant x, on trouve la premiere égalité du

théoreme ; on agit de maniere analogue pour trouver la seconde formule.

Exemples

4r — y = —6

1) Résoudre le systéme : { % + 2 = T

Le déterminant principal du systéme est :

=4.2-2.(=1)=10

4 -1
pefs 7
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Ce systeme admet donc une solution unique déterminée a ['aide des formules

de Cramer :
—6 —1
. T 2] (=6)-2-7-(-1) -5 1
- 10 N 10 10 2
4 —6‘
2 7 4.7—-2-(—6) 40
= = :—:4
y 10 10 10

L’ensemble des solutions : S = {(—1;4)}.

2) Résoudre et discuter le systéme :
m?z + y = 2
r + y = 2m
dans lequel m est un paramétre réel.

Le détermainant principal du systéeme est :
2
o[ 1|

1l s’annule pour m =1 oum = —1.

a) St D #0, c’est-a-dire si m # 1 et m # —1, le systéme admet une solution

UNIQUE !
2 1 m? 2
2m 1 —2 I 2m| 2m*+m+1)
Tr = = = =
m2—1 m+1 77 mr-1 m+ 1

Ensemble des solutions : S = {(:=4; 2(m;t:rf+1)) |meR,m#1,—1}.

r + y = 2
2

b) Sim=1,1 te t:
) Sim , le systéme es {x by =

Il admet une infinité de solutions de la forme (X\;2 — X). Ensemble des solu-
tions : S = {(N\;2—=X) | A € R}. Dans R?, I’ensemble de ces solutions forme
une droite.

.o . o +y = 2
c) Sim= 1,lesystemeest.{z by o= -2

Il n’admet aucune solution. Ensemble des solutions : S = ().

Théoreme 4.2
amr + by + cz = dy
Soit le systeme ¢ asxr + by + 2z = dy .
asr + by + c3z = d3
ap b ¢
On appelle D =|as by c¢o |le déterminant principal de ce systeme.
az b3 c3
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— Si D # 0, ce systeme admet pour solution unique le triplet (z;y; z) tel que :

d1 bl C1 aq d1 C1 aq bl d1
d2 b2 Co a9 d2 Co Qo b2 d2
ds by c¢3 az dz c3 az by ds
_ _ | _ 198 %8 98 4,

Formules de Cramer

— Si D =0, ce systeme peut ne pas avoir de solution ou avoir une infinité de solutions.

Exemple
2v + vy = 2
Résoudre le systeme : - 4y + =z 0
4o + z =6

Le déterminant principal du systéme est

2 1 0
D=0 -4 1/=-8+44+0-0-0-0=—-4
4 0 1
Ce systeme admet donc une solution unique déterminée a l'aide des formules de
Cramer :
2 1 0
0 —4 1
|6 0 1} -8+6+0-0-0-0 -2 1
T T T 4 T 12
2 20
001
1461 _O—|—8+O—O—12—O_—4_1
(I 4 i
2 1 2
0 —4 0
L 4 0 6 _—48+0—|—0—(—32)—0—0_—16_4

—4 —4 —4

L’ensemble des solutions : S = {(3;1;4)}.

4.3 Systemes linéaires homogenes

Définition 4.5

Les systemes

amxr + by + ¢z = 0
azr + by + z = 0

{alx + by = 0
azr + bsy + c3z = 0

asr + by = 0

sont appelés systémes linéaires homogenes a deux, respectivement trois inconnues.

Le couple (0;0) (respectivement le triplet (0;0;0)) est solution de tout systéeme homogene
d’ordre deux (respectivement d’ordre trois). C’est I'unique solution d’un tel systéme si et
seulement si le déterminant principal est non nul.
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4.4 Exercices

1) Résoudre les systeémes suivants :

a) {ar— y=0 ) o= fr Y=
2 4+ 2y =T 3z — 4y —3=0 rt+y=3
oYV _g Ty [ T Yy
Q{56 o) {3 15 f) 3 4
Ty z Y Y
Z _Z_91 . —— 4+ ==16
2 4 12 10 S
( x y_8
g [ z+3y=2 p 9T dy=38 ) 33T
2r + 6y = 4 24x — 25y = 148 ﬁ_g_z
(12 4

2) Résoudre et discuter les systémes suivants :

r 4+ m(m—1)y = 2m? 2mz — (m+2)y = 3m
2) {x— (m? — 1)y = m(1 —m) b){Q(m—l)x— my = 3(m —1)
{m+1:v+ —Dy=m d){(m—|—1)2x+(m2—1)y=m+1
mx + (m+ 1)y = (m—1) (m—1)2x + (m*— 1)y = (m—1)?
{m 3)z + my =5 f) {(m+2):r+( — 1)y =5m+1
mz + (m—4)y = 2 (m+1z + (m+4)y = -8
{ + (m—2)y +5m+10=0
:17+ (3m+9)y — 10=0

3) Résoudre les systemes suivants :

T+ 3y + 2z =—-13 20 — 3y +22=6

a) § 2x — 6y + 3z = 32 b) T+ 8y + 3z = 31
v — 4y — z=12 3r — 2y + z= -5
20 + y =2 r+y—2=1

c) —4y+2=0 d) dx—y—2=-1
4x +2=06 r+y—z=1

r+y+z=14
e) Sz —y+2=06
r—y—z=4

r+ y—62=9
f) r— y+4z=5
20 =3y + z=-4
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20 = 3y + 52 =4
g) < 3x 42y + 2z=3
dr + y — 4z = —6
i>{

x4+ 2y +32=2
20 + 4y + 2z = —1
3r + 6y + 5z = 2

r+y+z=1
k) Sz +y+z2=1
r+y+z=1

20 — 3y+ z=0
r+ dy—3z2=3
or + 12y — 82 =9

h)

6z — 2y + z=1
r—4y +22=0
dr + 6y — 32 =10

20 + 3y — 4z =1
v — y+ 2z=-2
or — 9y + 142 =3

4) Résoudre et discuter les systemes suivants :
mr+ y+ z=m?
a) r+my+ z=3m-—2 b)
T+ y+mz=2-m

mr+ y— z=1
r+my — z=1
-+ y+mz=1

5) Résoudre les systémes homogenes suivants :
20 =3y + 32 =0

a) ¢ 3z —4y +52=0 b)
or + y+22=0

4o+ y—22=0
r—2y+ z2=0
11z =4y — 2z=0

x4+ 2y+ 2=0
c) R4+ 8y +42=0 d)
5t + 10y + 52 =10

3+ y— 92=0
dr — 3y + z2=0
6 — 11y + 212 =0

6) Résoudre et discuter les systémes homogenes suivants :

(m*+ 1)z — (m+ 1)y =0 (m—=5)r+ 2m+1)y =0
Y { br — 3320 b) {(3m+5)x+ (m—7)z:o
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4.5 Solutions des exercices

Remarque : on indique ci-dessous uniquement l’ensembles des solutions des différentes
équations sous la forme {...} sans la mention du S =....

1) a) {(—5:4)} b) {(3:3)} c) 0
d) {(60;36)} ) {(12;0)} f) {(14,4;36,8)}
g) {(XN%3) [ AeR} h) {(2;-4)} i) {(24;0)}
2) Pour tout l'exercice : m € R.
a) Sim#1etm# —% { 27;7:13 N - fr(rémlll))}
Sim=1oum= —% 0.

b) Sim#2:{(3;0)},
Sim=2:{(NZ2)|XeR}.

c) Sim#—

Sim =

{ 3m—|—17 3m+1

- 0.

d) Sim#-letm#0etm#1: {(E2;21)}
Sim=—1:{(1;A\) | e R},
Sim=20: {(A)\—l)\)\ER}
Sim=1:{(3X)|XeR}.

1.
3
1.
3

e) Sim# 2 (5 i)}
. 0 )
Sl m = - - @
. m2 m— —m2— m—
f) Sim#-3: {(5 6-:,_3_?_9 4 =2 6m1f9 17)}>
Simz—% 0
' [ /=5(3m+4) . 5(m+8
g) Sim=—getm#-1: {( 2(m+1 g 2(m+1))}’
Sim=—3:
Sim=—1:{(\>2)|eR}.

0,

{5

h) Sim#0:{(0;m?—1)},
A [ A

Sim=0:{(AA—1)| AR}
3) a) {(-2,-52)} b) {(=5;—4;2)}
) {(0,5;1; )} d) {NLA) | AeR}
e) {(94;1)} f) {(8;71)}
) {(=33:3)} h) {(¥F% 555N [ A e R}
i) {(1 2501 | A e R} j) 0
k) {spm=A—p+1) |\ peR} )
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4) Pour tout l'exercice : m € R.
a) Sim#letm#—-2:{(m;2;-2)}
Sim=1:{(Apml—=A—p)[ApeR}
Sim=-=2:{( 4+ X)) | NeR}
b) Sim#Oetm#Lletm#—1:{(L;L;1)}
Sim=20:0,
Sim=1:{(\1;\) | X € R},
Sim=—1:{(\X—-1)| A e R}.
5) a) {(0;0;0)} b) {(3;250) | AR}
c) {(=2A = Ajp) | A p R} d) {2330 2) | A e R}

6) Pour tout I'exercice : m € R.

a) Sim#2etm#—3:
Sim=2:{(\%)]|XeR},
Sim=-1:{(\2)|XeR}
Sim#1etm#—6:{(0;0)},
Sim=1:{(\%)]|XeR},
Sim=—6:{(\;—=X) | e R}

{(0;0)},
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Chapitre 5

Inéquations

5.1 Introduction

Jusqu’a présent, nous avons surtout étudié la résolution d’équations du premier degré
(comme I'équation 2z + 3 = 11), du deuxieme degré ou de degré supérieur. Le but de ce
chapitre est de résoudre des problemes du type suivant :

Pour quelles valeurs de x [’expression 2x + 3 est-elle plus grande que 11 ¢

Remplacons x par 3, 4, 5, 6 et regardons si cette comparaison est vérifiée.

X 2x+3 >11 Conclusion
3 9>11 Faux
4 11>11 Faux
5 13> 11 Vrai
6 15> 11 Vrai

Si un nombre b vérifie la relation lorsqu’on le substitue a x, alors b est une solution de
I’inéquation.

Définition 5.1

Une inéquation est une comparaison semblable a une équation, mais ou le symbole
d’égalité, =, y est remplacé par un symbole d’inégalité : > (plus grand que), < (plus
petit que), > (plus grand ou égal &) ou < (plus petit ou égal a).

Exemple

Pour linéquation 2x + 3 > 11, on voit que, grace au tableau ci-dessus, parmi les
nombres 3, 4, 5, 6, seuls 5 et 6 sont solutions de l’inéquation.

En procédant encore a quelques essais, il semble que tous les nombres supérieurs a 4

vérifient cette comparaison. Il y a donc une infinité de solutions a cette inéquation.
Comme pour les équations, résoudre une inéquation va signifier trouver toutes les solu-
tions de I'inéquation.

Que faut-il comprendre lorsque qu’on rencontre le signe >, plus grand ou égal a7
— Si la comparaison plus grand que est vérifiée, alors 'expression plus grand ou égal a
I'est aussi.
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— Si la comparaison €gal est vérifiée, alors 'expression plus grand ou égal a I'est aussi.
Pour voir la différence entre les symboles > et >, on peut reprendre 'exemple précédent
en le modifiant quelque peu :

X 2x+3 > 11 Conclusion
3 9>11 Faux
4 11>11 Vrai
) 13>11 Vrai
6 15 > 11 Vrai

Le nombre 4 est maintenant solution de 'inéquation.

Nous avons déja vu qu’il est possible de représenter les nombres réels sur une droite allant
de moins l'infini (—oo) & plus l'infini (+00).

—0 T I 400

a b

Sur la droite réelle, le nombre a est a gauche du nombre b si a est plus petit que b. On
voit immédiatement que tous les nombres a gauche de b satisfont l'inéquation = < b.
La solution d’une inéquation n’est donc pas un nombre, mais un ensemble de nombres,
qu’on nomme intervalle (consulter le chapitre sur les ensembles). Ainsi, la solution de
I'inéquation x < b est 'ensemble S = |—o0; b].

5.2 Quelques propriétés

Comme nous le verrons, les méthodes pour résoudre les inéquations sont semblables
a celles utilisées pour résoudre les équations. Les propriétés que nous allons voir sont
valables pour tous les types d’inéquations.

Pour énoncer ces propriétés, nous considérerons deux nombres réels a et b (a,b € R) tel
que a < b. Des propriétés équivalentes peuvent étre données pour a > b, a < b ou a > b.

5.2.1 Propriété d’addition

Pour tous les nombres réels a, b et ¢, avec a < b, on a :

‘a<b — at+c<b+ce a—c<b-c

Exemple

On considere les trois nombres 2, 3 et 7. Comme 2 < 7, on a alors que :
e 2+3<T7+3 oubd<10,
e 2-3<T7—-3o0u—-1<4

Cette propriété va nous permettre de passer un terme d’un membre de 'inéquation a
l'autre en I'additionnant (ou en le soustrayant) des deux cotés.

On peut ainsi transformer 'inéquation x + 2 < 0 en une inéquation équivalente :
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r+2 < 0 —2 (Soustraire 2 auzx deux membres)
r+2-2 < =2 Calcul littéral

r < =2 Inéquation équivalente

L’ensemble des solutions de I'inéquation  + 2 < 0 est donc S = |—o0; —2].

5.2.2 Propriété de multiplication

Pour tous les nombres réels a, b et ¢, avec a < b, on a :

a<bet ¢>0 = a-c<b-c et

A\

a<bet ¢c<0 = a-c>b-c et

\Y
Ol ol

ol ol

Exemples

1. On considere les trois nombres 2, 5 et 7. Comme 2 < 7, on a alors que :

e 2-5<7-50ull<35,

2 7
¢ s <cou04<ld

2. On consideére les trois nombres —5, 2 et 7. Comme 2 < 7, on a alors que :

o 2-(=5)>7-(=5) ou —10 > —35,
2

7
¢ < ou-04>-14

Remarque

La derniere propriété est source de beaucoup d’erreurs. Il faut y faire tres attention. Si
on multiplie (ou divise) une inéquation par un nombre négatif, il faut changer le signe de

I'inégalité, c’est-a-dire :

devient
devient
devient
devient

VAV A
AWV AV

Cette propriété n’a rien de comparable pour les équations.

5.2.3 Propriété d’inversion

Pour tous nombres réels a et b de méme signe (donc a-b > 0), avec a < b, on a :

ISHN
S| =

a<bet a-b>0 — >
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Exemples
1. On consideére les deux nombres 2 et 5. Comme 2 < 5, on a alors que :

1 1
e — > — ou0.5>0.2.
2 5

2. On considere les deur nombres —2 et —5. Comme —5 < —2, on a alors que :

1 1
—_— > — —0.2 > —0.5.
0_5>_20u0>05

5.3 Inéquation du premier degré

Définition 5.2
Une inéquation du premier degré est une inéquation qui peut étre ramenée a la forme
générale

a-x+b>0

oua € R* beR et le symbole > peut étre remplacé par un des symboles <, < ou >.

Exemple

Linéquation 2x + 3 > 0 est une inéquation du premier degré.

Dans la suite de ce cours, nous allons travailler sur des exemples pour donner les idées
générales de résolution de différents types d’inéquations.

5.3.1 Résolution algébrique

La résolution algébrique d’une inéquation du premier degré est analogue a celle d'une
équation du premier degré, cependant il faut changer le sens de l'inégalité lorsqu’on
multiplie ou divise les deux membres par un nombre négatif.

Exemple 1
A résoudre : -3z +4 < 11.

On peut procéder de la maniere suivante en s’inspirant de ce qu’on fait avec une équation
du premier degré et en respectant les propriétés énoncées au paragraphe précédant. Le
but est d’isoler x d'un co6té de 'inéquation.

—3r+4 < 11 —4 (Soustraire 4 auzr deur membres)

(=3z+4)—4 < 11—-4 Réduire

—3r < 7 +(=3) (Diviser par —3, changer le sens de l'inégalité)
-3 7
_—; > — Simplifier
7 . R
r > —3 Inéquation équivalente
L’ensemble des solutions de —3z +4 < 11 est S = ]—3' 400 [

7
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Exemple 2

A résoudre : —6 <2x —4 < 2.

Un nombre réel est solution de cette inéquation si et seulement s’il est solution des deux
inéquations :

a) —6 <2z —4
b) 22 —4 < 2

On résout alors chacune de ces deux inéquations séparément. Pour la premiere :

—6 < 20—4 +4 (Additionner 4 auz deuz membres)
—6+4 < (2xr—4)+4 Réduire
-2 < 2z +2 (Diviser par 2)
-1 < z Permuter les termes
xr > —1 Inéquation équivalente

Pour la seconde :

20 —4 < 2 +4 (Additionner 4 auz deuz membres)
20 < 6 +2 (Diviser par 2)

r < 3 Inéquation équivalente
Ainsi, z est solution de I'inéquation de départ si et seulement si on a a la fois
z>—1 et T <3,

c’est-a-dire —1 < x < 3. Ainsi, les solutions de I'inéquation sont tous les nombres appar-
tenant a U'intervalle |—1; 3[.

En fait, cet intervalle correspond a l'intersection des deux intervalles qui représentent la
solution de la premiere et de la seconde équation : |—1;3[ = |—1; +o00[(]—00; 3.

5.3.2 Résolution graphique

Pour résoudre une inéquation du type az 4+ b > 0 (ou avec un autre signe d’inégalité), on
peut également observer le graphe de la fonction donnée par f(x) = azx + b.

Exemple 3

A résoudre : %:c +1>0.

La fonction donnée par f(z) = 32 + 1 coupe 'axe Oz en z = —2.

On observant le graphe de f esquissé ci-dessous, on constate que

1
§x+1>0 sl x> —2
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L’ensemble des solutions de l'inéquation est donc l'intervalle S = |—2; +o0].

On peut s’inspirer de l'exemple ci-dessus pour construire un tableau qui résume la
résolution graphique des inéquations qui peuvent se ramener a la forme :

axr+b>0 ou ar+b<0 (a+#0)

a>0 a<0

Graphe de
f(z)=ax+0b

Qo
Qo

Valeur de

T

SRS
IS

Signe de 0
ar +b

Solutions de b b
ar+b>0

Solutions de b
ar+b<0

Un tableau similaire pourrait étre construit pour les inéquations pouvant se ramener a
la forme ax +b > 0 ou ax + b < 0 (a # 0). En fait, il suffit de modifier la forme des
intervalles et d’inclure & chaque fois la borne —2

a”

5.4 Inéquations de degrés égal ou supérieur a 2

Définition 5.3
Une inéquation du deuxiéme degré est une inéquation qui peut étre ramenée a la
forme générale

a-22+b-x+c>0
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oua € R* b ceR et le symbole > peut étre remplacé par un des symboles <, < ou >.

Une inéquation polynomiale de degré supérieur a 2 est une inéquation qui peut
étre ramenée a la forme générale
p(z) >0

ou p(z) est un polynoéme de degré supérieur a 2 et le symbole > peut étre remplacé par
un des symboles <, < ou >.

Exemple

Linéquation 32> +4 > 0 est une inéquation du deuziéme degré et l'inéquation
323 — 222 + 2 < 0 est une inéquation polynomiale de degré 3.

5.4.1 Résolution algébrique

La résolution algébrique d'une inéquation du deuxieéme degré du type ax? + bx +c¢ > 0
ou de degré supérieur du type p(z) > 0 utilise fortement la résolution de ’équation
du deuxieme degré correspondante az? + bx + ¢ = 0 ou, respectivement, de 1’équation
correspondante p(z) = 0. Nous allons & nouveau prendre un exemple pour comprendre
comment cela fonctionne.

Exemple 4
A résoudre : 222 — 6x +4 < 0.

1) On commence par résoudre I’équation correspondante : 22% — 6z + 4 = 0.

Le discriminant vaut A = (—6)? —4-2-4 = 4 et les deux solutions sont alors données
—(—6) £ V4
par la formule : x5 = % Apres calcul, on trouve que 7 = 1 et 29 = 2.
2) On peut factoriser notre polynéme du deuxieme degré et écrire que 2% — 6x 44 =
2(x — 1)(x —2).
Au niveau de I'inéquation, on utilise cette factorisation pour passer a une nouvelle
inéquation équivalente a la premiere.

202 —6zx+4 < 0 Factoriser

2@ —-1)(z—2) < 0 Inéquation équivalente

3) On doit maintenant étudier le signe de 2(z — 1)(z — 2) suivant les valeurs de x, afin
de déterminer celles qui le rendent positif. Pour déterminer le signe de ce produit, on
étudie le signe de chacun de ses facteurs :

a) Pour 2, on a que 2 > 0.

b) Pour z — 1, on a trois solutions possibles :
e r—1>0,six>1,
e r—1=0,six=1,
e r—1<0,siz<l.

¢) Pour z — 2, on a trois solutions possibles :
e v —2>0,s1x>2,
o r—2=0,six=2,
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e v —2<0,six<2.

Pour 2(x — 1)(z — 2), on construit un tableau de signes :

x 1 2
2 + o+ ]+
r—1 — 0 + + +
x—2 — - 0 +
2(x —1)(x —2) + 0 — 0 +

Ce tableau de signes a été construit de la maniere suivante :

1)

4)

Sur la premiere ligne, on représente les valeurs possibles de x (en fait la droite
réelle). On construit une colonne pour chacune des racines et une colonne pour
chacun des intervalles compris entre deux racines ou entre l'infini et une racine
(premiere et derniere colonne).

Important ! Dans la premiere ligne du tableau, les racines sont classées par ordre
croissant.

On construit ensuite une ligne pour chacun des facteurs qu’on a déterminés et on
étudie le signe de ces derniers. Pour chacune des colonnes construites (pour chaque
racine et chaque intervalle), on détermine si le facteur est positif (4), nul (0) ou
négatif (—) sur ceux-ci.

Sur la derniere ligne, on étudie le signe de I'expression de départ : 2(z — 1)(z — 2).
Pour cela, on résume chacune des colonnes en utilisant la régle des signes (+-+ = +,
+ . — = — ... voir page 12).

On lit sur la derniere ligne du tableau que 'inéquation proposée a comme solution
tous les  tels que 1 < x < 2. L’ensemble des solutions est donc S = ]1;2].

Méthode générale de résolution

Si 'inéquation ne se ramene pas apres simplification a une inéquation du premier degré,
on suit la démarche suivante :

1. On regroupe tous les termes dans le membre de gauche pour que celui
2. On factorise (si possible) le membre de gauche en le mettant sous la
3. On étudie le signe de chacun des facteurs dans un tableau de signes

4. On conclut en observant la derniere ligne du tableau.

de droite soit égal a zéro.
forme d’un produit (ou d'un quotient).

(voir les exemples).

Exemple 5

A résoudre : 23 > 42’ +x—4
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Pour résoudre cette inéquation, on suit la démarche proposée ci-dessus.
3 > 42’ +ax—4 | —42? —x+4 (Membre de droite = 0)
22 —42? —x+4 >
(4@ —1a—4) >

Factoriser

0
0 Inéquation équivalente

On voit immédiatement que les facteurs s’annulent en —1, 1 et 4. On construit le tableau
de signes :

T —1 1 4
r+1 — 0 + + + + +
x—1 — - - 0 + + +
x—4 — — — — — 0 +
(x+1)(z—1)(x—4) — 0 + 0 — 0 +
L’ensemble des solutions est donné par : S = [—1; 1] | [4; +o0[.

5.4.2 Résolution graphique

Pour résoudre une équation polynomiale du type p(x) > 0 (ou un autre signe d’inégalité)
de maniere graphique, on résout également ’équation p(x) = 0, puis, au lieu de construire
la tableau de signes, on observe le graphe de la fonction donnée par f(x) = p(z) afin de
déterminer les solutions de 'inéquation.

Exemple 6

A résoudre : x*+4x —5 < 0.

1) On recherche les solutions de 1’équation correspondante : 2% + 4z — 5 = 0. On trouve
$1:16t$2:—5.

2) On réalise une esquisse du graphe de la fonction donnée par f(z) = 2? + 42 — 5 (cas
ot a > 0). Celle-ci est donnée ci-dessous. On 'observant, on constate que :

2 +4r—-5<0si —H<x<l

Y
YA: ?+4r—5 4t /
2 L
: : x
—6 — —4—3—2—1_2/I 2
L’ensemble des solutions de l'inéquation est donc U'intervalle S =| — 5; 1].

On peut s’inspirer de l'exemple ci-dessus pour construire un tableau qui résume la
résolution graphique des inéquations qui peuvent se ramener a la forme :

az® +br+c¢>0 ou ar’ +br+c<0 (avec a>0)
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a>0
Graphe de 7\/ \/
f(z) = az® +bx+c %
T o 1 ‘

Vale;r de o s .
ax%iiandj— c O =10+ + 0]+ +
St de ) Uprool| R () .
axgoiuzixo:l_scdi 0 J71; 2 pas de solution (S = ()

Un tableau similaire pourrait étre construit pour les inéquations pouvant se ramener a
la forme az? + bz + ¢ > 0 ou ax® + bx + ¢ < 0 (a > 0). De méme, on pourrait construire
ce tableau pour a < 0 (laissé au lecteur).

5.5 Inéquations rationnelles

Définition 5.4
Une inéquation rationnelle est une inéquation qui peut étre ramenée a la forme
générale
x

p(@) _

q(x)
ou p(x), q(x) sont des polynomes et le symbole > peut étre remplacé par un des symboles
<, L ou 2.

Exemple
2 -3z +2
L inéquation 1’371’;- < 0 est une inéquation rationnelle.
T —
Exemple 7
(x4+2)(3 —x)

A résoudre : < 0.
résoudre CESEES))

L’expression est déja factorisée, on peut donc directement établir le tableau de signes.
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T -2 -1 3

T+ 2 — o 4+ |4+ o+ |+ o+

3—u N T I O

r+1 — — — 0 + + +

z* 41 + + + + + |+ +

2)3—=
((5: 1))((32 T 1)) I .
La solution de notre probléme est donc I'ensemble S = [—2; —1[J [3; +o0].

Remarques

1. Le quotient n’est pas défini en x = 1 (on a %) x = 1 ne peut donc pas étre une
solution ! Dans le tableau, lorsque le quotient n’est pas défini, on achure les points ou

les intervalles ot ceci a lieu (dans la derniere ligne).

2. Le terme (2% + 1) est toujours positif, il n’a donc pas d’effet sur le signe du quotient.
On pourrait ainsi omettre la ligne correspondante dans le tableau.

Exemple 8

r+1 <9

r+3

Attention! Une erreur fréquente est de multiplier par z 4+ 3. Or, on n’a pas le droit
de multiplier I'inégalité par le dénominateur de la fraction s’il contient une variable. En
effet, comme la valeur de z est inconnue, on ne sait pas si c¢’est un nombre positif ou
négatif! On ne sait donc pas si le sens de I'inéquation changera apres multiplication.
On ne peut multiplier (ou diviser) les deux c6tés d’une inégalité que par des
valeurs connues (des constantes). La résolution correcte est la suivante.

A résoudre :

1
Tt < 2 | =2 (Membre de droite = 0)
r+3
1
vl < 0 Mettre au méme dénominateur
x4+ 3
r1-2(x+3) < 0 Réduire
r+3
T 0| (=1 (Multipli 1)
< (= ultiplier par —
r+3 b b
5
Tt > 0 Inéquation équivalente
r+3
T -5 -3
) — 0 + + +
z+3 — - — 0 +
T+ 95
+ |0 - +
T+ 3
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L’ensemble des solutions est donné par S =] — co; —5]U| — 3; +00].

Le nombre —5 est inclus puisque le quotient s’annule en —5. Le quotient n’est pas défini
en —3; ce nombre n’appartient donc pas a I’ensemble des solutions.

5.6 Fonction valeur absolue et fonctions définies par
morceaux

Le graphe de la fonction valeur absolue donnée par f(x) = |z| est représenté ci-dessous.
Cette fonction permet, en langage familier, ”d’6ter” le signe d’un nombre, et de le rendre
positif.

On constate que ce graphe est formé de deux demi-droites, la demi-droite d’équation

y = —x pour les x négatifs et la demi-droite d’équation y = x pour les x positifs.

)

4 F

3 -

2t

y = |z
1
-3 -2 -1 1 2 3
.

On peut donner une expression de cette méme fonction sans utiliser le symbole valeur
absolue, | . |, en séparant, dans la définition de f, les = positifs des x négatifs.

Définition 5.5
La fonction valeur absolue est définie par :

f: R — R
-z six <0

v m:{ T six >0

Exemples
1) |5] = 5 puisque 5 > 0.
2) | = 5| = —(=5) =5 puisque —5 < 0

Une fonction donnée de cette fagon est dite définie par morceaux ou définie par inter-
valles. On donne ci-dessous 3 exemples de telles fonctions.
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Exemples
Yy
3 -
1 3 :
5T+ 5 stz <1
. fay=¢ =2
—r+3 sixz > 1
x
—r+1 stz <1
flx) = ,
2. —x+3 siz>1
x Le graphe de cette fonction présente un
saut en x = 1.
La fonction signe donnée par f(x) =
Yy sgn(zx) prend la valeur 1 si x est posi-
o b tif, la valeur —1 si x est négatif et la
y = sgn(x) valeur 0 st x est nul. Elle est définie
3 ! par morceaur et peut étre donnée par
' — x [’expression :
-3 -2 -1 1 2 3
* -1 siz<0
—a} sgn(z) =< 0 sizx=0
1 stz >0

On peut également utiliser le symbole valeur absolue pour poser une inéquation.

Exemple 9
A résoudre : |z| < 3.

Essayons de comprendre ce que veut dire |z| < 3.

Si z > 0, cela signifie que x < 3. Si z < 0, cela veut dire que —z < 3, donc x > —3 (on
multiplie par un nombre négatif, le signe de I'inéquation change). On en déduit :

|z| < 3 est équivalent & —3 <z < 3.
De méme, pour |z| >3 on a :

|z| > 3 est équivalent a z < —3 ou = > 3.

On peut généraliser ce qui précede et on obtient, si a et b sont des nombres réels, :

1) Ja| <b est équivalent a —b < a<b,
2) |a] > b est équivalent & a < —b ou a >b.
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Chapitre 6

Nombres complexes

6.1 Introduction

Dans le premier chapitre de ce cours, nous avons décrit les ensembles de nombres suivants :
1. N={0;1;2;...}, lensemble des nombres naturels;

2. Z=A...;-2;—1;0;1;2;...}, 'ensemble des nombres entiers;
3. Q= {E |pE€Zetqce Z*}, I’ensemble des nombres rationnels;
q

4. R, ’ensemble des nombres réels. Cet ensemble est constitué des nombres rationnels et
des nombres irrationnels.

Nous avons alors remarqué que N C Z C Q C R.
Historiquement, ces ensembles de nombres ont été définis successivement.

Les nombres naturels ont été les premiers a étre utilisés. En effet, c’est cet ensemble de
nombres qui est utilisé la plupart du temps pour compter. Historiquement, le zéro n’est
pas apparu en méme temps que les autres nombres. On le rencontre pour la premiere fois
en Inde.

Dans N, 'opposé d’un nombre n’existe pas ou, de maniere équivalente, ’équation z+1 = 0
n’a pas de solution. Par contre, dans Z, cette équation admet une solution : —1. Z est
une extension de N.

Dans Z, I'inverse d'un nombre différent de 1 n’existe pas ou, de maniere équivalente,
I’équation 2x = 1 n’a pas de solution. Par contre, dans QQ, une solution existe : % Q est
une extension de Z.

Dans Q, il n’existe pas de nombre ayant pour carré 2 ou, de maniere équivalente, la
diagonale d’un carré de coté 1 n’est pas mesurable ou l'équation 22 = 2 n’a pas de
solution. Par contre dans R, cette équation admet 2 solutions : V2 et —v/2. R est une
extension de Q.

Dans R, il n’existe pas de nombre ayant pour carré —1 ou, de maniere équivalente,
'équation 22 = —1 n’a pas de solution.

Plus généralement, I’équation 22 +a = 0, avec a un nombre réel positif (a € R* ), n’admet
pas de solution dans R car il n’existe pas de nombre réel ayant un carré négatif : 22 = —a.

Si on "résolvait” tout de méme cette équation, on trouverait :

x::t\/——a::tm::t\\/i-\/——l

€R
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Le probleme se ramene a la non-connaissance de y/—1. Si 'on connaissait la valeur de
v/—1, toutes les équations de la forme 22 + a = 0 (avec a € R) pourraient alors étre
résolues. Par contre, la valeur de v/—1 ne serait évidemment pas un nombre réel.

Ainsi, I'objectif de ce cours est de définir un ensemble de nombres tel que les racines de
nombres négatifs soient définies. Nous noterons ce nouvel ensemble C et nous appellerons
ces nouveaux nombres nombres complexes. Dans cet ensemble, nous allons introduire
un nouveau symbole qui représentera v/—1 :

i=v—1

On peut montrer que dans C toute équation polynomiale de degré n admet n solutions
(théoréme fondamental de ’algébre). De plus, en utilisant cet ensemble, il est possible de
déterminer une formule qui permet de résoudre toutes les équations du troisieme degré.

6.2 Présentation des nombres complexes sous forme
cartésienne

Définition 6.1
On appelle nombres complexes, sous forme cartésienne, les expressions de la forme

ou a et b sont des nombres réels et i représente v/ —1.

Le nombre a est appelé partie réelle du nombre complexe z, on la note : a = Re(z).
Le nombre b est appelé partie imaginaire du nombre complexe z, on la note : b = Jm(z).

Comme on considere que ¢ représente y/—1, on peut poser que :

- = (/TP =1

— P == (=1)i=—i
—it=2. 2 =(-1)-(-1)=1
S =iti=1i=1

=t 2 =1.2=42=—1

Ainsi, pour tout nombre naturel n, on a :

-4n _ 1’ 7;471-{-1 — 7;’ ,l'4n+2 _ _1’ An+3

Remarque

Deux nombres complexes z; = aj + b1i et 2o = as + bot sont égaux se leurs parties réelles
et imaginaires sont égales :

== T W
1 — <2 b1:b2
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6.2.1 Addition, soustraction, multiplications sous forme carté-
sienne

Pour additionner ou soustraire deux nombres complexes sous forme cartésienne, pour
multiplier un nombre complexe sous forme cartésienne par un scalaire ou pour multi-
plier deux nombres complexes sous forme cartésienne entre eux, on procede comme s’il
s’agissait d’opérations sur les binémes mais en tenant compte que 2 = —1.

> (a+bi)+ (' +Vi)=(a+d)+ (b+ V)

> (a+bi) —(d+Vi)=(a—d)+ (b—10)i

> A (a+bi) = Aa+ \bi

> (a+bi)-(d + Vi) =ad +abi+ a'bi+bbi* = (ad’ — bV') + (ab' + a'b)i

6.2.2 Division

Pour diviser deux nombres complexes sous forme cartésienne, on amplifie la fraction afin
de faire disparaitre la partie imaginaire au dénominateur :
a+bi  a+bi a—Vi ad +0+ (a'b—ab)i  ad + 0 a'b — ab/

GV @tV @ Vi (@2t W) @7+ W2 @32+

Si le dominateur de la fraction est le nombre complexe 2/ = a/ 4’7, on amplifie la fraction
par le nombre complexe 2/ = a’' — Vi.
6.2.3 Nombre complexe conjugué

Définition 6.2
On appelle nombre complexe conjugué du nombre complexe z = a + bi le nombre

complexe :

Propriétés - nombre complexe conjugué

La notion de nombre complexe conjugué vérifie les propriétés suivantes :

1) La somme de deux nombres complexes conjugués est un nombre réel :
z+Z=a+bi+a—bi=2a€R
2) Le produit de deux nombres complexes conjugués est un nombre réel :

z-Z=(a+bi)-(a—bi)=a*—abi+bai — b*i* =a®> +b* € R

7) Re(z) = 2 et Jm(z)= - =""7%
21 2
Ces propriété sont valables pour tout z, 21, 2z € C.
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6.2.4 Résolution d’équations du deuxieme degré

Pour rechercher les racines carrées d’'un nombre complexe z = a+bi (il y en a deux!), par
exemple pour la résolution d’une équation du deuxieme degré, on procede comme suit.

Si on appelle x 4 yi les racines carrées de z, on peut poser, par définition :
(x+yi)*=a+bi ou 2? —y 4 2xyi = a + bi

Comme les parties réelles et imaginaires doivent étre égales pour que 2 nombres complexes
soient égaux, on peut poser :
-y = a
{ 2y = b

ce qui nous donne un systeme de deux équations a deux inconnues qu’on résout par

substitution en remplacant y par o0 dans la premiere équation. L’équation a résoudre
x
devient

b 2
22— (—) =aq ou da* —dax® — > =0
2

On obtient alors que

o 4a+/16a% 1 160 a+ a2+

ou

8 2

X

Comme a? + b* > 0, il y aura deux solutions pour z2. De plus, comme a? + b? > a2, une
des solutions sera positive, I’autre négative et ne conviendra pas pour z2. Finalement, on
a:

a++va?+ b b
Tio =* — et Y2 = T
a+va“+
104/ ot/
Exemple
Résoudre : %22 —4z4+iz+5—10i =0

On commence par calculer le discriminant associé a cette équation :

A= (—4+i)*—4-=-(5—10i) =16 — 8 + 14> — 10 +20i = 5+ 12i

N —

On cherche ensuite les racines carrées x + yi de 5 + 12i. On peut poser :
(x+yi)>=5+12  ou 2> —y*+22yi =5+ 12i
En identifiant les parties réelles et imaginaires, on obtient le systéme
{ -y =5
2y = 12
En wsolant y dans la deuxieme équation et en injectant sa valeur dans la premiere

équation, on doit maintenant résoudre l’équation

6\ 2
x2—<—> =5 ou ' —5r*—36=0 ou (z°=9) (2> +4) =0
x
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Ainsi 22 = 9 ou 22 = —4 ce qui est impossible. Les deuz racines carrées de 5+ 12i
sont donc

6
=3 — y1:§:2

6
IQZ—?) — y22—2—2
-3
Ainsi, © 4+ yi = £(3 + 2i). En utilisant la formule de résolution des équations du
deuxieme degré, on obtient comme solutions de [’équation de départ
—(—4+1i) £ (3+29)

2190 = 1 ou z7n=T+1etz=1-—231

6.3 Présentation des nombres complexes sous forme
trigonométriques

6.3.1 Plan de Gauss, module et argument

Dans un plan Oxy (notion définie dans le chapitre ” Ensembles”), tout nombre complexe
z = a + bi peut étre représenté par un point M (a;b) dont 1'abscisse est la partie réelle
de a et I'ordonnée la partie imaginaire b et, réciproquement, tout point P(x;y) du plan
Oxy peut étre considéré comme l'image géométrique du nombre complexe 2’ = x + yi.

On introduit ainsi une bijection entre C et les points du plan.

Définition 6.3
Le plan ainsi défini est appelé plan complexe ou plan de Gauss.

L’axe des x est appelé axe des réels.
L’axe des y est appelé axe des imaginaires.

Ri

Définition 6.4
Tout nombre complexe z = a + bi peut étre repéré dans le plan de Gauss par :

a) la distance, notée p ou |z|, entre 'origine et le point M (a;b) représentant z :

p=lz] =Vz-z=Va>+1?

On appelle cette distance le module de z.
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b) langle orienté, noté 6 ou arg(z), entre I'axe des réels et le segment [OM] :

f = arg(z) = arctan (2) + k- 27 sia >0

a

et

0 = arg(z) = arctan (2) + 7+ k- 27 si a < 0

a

On appelle cet angle 'argument de z.

Le nombre complexe z de module p et d’argument 6 se note souvent :

[p: 6]

On appelle cette notation la forme trigonométrique de z

On peut passer aisément de la forme trigonométrique, [p; 0], a la forme cartésienne, a+ bi,
d’un nombre complexe z en posant :

= pcos(d)
b = psin(0)

ou de maniere équivalente :

z=a+bi=p-(cos(f)+sin(f) - i) = pcos(#) + psin(f) - ¢

Remarques

1. Si z est un nombre réel, |z| = v2Z = V22 est la valeur absolue de z.

2. Deux nombres complexes z; et z; sont égaux sous forme cartésienne ou sous forme
trigonométrique si :

a1+b1i:a2+b2i < alzagetblzbg
[pl;Hl]:[pg;Hﬂ o p1:p26t91:92+/{:-27r,k€Z

Propriétés - module

Le module vérifie les propriétés suivantes :
1) |2/ 20 et |z2]=0&2=0

2) |[A-z| =\l |z|, avec A € R

3) lz] = lz2f| < |21+ 20| <] + 22|
Minkowski
4) [z] = [7]
5) |21+ 22| = |21] - |2
6) |2 [z
Z2 |2’2|
7) [Re(z)| < [2] et [Im(z)] < 7]

Ces propriétés sont valables pour tout z, z1, 20 € C.
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Remarque

Les fonctions vérifiant les deux premieres propriétés et la propriété de Minkowski sont
appelées des normes.

6.3.2 Addition, soustraction et multiplication par un scalaire

Cette maniere de présenter les nombres complexes n’a aucun intérét en ce qui concerne
ces opérations.

Dans le plan de Gauss, 'addition et la soustraction équivalent a des translations. La
multiplication par un scalaire équivaut a une homothétie de centre O et de rapport ce
scalaire.

6.3.3 Multiplication

Soient deux nombres complexes z; = [p1; 01] et zo = [p2; 0]. On peut multiplier ces deux
nombres complexes de la maniere suivante :

2120 = pi(cos(fy) + sin(6y)i) - pa(cos(B) + sin(hy)i)
= p1p2 - [(cos(B;) cos(fz) — sin(fy) sin(62)) + (cos(6y ) sin(fs) + cos(6s) sin(6)) ]

7 7

Cos(€T+92) sin(9‘1,+€2)
= p1p2 - (cos(0y + 02) +sin(6y + 02)i) = [p1 - p2; 01 + 02]

On remarque alors que lorsqu’on multiplie des nombres complexes, les modules se multi-
plient et les arguments s’additionnent :

2y - 29 = [p1;61] - [p2; 02) = [p1 - p2; 61 + 62)

Remarque

Dans le plan de Gauss, la multiplication par z = [p; 6] équivaut a une rotation d’angle 6,
suivie d’'une homothétie de rapport p.

6.3.4 Inversion

Soit le nombre complexe z = [p; ]. Pour déterminer I'inverse de ce nombre complexe, on
prend l'inverse de son module et 'opposé de son argument :

1 [1
2 |p

En effet, on a bien que :
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6.3.5 Division

Soient deux nombres complexes z; = [p1;61] et z2 = [po;02]. On peut déterminer le
quotient de ces deux nombres complexes de la maniere suivante :

z 1 1
Do = =[] {—; —92] = [&;91 — 92}
29 29 P2 P2

On remarque alors que lorsqu’on divise deux nombres complexes, les modules se divisent
et les arguments se soustraient :

ﬂ — [pl’el] = |:ﬂ91 - 92:|
22 [p2; 92] 027

Remarque

Dans le plan de Gauss, la division par z = [p; 6] équivaut a une rotation d’angle —0,
suivie d’'une homothétie de rapport 71).

6.3.6 Elévation a une puissance

Soit le nombre complexe z = [p; f]. Pour élever le nombre complexe z a la puissance n,
2", il suffit de le multiplier n fois par lui-méme. En effectuant les diverses multiplications
successives, on obtient :

2" = [p;0]" = [p"; nb)]
On remarque que pour élever un nombre complexe a la puissance n, on éleve le module
a la puissance n et on multiplie 'argument par n.

6.3.7 Extraction des racines n-iemes

Soit le nombre complexe z = [p; 0]. On cherche ici les nombres qui élevés a la puissance
n donnent le nombre z. D’apres ce qui précede, il faut prendre un nombre complexe dont

le module est {/p et dont 'argument est %. Comme 6 est défini a k- 27 pres, % sera défini
a k% pres. Il y aura donc n modules différents par tour. Ainsi tout nombre complexe

possédera n racines n-iemes distinctes.

Les racines n-iemes de z = [p; 0] sont données par :

0+k-2m
Vz= {(ﬁ; 7}
n
avec 0 < k <n,k €N.
Remarques
k-2m]" " 1 : N
1. Comme |1; = [1";k-27] = 1, on peut en déduire que les racines n-iémes

de z = [p; 0] s'obtiennent en multipliant une des racines n-iemes de z par les racines
n-iemes de l'unité.

2. Dans le plan de Gauss, les n racines n-iemes de z sont situées sur un cercle de centre
O et de rayon {/p. Si on relie ces racines par des segments de droite, elles forment un
polygone régulier a n cotés.
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6.3.8 Formule de Moivre

Soit un nombre complexe z de module 1. Il peut s’écrire
z = [1;60] = cos(f) + sin(6)i
Si on ’éleve a la puissance n, on obtient
2" =[1;,0]" = [1";n - 0] = cos(nh) + sin(nh)i

Proposition 6.1
La formule appelée formule de Moivre est 1’égalité suivante :

(cos(#) 4 sin(#)i)" = cos(nh) + sin(nh)i

Exemple

Si on applique la formule de Moivre pour n =2, on a

(cos(f) +sin(0)i)* = cos(20) + sin(26)i

ou

cos?(0) + 2cos(A) sin(A)i — sin?(f) = cos(26) + sin(20)i

Ainsi, par identification des parties réelles et imaginaires, on a

cos(20) = cos?(0) — sin?(f)
sin(20) = 2cos(f)sin(0)

qui sont les formules trigonométriques de duplication.
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6.4 Exercices

1) Soient les nombres complexes z; = 1 + 4i et zo = 5 — 4. Calculer :

a) z3 =21 + 22 b) 2z, =3z C) 25 =212
21
d = 22 e =— f = —
) 26 = 2 ) 27 o ) 28 >
2) Soient les nombres complexes z; = 7 — 5i, 20 = 2 414, 23 = =5 + 24, 24 = —10 — 34,

z5 = 8 et zg = 8i. Calculer :

a) z — 23 — 25 b) 212923 c) 2+ 2]
d) dz4 — 2326 e) Jm(zy) f) Re(ziz3)
g) JIm(2zy — 3z3) h) 2 i) i

<6 22

3) Trouver l'ensemble des nombres complexes z tels que 2/ = (z — 1)(z — 2i) soit

a) un nombre réel b) un nombre imaginaire pur
, , 2+2t
4) Trouver I’ensemble des nombres complexes z tels que 2/ = 5 soit
Z —_—
a) un nombre réel b) un nombre imaginaire pur
5) Démontrer les formules :
Z+Z ~ 2=z zZ—Z.
Re(z) = 5 et Jm(z) = 5 = g b
6) Résoudre les équations :
a) z+2iz=8+4Ti b) (1+4)z+ (5—3i)z =20+ 20¢
1
c) (24 2i)z —3Re(z) = —18 + 30¢ d) Im(Z+1)+i-Re(—2+2) = —3 = 61
7) Résoudre les systemes d’équations :
2) 3r 4+ 2y =T+1 b) 1w — o5y =13
or — 3y = -1+ 8¢ 20 — 3y = 130
8) Résoudre les équations :
a) 2 +zx+1=0 b) 62? + (7 —13i)r —3—-T7i=0
9) Ecrire sous forme cartésienne les nombres complexes suivants donnés sous forme tri-
gonométrique :
m 1 o5m
=(2; b = [ 2; —] =|=;—
a) 2z = [2;7] ) 22 \/76 c) 23 {2 4]
10) Soient z; = [2; ﬂ, 2y = [3; %}, Z3 = [5; %] et 2z, = [1; ‘%“] Calculer :
z z
a) Z1 %2 b) Z—: C) 23+ 24 d) Z—z
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11) Calculer le module et 'argument des nombres complexes :

a) 21:4—|—2Z b) Zgzg—i C) 23:—4+2Z

d) zg=-3—1i e) 25 =z1+ 29 f) 26 =21 29
1 . z

g) z =2 h) 2822—3 i) 29:Z—z

12) Calculer, en utilisant la forme trigonométrique, les produits et les quotients suivants,
puis exprimer les résultats sous forme cartésienne.

D) (1+)(VZ=v2) b) (1—V3)(—4v/3+4i) o 112

Q 4+ 44/3i 0 —1+/3i f 3+
V3+i V2 + V2 2+1

13) Calculer :

B (i) b) (§+§) O (V3 VB

s
14) Soit = — 1*_\/?.

a) Représenter 2°.

b) Déterminer les nombres entiers n pour lesquels 2" € R.

15) Calculer et construire :

a) les racines carrées de —8&1.

b

les racines carrées de 163.
1414

7

les racines cubiques de —46 + 91.

d

)
)

c) les racines cubiques de
)

e) les racines sixiemes de 1 + /3.

16) Résoudre les équations :
a) 224 (5—-2))z2+5—-5i=0 b) 22 +22+2+1=0
c) =it =22 +iz+1=0 d) 2% —(1+12i)2*> =13 -9 =0
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6.5 Solutions des exercices

1) a) z3=6+3i b) z4 =34+12i c) z5=94+19
d) zg=—-15+8i e) 27:%7—{—;—;17; f) 28:21—6+§—éi
2) a) 4—Ti b) —89 + 53¢ ¢) 112+ 40i
d) 19 + 30i e) —3 £) 20

3) a) z est un réel si z = a+ bi est tel que 2ab—2a —b+2 =0

b) 2’ est un imaginaire pur si z = a + bi est tel que (a —3)? = (b—1)>+2 =0

4) a) 2 estunréelsi z =a+biest tel quea—b—2=0

b) 2z’ est un imaginaire pur si z = a + bi est tel que (a — 1) + (b+ 1)* =2

6) a) z=2+3i b) z= —5i c) z=12+3i d) z:8+%z’
7 oa) x=14+1i, y=2—1 b) x=2i, y=—-3

8) a) xmz%i\/g b) x1:—1+1i x2:—2—|—§7j
9) a) z=-2 b) zz—gjtgl c) @,-—?—Qz

D L B e I 3 |5

11) Réponses :
1 2 3 4 ) 6 7 8

9
mod. V20 V10 V20 V10 V50 V200 20 Y2 2
arg. 0,464 —0,322 2,678 3,463 0,142 0,142 0,927 3,605 =

12) a) 2v2 b) 16i ¢) —i
d) 2v/3 4 2 e) 0,966+ 0,259 f) 1,4—0,2
13) a) —262144 + 262144i b) —0,865 — 0,501

c) 21200629, 67 + 5231678, 514
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14) b) Les multiples de 12.

15) a) 9 —9i
b) 2v2(1+14) —2v/2(1 + 1)
) 0,966 + 0,259 _Tﬂ + gz —0,259 — 0, 966i
d) 2+3i —3,598 + 0, 232i 1,598 — 3,232i
e) 1,105+ 0,195 0,384 + 1,055i —0,722 + 0, 860i
—1,105 — 0, 195i —0,384 — 1,055i 0,722 — 0, 8604

16) a) 21 = —2+1 29 =—3+1
b) z =1 29 =1 23 = —1
c) z1 =0,951 — 0,309 2o = 0,588 4+ 0,809 z3 = —0,588 4+ 0,809¢
zy = —0,951 — 0, 309
d) =247 m=-1,87+1,23 2 =-0,13 2 23
24 =10,794+0,7% z5 = —1,08 + 0,29 z6 = 0,29 — 1,087
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